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Abstract

The authors establish a kind of inequalities for nonnegative submartingales which depend
on two functions ® and V¥, and obtain the equivalent conditions for ® and ¥ such that this kind
of inequalities holds. In the case ® = ¥ € Ag, it is proved that this necessary and sufficient
condition is equivalent to g > 1.
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¢1. Introduction

Let ® be a nonnegative nondecreasing continuous function on [0, c0) with ®(0) = 0 and
tlim ® (t) = oo, and (€, 3, u) be a complete probability space. We denote by M the set
— 00

of all ¥-measurable functions and L*(Q) = {f € M, Je > 0, E®(e|f|) < oo}, where E
stands for the expectation with respect to p, L? () is called an Orlicz space. In fact, it
is a kind of space more extensive than classical Orlicz space. When ® is convex, we define

the norm on it by || f ||le= inf{k > O,E@(%) < 1}. Let 3,(n > 1) be a nondecreasing
o0
sequence of complete sub-o-fields with ¥ = \/ X, and define martingale or submartingale

n=0
f = (fn),>¢ as usual. Denote the maximal function of f by f*(w) = sup|f, (w)|. As
- n>0

well known in martingale theory, when ® is a strictly convex function on [0,_00) ,l.e qp =

%r>1(f) % > 1 (where ¢ is the right continuous derivative of ®), the following inequalities

hold: E®(f*) < sup E®(cfy,), for every nonnegative submartingale f = (fy),,~o, where ¢
n>0 -

is a constant onlyidepending on ®. When & is not strictly convex, the situation is very
different. To see this, we only need to recall Doob’s inequality in the case p = 1,

Ef* < L(1 +sup B f,|log" \fn|)-
e—1 n>0

That is to say, f* is in L' when f € Llog™ L. This inspect inspires us to consider maximal
function inequalities related to two functions ® and W.
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Suppose ®, ¥ are two nonnegative nondecreasing continuous functions defined on [0, 0c)
with @ (0) = ¥ (0) = 0, and ¥ is convex , tlim U(t) = oo. Throughout this paper, @,
—00

always stand for the right continuous derivative of ® and V¥, respectively. We shall condsider
the following condition about ¢ and ),

S

/t @ds < ep(ert), VE> 0. (L.1)
0

We will prove that (1.1) is equivalent to any one of the following conditions:
(i) There exists ca > 0 such that E®(f*) < sup E¥(caf,) for every nonnegative sub-
n>0

martingale f = (fn)n>0-
(ii) There exists ¢; > 0 such that E® (£> < cEgy (%) for every nonnegative function
pair f , g which satisfies
AMf > ar} < / gdu, YA >0, (1.2)
{f>BX}

where 0 < «,8 < oco. Moreover, in the case ® = ¥ € A, (i.e. there exists a positive
constant ¢ such that ®(2¢) < ¢®(t) for all ¢ > 0), we proved that Condition (1.1) is equivent
to gp > 1.

§2. The Maximal Inequalities

In this paper, |A| means the measure of A with respect to .
Lemma 2.1.1 Let U be the function mentioned above and f € LY(Q)U LY(Q). Then

t t e
| t@lau=g{ir1> S}« [ At w0 2
{151>4} 2 2 §
Lemma 2.2. Let f = (fn)n>0 be a nonnegative submartingale. Then

2 oo

(> 1)) < E/ {fo > \dA, W0, ne N, (2.2)
2

H{fn>t}H < 7/ |fn(w)|dp, Vt>0, n€N. (2.3)
EJus>4

Proof. Here we only prove (2.2), and (2.3) can be obtained easily from (2.1) and (2.2).
For ¢t > 0, let g, = fn/\%, hn = fn—gn. Then f,, = g, +h, and g} < %, hy, = (fn—%)\/O for
every n € N. It is easy to see that h = (hy,),>0 is a nonnegative sub-martingale. Applying
Kolmogorof’s inequality, we have

" " 4 N t 2 2 t
[fa > 1] H%>2H+H%>2H§t[fmﬂ—@ﬁ>iﬁ‘zﬁﬂ
n-=3

2w ffas 2

Hence (2.2) follows from (2.1).

Theorem 2.1. Suppose ® and ¥ are the functions mentioned above. Then (1.1) is
equivalent to any one of the following statements:

(i) There exists ca > 0 such that

E® (f*) < sup E¥(cafn) (2.4)

IN

for every nonnegative submartingale f = (fn), > -
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(ii) There exists c¢1 > 0 such that
cf ) (2.5)

Ecb(g) < e Eg¢( 5

for every nonnegative function pair f , g satisfying (1.2).
Proof. (i) To prove (1.1) = (2.4), notice that (2f,), , is a nonnegative submartingale

and replace ¢, f in (2.2) by 2t,2f, respectively. Then integrate its both sides with respect
to d®()\), and we get

B (f7) = /0°°|{2f > 2t} |d® (1) / /\{an>A}|d>\d‘1’()

:/0 |{2fn>>\}|/ Lo d/\</ 1120 > AMert(aA)dA = B (2e, f,).

