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Abstract

The degenerated homoclinic bifurcation for high dimensional system is considered. The
existence, uniqueness, and incoexistence of the 1-homclinic orbit and 1-periodic orbit near Γ
are studied under the nonresonant condition. Complicated bifurcation pattern is described

under the resonant condition.

Keywords Local coordinates, Poincaré map, Homoclinic orbit, Periodic orbit,

2-fold periodic orbit, Resonant condition

1991 MR Subject Classification 58F14, 58F22

Chinese Library Classification O175.12 Document Code A

Article ID 0252-9599(2000)02-0201-10

§1. Introduction and Hypotheses

In recent years, with the development of nonlinear science and the deep study of chaotic

phenomena, an increasingly large number of papers are devoted to the bifurcation problems

of homoclinic and heteroclinic orbits in high dimensional space (see [1–14]). Due to the

difficulty encountered, unfortunately, only a few (e.g. [1, 13, 14]) are concerned with the

periodic orbits bifurcated from singular loops. Papers [1, 13] discussed the problem of the

homoclinic loop bifurcation in high dimension with codimension 2, that is, the system has

resonant eigenvalues and the homoclinic loop Γ = {z = r(t) : t ∈ R, r(±∞) = 0} satisfies

the nondegenerated condition codim(Tr(t)W
u + Tr(t)W

s) = 1.

In this paper, the periodic and homoclinic orbits produced from the degenerated homo-

clinic bifurcation are considered, which means we assume codim(Tr(t)W
u + Tr(t)W

s) = 2.

Results corresponding to nonresonant and resonant conditions are obtained. The method

to establish a system of local coordinates near the homoclinic loop suggested and used in

[13, 14] is simplified here.

Consider the following Cr system

ż = f(z) + εg(z, µ, ε), (1.1)

where r ≥ 4, z ∈ Rm+n, µ ∈ Rk, 0 ≤ |ε| ≪ 1, f(0) = 0, g(0, µ, ε) = 0.
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We need the following assumptions.

(H1) For ε = 0, System (1.1) has a homoclinic loop Γ = {z = r(t) : t ∈ R} with r(±∞) =

0. The stable manifold W s and the unstable manifold Wu of z = 0 are m-dimensional and

n-dimensional, respectively. Moreover, The linearization Df(0) at the equilibrium O has

simple real eigenvalues λ1, −λ2, λ3 and −λ4 such that any remaining eigenvalue λ of Df(0)

satisfies either Reλ > λ5 > λ3 > λ1 > 0, or Reλ < −λ6 < −λ4 < −λ2 < 0 for some positive

numbers λ5 and λ6. For any p ∈ Γ, codim(TpW
u + TpW

s) = 2.

(H2) Define e± = lim
t→±∞

ṙ(−t)/|ṙ(−t)|. Then, e+ ∈ T0W
u and e− ∈ T0W

s are unit

eigenvectors corresponding to λ1 and −λ2, respectively.
LetW ss andWuu be the strong stable manifold and the strong unstable manifold of z = 0,

respectively, e+ and e− be unit eigenvectors corresponding to λ3 and −λ4, Wuu+ ⊂ Wuu

and W ss− ⊂W ss be the one-dimensional solution manifolds tangent to e+ and e− at z = 0,

respectively, Wuuu ⊂ Wuu be the (n − 2)-dimensional solution manifold tangent to the

generalized eigenspace corresponding to those eigenvalues with larger real part than λ5,

and W sss ⊂ W ss be the (m − 2)-dimensional solution manifold tangent to the generalized

eigenspace corresponding to those eigenvalues with smaller real part than −λ6. Then, we

have T0W
uu = T0W

uuu ⊕ T0W
uu+, T0W

ss = T0W
sss ⊕ T0W

ss−.

(H3) lim
t→+∞

(Tr(t)W
s ∩ Tr(t)Wu) = e− ⊕ e−,

lim
t→−∞

(Tr(t)W
s ∩ Tr(t)Wu) = e+ ⊕ e+.

(H4) span (Tr(t)W
u, Tr(t)W

s, e+, ē+ ) = Rm+n, t≫ 1,

span (Tr(t)W
u, Tr(t)W

s, e−, ē− ) = Rm+n, t≪ −1.

We say Γ is degenerate if dim(Tr(t)W
u ∩ Tr(t)W s) > 1. In degenerate cases, the patten

of bifurcation will be much more complicated. It is easy to see that under the hypothesis

(H1), the hypothesis (H2) is generic, and so are the hypotheses (H3) and (H4). Hypothesis

(H4) is equivalent to

Tr(t)W
u → ToW

uuu ⊕ e− ⊕ ē− as t→ +∞,

Tr(t)W
s → ToW

sss ⊕ e+ ⊕ ē+ as t→ −∞.

This is called the strong inclination property.

§2. Local Coordinates

Our study will be based on the analysis of the Poincaré map defined on some local

transversal section of Γ. For the establishment of the Poincaré map, we should choose

a suitable coordinate system. Consider System (1.1) under the hypotheses (H1)–(H4).

Suppose that the neighborhood U is small enough. Then we can introduce a Cr change

such that System (1.1) has the following form in U :

ẋ = [λ1(ε) + · · · ] x,
˙̄u = [λ3(ε) + · · · ] ū,
u̇ = [B1(ε) + · · · ] u,

ẏ = [−λ2(ε) + · · · ] y,
˙̄v = [−λ4(ε) + · · · ] v̄,
v̇ = [−B2(ε) + · · · ] v,

(2.1)
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where λi(0) = λi for i = 1, 2, 3, 4, Reσ(B1(ε)) > λ3 and Reσ(−B2(ε)) < −λ4 for |ε| small

enough. In other words, we have straightened the following manifolds in U ,

Γ ∩Wu
loc = {y = 0, ū = 0, v̄ = 0, u = 0, v = 0},

Γ ∩W s
loc = {x = 0, ū = 0, v̄ = 0, u = 0, v = 0},

Wuuu
loc = {x = 0, y = 0, ū = 0, v̄ = 0, v = 0},

Wuu+
loc = {x = 0, y = 0, v̄ = 0, u = 0, v = 0},

W ss+
loc = {x = 0, y = 0, ū = 0, u = 0, v = 0},

W sss
loc = {x = 0, y = 0, ū = 0, v̄ = 0, u = 0}.

Here, u ∈ Rn−2, v ∈ Rm−2, and (2.1) is Cr−1.

Taking a time translation if necessary, we may assume r(−T ) = (δ, 0, 0, 0, 0∗, 0∗)∗, r(T ) =

(0, δ, 0, 0, 0∗, 0∗)∗, where δ is small enough such that {(x, y, ū, v̄, u, v) : |x|, |y|, |ū|, |v̄|, |u|,
|v|< 3δ/2}⊂ U . Let A(t) = Df(r(t)). Consider the linear system

ż = A(t)z (2.2)

and its adjoint system

ż = −A∗(t)z. (2.3)

Now we choose solutions of (2.2) as following:

z1(t), z2(t) ∈ (Tr(t)W
s)c ∩ (Tr(t)W

u)c,

z3(t) = −ṙ(t)/|ṙ(T )|, z4(t) ∈ Tr(t)W
s ∩ Tr(t)Wu,

z5(t) = (z15(t), · · · , zn−2
5 (t)) ∈ Tr(t)W

uuu ⊂ (Tr(t)W
s)c ∩ Tr(t)Wu,

z6(t) = (z16(t), · · · , zm−2
6 (t)) ∈ Tr(t)W

sss ⊂ Tr(t)W
s ∩ (Tr(t)W

u)c,

z1(T ) = (1, 0, 0, 0, 0, w∗
16)

∗,

z4(−T ) = (0, 0, 1, 0, 0, 0)∗,

z2(T ) = (w̃21, 0, 1, 0, 0, w
∗
26)

∗,

z5(−T ) = (0, 0, 0, 0, I, 0)∗,

z3(T ) = (0, 1, 0, 0, 0, 0)∗,

z6(T ) = (0, 0, 0, 0, 0, I)∗

such that Z(t) = (z1(t), z2(t), z3(t), z4(t), z5(t), z6(t)) is a fundamental solution matrix.

Proposition 2.1. If (H1)–(H4) are valid, then there exist constant vectors w16, w26 and

w̃21 such that the followings are true:

z1(−T ) = (w11, w12, w13, w14, w
∗
15, 0)

∗,

z3(−T ) = (w31, 0, 0, 0, 0, 0)
∗,

z5(T ) = (w∗
51, w

∗
52, w

∗
53, w

∗
54, w

∗
55, w

∗
56)

∗,

z2(−T ) = (w21, w22, w23, w24, w
∗
25, 0)

∗,

z4(T ) = (0, w42, 0, w44, 0, 0)
∗,

z6(−T ) = (w∗
61, w

∗
62, w

∗
63, w

∗
64, w

∗
65, w

∗
66)

∗,

where w31 < 0, w44 ̸= 0, detw55 ̸= 0, detw66 ̸= 0 and either w12w24 ̸= 0, w22 = 0 or

w12 = 0, w̃21 = 0, w14w22 ̸= 0. Moreover, for δ small enough, |w1iw
−1
12 | ≪ 1 for i ̸= 2,

|w2iw
−1
24 | ≪ 1 for i ̸= 4, |w̃21w

−1
24 | ≪ 1, |w42w

−1
44 | ≪ 1, |w5iw

−1
55 | ≪ 1 for i ̸= 5, |w6iw

−1
66 | ≪ 1

for i ̸= 6.

Proof. The existence of z5(t) and z6(t) with given values at T and −T is clear. By

the definition of z3(t), we have w31 < 0 immediately. Now let z̄1(t) be a solution of (2.2)

with z̄1(T ) = (1, 0, 0, 0, 0∗, 0∗)∗. Then, z1(t) = z̄1(t) + z6(t)w16 is also a solution of (2.2)

with z1(T ) = (1, 0, 0, 0, 0∗, w∗
16)

∗. Denote z̄1(−T ) = (w̄11, w̄12, w̄13, w̄14, w̄
∗
15, w̄

∗
16)

∗ and take

w16 = −w−1
66 w̄16. Then we get z1(−T ) as desired in case detw66 ̸= 0.

Now by the definition, z1(t) ∈ (Tr(t)W
u)c ∩ (Tr(t)W

s)c, we get (w12)
2 + (w14)

2 ̸= 0.

First assume w12 ̸= 0. Then, similar to the procedure for getting the desired z1(t),

we see there is a vector w̄26 such that there exists a solution z̄2(t) satisfing z̄2(T ) =

(0, 0, 1, 0, 0∗, w̄∗
26)

∗ and z̄2(−T ) = (w̄21, w̄22, w̄23, w̄24, w̄
∗
25, 0

∗)∗. Since w12 ̸= 0, we can de-
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fine z2(t) = z̄2(t) + z1(t)w̃21 with w̃21 = −w̄22w
−1
12 and w26 = w̄26 + w̃21w16 such that

z2(−T ) = (w21, 0, w23, w24, w
∗
25, 0

∗)∗.

That z4(T ) has the expression (0, w42, 0, w44, 0
∗, 0)∗ is simply because Tr(t)W

s ∩Tr(t)Wu

is an invariant subspace of (2.2) and becomes the y − v̄ plane as t ≥ T .

A simple computation shows that detZ(T ) = −w44 detw55, which turns out that w44 ̸= 0

and detw55 ̸= 0.

Now we show detw66 ̸= 0. In fact, if detw66 = 0, then, due to dimW sss = rankz6(T ) =

rankz6(−T ), we have Tr(−T )W
sss ∩ span{Tr(−T )W

u, e−, ē−} ̸= ∅. Notice that hypoth-

esis (H3) means dim(Tr(−T )W
s ∩ span{Tr(−T )W

u, e−, ē−}) ≥ 3, which turns out that

dim(span{Tr(−T )W
u, Tr(−T )W

s, e−, ē−}) < n+m. It contradicts hypothesis (H4) .

w24 ̸= 0 is a direct consequence of detZ(−T ) = −w12w24w31 detw66 ̸= 0.

If w12 = 0, then w14 ̸= 0, and we simply take z2(t) = z̄2(t). This means w̃21 = 0. Now it

follows from detZ(−T ) = w14w22w31 detw66 ̸= 0 that w22 ̸= 0.

The remainder is easy to check by using the expressions of A(t) at t = +∞ and −∞, we

omit the detail. The proof is finished.

Generically, we have w12 ̸= 0. Since the discussion is similar for the case w12 = 0 (then

w14w22 ̸= 0 by Proposition 2.1 ), we restrict ourselves to the case w12 ̸= 0 in this paper.

Denote r(t) = (r1(t), r2(t), r3(t), r4(t), r
∗
5(t), r

∗
6(t))

∗, w12 = ∆|w12|. We say that Γ is

nontwisted as ∆ = 1, and twisted as ∆ = −1.

In the following, we regard z1(t), z2(t), z3(t), z4(t), z5(t), z6(t) as a local coordinate

system along Γ. Denote Ψ(t) = (ψ1(t), ψ2(t), ψ3(t), ψ4(t), ψ5(t), ψ6(t)) = (Z−1(t))∗. Due to

[15], we have

Proposition 2.2. Ψ(t) is a fundamental solution matrix of (2.3). Moreover, ψ1(t), ψ2(t)

∈ (Tr(t)W
s)c ∩ (Tr(t)W

u)c are bounded and tend to zero exponentially as t→ ±∞.

§3. Poincaré Map and Its Associated Successor Function

Now we set up the Poincaré map. Set

n5 = (n15, · · · , nn−2
5 )∗, n6 = (n16, · · · , nm−2

6 )∗,

s(t) = r(t) + z1(t)n1 + z2(t)n2 + z4(t)n4 + z5(t)n5 + z6(t)n6.

Let

S0 = {z = s(T ) : |x|, |y|, |u|, |v|, |u|, |v| < 3δ/2},
S1 = {z = s(−T ) : |x|, |y|, |u|, |v|, |u|, |v| < 3δ/2}

be cross sections of Γ at t = T and t = −T , respectively, where δ is small enough such that

S0, S1 ⊂ U . At first, we set up a map F1 from S1 to S0 which is defined by the orbits of

(1.1). Secondly, we consider the map F2 from S0 to S1 induced by the orbits of (2.1) in

U . Thirdly, by combining the two maps we get the Poincaré map F = F1 ◦ F2: S0 7→ S0.

Finally, the associated successor function is given.

Let z = s(t) be a solution of (1.1). Substituting it into (1.1), we get

ṙ(t) + Ż(t)(n1, n2, 0, n4, n
∗
5, n

∗
6)

∗ + Z(t)(ṅ1, ṅ2, 0, ṅ4, ṅ
∗
5, ṅ

∗
6)

∗

= f(r(t)) +A(t)Z(t)(n1, n2, 0, n4, n
∗
5, n

∗
6)

∗ + εg(r(t), µ, 0) + h.o.t.
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By ṙ(t) = f(r(t)) and Ż(t) = A(t)Z(t), it reads as

Z(t)(ṅ1, ṅ2, 0, ṅ4, ṅ
∗
5, ṅ

∗
6)

∗ = εg(r(t), µ, 0) + h.o.t.

Multiplying two sides of the equation by Ψ∗(t) and using Ψ∗(t)Z(t) = I, we obtain

ṅi = εψ∗
i (t)g(r(t), µ, 0) + h.o.t., i = 1, 2, 4, 5, 6. (3.1)

System (3.1) yields the map F1 : S1 7→ S0 defined by (n1(−T ), n2(−T ), n4(−T ), n∗
5(−T ),

n∗6(−T ))∗ 7−→ (n1(T ), n2(T ), n4(T ), n
∗
5(T ), n

∗
6(T ))

∗,

ni(T ) = ni(−T ) + εMi(µ) + h.o.t., (3.2)

where Mi(µ) =
∫ T

−T
ψ∗
i (t)g(r(t), µ, 0)dt, i = 1, 2, 4, 5, 6.

Proposition 3.1. For i = 1, 2, 4, 5, 6, Mi(µ) =
∫ +∞
−∞ ψ∗

i (t)g(r(t), µ, 0)dt.

Proof. It suffices to show ψ∗
i (t)g(r(t), µ, 0) = 0 for |t| > T . Clearly, r(t) = (0, r2(t), 0,

0, 0∗, 0∗)∗ and |r2(t)| < δ for t > T . Owing to ψ∗
i (T )z3(T ) = 0 for i ̸= 3 and solving (2.3)

we get the y-component of ψi(t) is equal to zero for t > T . Meanwhile, (2.1) implies that

g(r(t), µ, 0) = (0, g2(r(t), µ, 0), 0, 0, 0
∗, 0∗)∗ for t > T . Thus we have ψ∗

i (t)g(r(t), µ, 0) = 0

for t > T . Similarly, we have ψ∗
i (t)g(r(t), µ, 0) = 0 for t < −T . Thus the proof is complete.

Functions M1(µ), M2(µ), M4(µ), M5(µ) and M6(µ) are called Melnikov functions.

Now we consider the map F2 : S0 → S1, q0(x0, y0, ū0, v̄0, u
∗
0, v

∗
0)

∗ → q1(x1, y1, ū1, v̄1,

u∗1, v
∗
1)

∗ which is induced by the orbit of (2.1) in U , where ui = (u1i , · · · , u
n−2
i )∗, vi =

(v1i , · · · , v
m−2
i )∗ for i = 0, 1.

First assume λ1 ≤ λ2. In order to guarantee the differentiability of the map at the

origin, we set s = e−λ1(ε)τ , where τ is the flying time from q0(x0, y0, ū0, v̄0, u
∗
0, v

∗
0)

∗ to

q1(x1, y1, ū1, v̄1, u
∗
1, v

∗
1)

∗.

If we apply the method of [2] or successive substitutions with initial solution value

x = eλ1(ε)(t−T−τ)x1, y = e−λ2(ε)(t−T )y0,

ū = eλ3(ε)(t−T−τ)ū1, v̄ = e−λ4(ε)(t−T )v̄0,

u = eB1(ε)(t−T−τ)u1, v = e−B2(ε)(t−T )v0

(3.3)

to (2.1), and neglect the higher order terms for δ sufficiently small, then we get

x0 = e−λ1(ε)τx1 = sx1,

ū0 = e−λ3(ε)τ ū1 = sλ3(ε)/λ1(ε)ū1,

u0 = e−B1(ε)τu1 = sB1(ε)/λ1(ε)u1,

y1 = e−λ2(ε)τy0 = sλ2(ε)/λ1(ε)y0,

v̄1 = e−λ4(ε)τ v̄0 = sλ4(ε)/λ1(ε)v̄0,

v1 = e−B2(ε)τv0 = sB2(ε)/λ1(ε)v0.

(3.4)

Here we have used the fact that

x ∼ O(δ)eλ1(t−T−τ), y ∼ O(δ)e−λ2(t−T ), ū ∼ O(δ)eλ3(t−T−τ),

v̄ ∼ O(δ)e−λ4(t−T ), u ∼ O(δ)eB1(t−T−τ), v ∼ O(δ)e−B2(t−T ).

Now we seek the new coordinates of q0 and q1. Let

q0 = (x0, y0, ū0, v̄0, u
∗
0, v

∗
0)

∗ = r(T ) + Z(T )(n01, n02, 0, n04, n
∗
05, n

∗
06)

∗,

q1 = (x1, y1, ū1, v̄1, u
∗
1, v

∗
1)

∗ = r(−T ) + Z(−T )(n11, n12, 0, n14, n
∗
15, n

∗
16)

∗.

Then, using r(T ) = (0, δ, 0, 0, 0∗, 0∗)∗ and r(−T ) = (δ, 0, 0, 0, 0∗, 0∗)∗, we get

(n01, n02, 0, n04, n
∗
05, n

∗
06)

∗ = Z−1(T )(x0, y0 − δ, ū0, v̄0, u
∗
0, v

∗
0)

∗,

(n11, n12, 0, n14, n
∗
15, n

∗
16)

∗ = Z−1(−T )(x1 − δ, y1, ū1, v̄1, u
∗
1, v

∗
1)

∗.
(3.5)



206 CHIN. ANN. OF MATH. Vol.21 Ser.B

Let

a1 = w11 − w21w
−1
24 w14, a3 = w13 − w23w

−1
24 w14, a5 = w15 − w25w

−1
24 w14,

b1 = w51 − w̃21w53, b2 = w52 − w42w
−1
44 w54,

b6 = w56 − w16w51 − (w26 − w̃21w16)w53, c1 = w61 − w21w
−1
24 w64,

c3 = w63 − w23w
−1
24 w64, c4 = w64 − w14w

−1
12 w62, c5 = w65 − w25w

−1
24 w64,

where ∥aiw−1
12 ∥ ≪ 1 for i = 1, 3, 5, ∥biw−1

55 ∥ ≪ 1 for i = 1, 2, 6, ∥ciw−1
66 ∥ ≪ 1 for i = 1, 3, 4, 5

as δ small enough. Due to the hypothesis w12 ̸= 0 and Proposition 2.1, we have

n01 = x0 − w̃21ū0 − b1w
−1
55 u0, n02 = ū0 − w53w

−1
55 u0,

y0 ≈ δ, n04 = w−1
44 (v̄0 − w54w

−1
55 u0), (3.6)

n05 = w−1
55 u0, n06 = −w16x0 − (w26 − w16w̃21)ū0 − b6w

−1
55 u0 + v0,

n11 = w−1
12 (y1 − w62w

−1
66 v1), n12 = w−1

24 (−w14w
−1
12 y1 + v̄1 − c4w

−1
66 v1),

x1 ≈ δ, n14 = −a3w−1
12 y1 + ū1 − w23w

−1
24 v̄1 − (c3 − a3w

−1
12 w62)w

−1
66 v1, (3.7)

n15 = −a5w−1
12 y1 + u1 − w25w

−1
24 v̄1 − (c5 − a5w

−1
12 w62)w

−1
66 v1, n16 = w−1

66 v1.

Now we have defined the map F1 : S1 → S0 by (3.2) and the map F2 : q0 ∈ S0 → q1 ∈ S1

by (3.4), (3.6) and (3.7). Let F1(q1) = q2 = r(T ) + Z(T )(n21, n22, 0, n24, n25, n26). Then

(3.2) reads as

n2i = n1i + εMi(µ) + h.o.t., i = 1, 2, 4, 5, 6. (3.8)

Thus we get the Poincaré map F = F1 ◦ F2 : q0 ∈ S0 → q2 ∈ S0,

F ((n01, n02, n04, n
∗
05, n

∗
06)

∗) = (n21, n22, n24, n
∗
25, n

∗
26)

∗,

where (ni1, ni2, ni4, n
∗
i5, n

∗
i6)

∗ for i = 0, 1, 2 are given by (3.6), (3.7) and (3.8). Explicitly, if

we substitute (3.4) (3.6) and (3.7) into (3.8) and neglect the higher order terms (compared

with O(sλ2(ε)/λ1(ε)) or O(sλ3(ε)/λ1(ε)) ), then the Poincaré map F : S0 → S0 is given by

n21 = w−1
12 δs

λ2(ε)/λ1(ε) + εM1(µ) + h.o.t.,

n22 = −w−1
24 w14w

−1
12 δs

λ2(ε)/λ1(ε) + w−1
24 s

λ4(ε)/λ1(ε)v̄0 + εM2(µ) + h.o.t.,

n24 = −a3w−1
12 δs

λ2(ε)/λ1(ε) − w23w
−1
24 s

λ4(ε)/λ1(ε)v̄0 + ū1 + εM4(µ) + h.o.t.,

n25 = −a5w−1
12 δs

λ2(ε)/λ1(ε) − w25w
−1
24 s

λ4(ε)/λ1(ε)v̄0 + u1 + εM5(µ) + h.o.t.,

n26 = w−1
66 s

B2(ε)/λ1(ε)v0 + εM6(µ) + h.o.t., (3.9)

and its associated successor function

G(s, v̄0, v0, ū1, u1) = F (q0)− q0 = (n21, n22, n24, n
∗
25, n

∗
26)

∗ − (n01, n02, n04, n
∗
05, n

∗
06)

∗

is given by

G1 = w−1
12 δs

λ2(ε)/λ1(ε) − δs+ w̃21s
λ3(ε)/λ1(ε)ū1 + εM1(µ) + h.o.t.,

G2 = −w−1
24 w14w

−1
12 δs

λ2(ε)/λ1(ε) − sλ3(ε)/λ1(ε)ū1 + εM2(µ) + h.o.t.,

G4 = −a3w−1
12 δs

λ2(ε)/λ1(ε) + ū1 − w−1
44 v̄0 + εM4(µ) + h.o.t., (3.10)

G5 = −a5w−1
12 δs

λ2(ε)/λ1(ε) + u1 − w25w
−1
24 s

λ4(ε)/λ1(ε)v̄0 + εM5(µ) + h.o.t.,

G6 = −v0 + w16δs+ (w26 − w16w̃21)s
λ3(ε)/λ1(ε)ū1 + εM6(µ) + h.o.t.
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Then assume λ1 > λ2. In this case, we take s = e−λ2(ε)τ . We should now use sλ/λ2(ε) to

replace sλ/λ1(ε) in (3.4), (3.9) and (3.10) for λ = λ1, · · · , λ4, B1, B2, respectively.

Remark 3.1. In the following, we always assume that functions F and G have been

differentiablly extended to some neighborhood of s = 0.

§4. Nonresonant Homoclinic Bifurcations

In this section, we consider the nonresonant case λ1 ̸= λ2. We only study the case

λ1 < λ2, and the results also apply to the case λ1 > λ2 if we change t to −t.
Now we use (3.10) to study the existence and the uniqueness of the 1-homoclinic orbit

and the 1-periodic orbit. Consider the solutions of the equation

G(s, v̄0, v0, ū1, u1) = 0. (4.1)

The degeneracy of the homoclinic loop Γ implies that G̃ = ∂G(s, v̄0, v0, ū1, u1)/∂(s,

v̄0, v0, ū1, u1) is degenerate at (s, v̄0, v0, ū1, u1) = 0. Thus the implicit function theorem is not

valid in this case. But, the last three equations of (4.1): G4 = 0, G5 = 0, G6 = 0 always have

a unique solution ū1 = ū1(ε, µ, s, v̄0) = O(ε) +O(v̄0) +o(s), u1 = u1(ε, µ, s, v̄0) = O(ε)+o(s),

v0 = v0(ε, µ, s, v̄0) = O(ε) +O(s) for |ε|, s, |v̄0| sufficiently small. Substituting it into G1 = 0

and G2 = 0, we see G = 0 is equivalent to G1 = 0, G2 = 0, that is,

w−1
12 δs

λ2(ε)/λ1(ε) − δs+ w̃21s
λ3(ε)/λ1(ε)ū1 + εM1(µ) + h.o.t = 0,

− w−1
24 w14w

−1
12 δs

λ2(ε)/λ1(s) − sλ3(ε)/λ1(ε)ū1 + εM2(µ) + h.o.t = 0. (4.2)

If there is a µ = µ̄ such that

(M1(µ̄),M2(µ̄)) = (0, 0), rank(∂(M1(µ),M2(µ))/∂µ|µ=µ̄) = 2, (4.3)

then, by a scale transformation s → εs, v̄0 → εv̄0, we can apply the implicit function

theorem to claim that there is a (k − 2)-dimensional surface Σ1 = Σ1(s, v̄0, ε) ⊂ Rk in the

neighborhood of µ̄ such that (4.2) has a solution (s, v̄0) satisfying 0 ≤ s≪ |ε| and |v̄0| ≪ |ε|
for |ε| small enough and µ ∈ Σ1 . That is, (1.1) has a homoclinic orbit near Γ for |ε|
small enough and µ ∈ Σ1(0, v̄0, ε) and a periodic orbit near Γ as µ ∈ Σ1(s, v̄0, ε) for s > 0.

Moreover, (4.3) means ∂M1(µ̄)/∂µ ̸= 0. Then it follows from the first equation of (4.2) that

(∂M1(µ̄)/∂µ)(∂µ/∂s) = δ+h.o.t. for |ε| and s small enough, which means that at least one

component of µ is monotonic with respect to s for fixed ε and v̄0. It turns out that System

(1.1) has a unique 1-homoclinic orbit or a unique 1-perioddic orbit Γε µ as µ ∈ Σ1 such that

the fourth component of Γε µ ∩ S0 is v̄0.

Now we assume that there is a µ = µ̄ such thatM1(µ̄) ̸= 0, M2(µ̄) = 0 and ∂M2(µ̄)/∂µ ̸=
0. Then we have s = εδ−1M1(µ) + h.o.t., and the implicit function theorem says that there

is a (k−1)-demensional surface Σ2 = Σ2(v̄0, ε) ⊂ Rk in the neighborhood of µ̄ such that the

second equation of (4.2) has a solution v̄0 for µ ∈ Σ2 and 0 < |ε| ≪ 1 satisfying εM1(µ̄) > 0.

In this case, System (1.1) has a periodic orbit near Γ. Furthermore, if ∂M1(µ̄)/∂µ ̸= 0, then

the periodic orbit near Γ is unique for fixed v̄0.

If M2(µ̄) ̸= 0, then the first equation of (4.2) has solution s = O(ε) + o(|v0|), and the

second equation of (4.2) has the form M2(µ) = o(ε) + o(|v0|). Obviously, it has no solution

for 0 ̸= |ε|, |v0|, |µ− µ̄| ≪ 1.

Thus, we have shown the following theorem.
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Theorem 4.1. Suppose that hypotheses (H1)–(H4) are valid and w12 ̸= 0, λ1 < λ2.

Then the following are true.

(1) If there is a µ = µ̄ such that (M1(µ̄),M2(µ̄)) = (0, 0), rank(∂(M1,M2)/∂µ|µ=µ̄) = 2,

then there exists a (k − 2)-dimensional surface Σ1 = Σ1(s, v̄0, ε) in the neighborhood of µ̄

such that (1.1) has a unique 1-homoclinic orbit near Γ as µ ∈ Σ1(0, v̄0, ε) for |ε| small enough

and fixed |v̄0| ≪ 1, and a unique 1-periodic orbit near Γ as µ ∈ Σ1(s, v̄0, ε) for 0 < s ≪ 1,

0 < |ε| ≪ 1 and fixed |v̄0| ≪ 1. Moreover, the 1-homoclinic orbit and the 1-periodic orbit

near Γ cannot coexist.

(2) If there is a µ = µ̄ such that M1(µ̄) ̸= 0, M2(µ̄) = 0 and ∂M2(µ̄)/∂µ ̸= 0, then there

exists a (k − 1)-dimensional surface Σ2 = Σ2(v̄0, ε) near µ̄ such that System (1.1) has a

1-periodic orbit near Γ as µ ∈ Σ2(v̄0, ε) for |v̄0| and |ε| sufficiently small and εM2(µ̄) > 0.

Moreover, if ∂M1(µ̄)/∂µ ̸= 0, then the above 1-periodic orbit is unique for fixed v̄0.

(3) If M2(µ̄) ̸= 0, then System (1.1) has no 1-homoclinic orbit or 1-periodic orbit near Γ

as |ε| > 0 and |µ− µ̄| sufficiently small.

§5. Resonant Homoclinic Bifurcations

At last, we consider the homoclinic bifurcation with resonant eigenvalues λ1 = λ2 :=λ.

This is one kind of bifurcation with codimension 3. For conciseness, we may assume

λ1(ε) ≡ λ, λ2(ε) = λ+ ελ, 0 < ε≪ 1. (5.1)

In this case, the successor function has the following form

G1 = δ(w−1
12 s

1+ε − s) + w̃21s
λ3(ε)/λū1 + εM1(µ) + h.o.t.,

G2 = −w−1
24 w14w

−1
12 δs

1+ε − sλ3(ε)/λū1 + εM2(µ) + h.o.t.,

G4 = −a3w−1
12 δs

1+ε + ū1 − w−1
44 v̄0 + εM4(µ) + h.o.t., (5.2)

G5 = (−a5w−1
12 δs

1+ε + u1 − w25w
−1
24 s

λ4(ε)/λv̄0 + εM5(µ) + h.o.t.,

G6 = −v0 + w16δs+ (w26 − w16w̃21)s
λ3(ε)/λū1 + εM6(µ) + h.o.t.

As before, the equations G4 = 0, G5 = 0, G6 = 0 always have solution ū1 = ū1(ε, µ, s, v̄0),

u1 = u1(ε, µ, s, v̄0), v0 = v0(ε, µ, s, v̄0) for s, ε and |v̄o| sufficiently small. Substituting it into

G1 = 0, G2 = 0, we have

s1+ε = w12[s− δ−1εM1(µ)] + h.o.t., (5.3)

w14s
1+ε = w24w12δ

−1εM2(µ) + h.o.t. (5.4)

Set

N(s) = s1+ε, L(s) = w12[s− δ−1εM1(µ))] + h.o.t. (5.5)

Proposition 5.1. Suppose that (H1)–(H4) and (5.1) hold, w12 ̸= 0. Then L(s) is tangent

to N(s) if and only if M1(µ) = β(ε, v̄o) for ∆ = 1, 0 < s ≪ 1, 0 < ε ≪ 1, 0 < w12 < 1,

where

β(ε, v̄o) = δ(1 + ε)−1−1/ε(w12)
1/ε + h.o.t. (5.6)

and ∂β(ε, v̄o)/∂ε→ 0 as ε→ 0.
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Proof. Clearly, the necessary and sufficient conditions for L(s) to be tangent to N(s) at

some point s0(0 < s0 ≪ 1) are L(s0) = N(s0) and L
′
(s0) = N

′
(s0), that is ,

s1+ε
0 = w12[s0 − εδ−1M1(µ)] + h.o.t., (1 + ε)sε0 = w12.

By some calculation, we get

s0 = (1 + ε)δ−1M1(µ) + h.o.t., M1(µ) = δ(1 + ε)−1−1/ε(w12)
1/ε + h.o.t.,

∂β(ε, v̄o)/∂ε = δ(1 + ε)−1−1/ε(w12)
1/ε

(
− 1

2
− ε−2 lnw12

)
+ h.o.t. (5.7)

Then, it is easy to see that the proposition is valid.

Denote M(s, v̄0, ε) := −1
εδ(w

−1
12 s

1+ε − s)+h.o.t. defined by (5.3), and M∗ :=M(0, v̄0, ε),

M∗ := β(ε, v̄o).

Theorem 5.1. Suppose that (H1)–(H4) and (5.1) hold, and ∆ = 1, ε > 0, 0 < w12 < 1.

Then the following conclusions are true:

(1) If there is a µ = µ̄ such that (M1(µ̄),M2(µ̄)) = (0, 0), rank(∂(M1,M2)/∂µ|µ=µ̄) = 2,

then, in the neighborhood of µ̄, there is a (k − 1)-dimensional surface Σ0 and two (k − 2)-

dimensional surfaces Σ1 = Σ1(v̄0, ε) ⊂ Σ0 and Σ2 = Σ2(v̄0, ε) ⊂ Σ0 such that, for fixed |v0|
small enough,

(i) System (1.1) has a unique and 2-fold 1-periodic orbit near Γ if and only if µ ∈ Σ1

(corresponding to M1(µ) =M∗);

(ii) System (1.1) has no 1-homoclinic orbit or 1-periodic orbit near Γ if and only if µ∈̄Σ0

or µ ∈ Σ0 is situated in the region corresponding to M1(µ) > M∗;

(iii) System (1.1) has exactly two 1-periodic orbits near Γ if and only if µ ∈ Σ0 is situated

in the region bounded by Σ1 and Σ2 (corresponding to M∗ < M1(µ) < M∗);

(iv) System (1.1) has exactly one 1-homoclinic orbit and one 1-periodic orbit near Γ if

and only if µ ∈ Σ2 (corresponding to M1(µ) =M∗);

(v) System (1.1) has exactly one 1-periodic orbit near Γ if and only if µ ∈ Σ0 is situated

in the region corresponding to −1 ≪M1(µ) < M∗.

(2) If there is a µ = µ̄ such that M1(µ̄) ̸= 0, M2(µ̄) = 0 and w14 ̸= 0, then System (1.1)

has no 1-homoclinic orbit or 1-periodic orbit near Γ.

(3) If there is a µ = µ̄ such that M1(µ̄) = 0, M2(µ̄) ̸= 0, then System (1.1) has no

1-homoclinic orbit or 1-periodic orbit near Γ.

Proof. (1) Consider Equation (5.4). Since s → 0 and v̄0 → 0 as ε → 0, and ∂s/∂ε and

∂v̄0/∂ε exist for 0 ≤ ε≪ 1, we can set s→ εs, v0 → εv0, so that (5.4) reads as

M2(µ) = w−1
24 w14w

−1
12 δε

εs1+ε + h.o.t. (5.8)

Applying the implicit function theorem at (µ, ε, s, v̄0) = (µ̄, 0, 0, 0), we see there exists a

(k−1)-dimensional surface Σ0 = Σ0(s, v̄0, ε) near µ̄ for (s, v̄0, ε) near (0, 0, 0) such that (5.4)

becomes an identity as µ ∈ Σ0. Now we solve (5.3) for µ ∈ Σ0. It follows from Proposition

5.1 and its proof that (5.3) has a 2-fold small solution s1 = s2 = so > 0 if and only if

M1(µ) = M∗, where µ ∈ Σ0(ε
−1s, ε−1v̄0, ε) and s = s0 is given by (5.7). By the implicit

function theorem, it defines a (k − 2)-dimensional surface Σ1 = Σ1(v̄0, ε).

For µ ∈ Σ0(ε
−1s, ε−1v̄0, ε), it follows from ∂L(s)/∂M1 < 0 that the following are true.

(a) If M1(µ) > M∗, then (5.3) has no small solution.
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(b) If M∗ < M1(µ) < M∗, then (5.3) has exactly two nonnegative small solutions s1 > 0

and s2 > 0.

(c) If M1(µ) = M∗, then (5.3) has exactly two nonnegative small solutions s1 = 0 and

s2 > 0. The equation M1(µ) =M∗ defines a (k − 2)-dimensional surface Σ2 = Σ2(v̄0, ε).

(d) If −1 << M1(µ) < M∗, then (5.3) has a unique nonnegative small solution s1 > 0.

(2) Due to (5.4) and w14 ̸= 0, we have s1+ε = O(ε|µ − µ̄|). Substituting it into (5.3),

we get M1(µ) = O(|µ − µ̄|), which means M1(µ̄) = 0, a contradiction to the hypothesis

M1(µ̄) ̸= 0.

(3) The proof is similar to that of (2). The proof is complete.

Remark 5.1. We call Σ1(v̄0, ε) the 2-fold periodic orbit bifurcation surface, and Σ2(v̄0, ε)

the homoclinic bifurcation surface.

Remark 5.2. If w12 > 1, we can consider the case 0 < −ε ≪ 1 in a similar way and

obtain a similar result.

Remark 5.3. If ∆ = −1, then we can consider the 2-homoclinic and the 2-periodic orbit

bifurcation near Γ.
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