Letting n — oo,we get (2.4).

Next we prove (2.4)=> (1.1). Consider the following dyadic martingale on (0, 1] : Let
A, = (1 - %,1], Fr = o{A1, As,- - -, A}, f = txa,,where t > 0,k,n € N, and denote
f=(E(f | Fx))k>o- Then f is a finite martingale with f = f (k > n).

It is clear that |fx| <t (Vk > 0), thus f* <t. By the convexity of ¥, we get

EV (cof) = EE(Y(cof)|Fi) = EV(E(c2f|Fi)) = EV (c2fx), k=0
and then sup EV (¢ f,) = EV (cof) . From (2.4) we have E® (f*) < EV (¢eaf), ie

[ > setsyis < [ Hear > shuts)ds
0 0

Notice that when s € (5ir, 7:5%—) (0 < k < n — 1), we have [{f* > s}| = 5+ and

1o 2n ‘%o 1 2nt+1 i = 2"“ |{f* > s}, Vs € (&, ¢). Therefore
t n+1 n+1 o
(s 2 <2
[ B < Z2 [ s et < [T ieas > st

Now from f <t we get

t gn+1 cot on+1 cat 1
[ s <2 [T s > v < T [ e < 2ea0ea.

t S

Pl

Letting n — oo, we obtain fo (S) ds < 2co1p(cot), Vit > 0. This proves (1.1).
(ii) To prove (1.1)== (2.5), we integrate both sides of (1.2) with respect to d®(A) , and

get
po(L) = [Tir>axaem < [ /{ o 42

o[ s [ gufed)
This is (2.5).

To prove (2.5)= (1.1), let f = (fn)n>0 be the dyadic finite martingale as in the proof
of (i). Then the nonnegative function pair f*, f, satisfies (1.2) with « = 1,3 = 1. Hence
(2.5) holds, that is to say E® (f) < c1 Efnt(c1f). From this and the proof of (i) we get

t n+1 n+1 n+1
| Bas < Zopatr) < Emabnate ) < F-avenss,
. 2n+1 t
= ca(ert)— = 2c19(crt) < e(et).

t 2n
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Letting n — oo, we have fo “"(f ds < ctp(ct). Then Theorem 2.1 follows.
Theorem 2.2. Suppose & and ¥ are the functions mentioned above. Then the condition

that @, satisfy
S0 t
/ @ds =L < oo and / @ds < ap(ert) (2.6)
0 S S0 S

for some sg,c1 > 0, is equivalent to any one of the following statements:
(i) There exist ¢,cq > 0 such that

E®(f*) < sup[cEf, + EV (cafn)] (2.7)

for every nonnegative submartingale f = (fn)n>o0-
(ii) There exist constants c,c1 > 0 such that

E@(g) < cEg—i—clEgi/J( %f) (2.8)

for every pair of nonnegative function f, g satisfying (1.2).
Proof. (i) To prove (2.6) = (2.7), from Fubini theorem, we get

B (f) = / T l2fs > 20}l ) - s > 2ty lda)
/ / {2fn, > A}HdAdD(t) / / {2fn > A}HdAdD(t)

</SO |{2fn>>\}|/ dd(t d)\+/ |{2fn>>\}\/0 S0 (t)dA

S0

< / T2 > Aerp(e\dA+ L [ 12> 2

< EV (2c1f) +2LEf,.
Let n — oo, then (2.7) follows.
To prove (2.7) = (2 6), by the discussion similar to the proof of Theorem 2.1, we can get
lim fﬁ 8 gs < 2L ED(fr) < 2¢ 4 2¢91(2¢5t). Denote so = 1+ inf{t > 0,1(2¢at) > 0}.

n— oo

Then Vt > S,
2c

$(2c250)
+ 2<:2>1/)(262t) < crp(ert),

t
/ @ds < 2c+ 2c29(2c9t) = $(2¢250) + 2¢29(2¢2t)

S0

< 2c
- (¢(20280)

S0 S0
/ @ds = lim @ds < 2¢+ 2¢29(2¢250),
s
0

S n—o00 29
which is desired.
(ii) By an argument similar to (ii) of Theorem 2.1, we get that (2.6) is equivalent to (2.8).

Eventually we get the following result.
Corollary 2.1. If the functions ® and ¥ are as above, then the condition (2.6) is

equivalent to the statement that there exists cs > 0 for any § > 0, such that E®(f*) <
sup[0E fn, + EV (c5 fn)] for every nonnegative submartingale f = (fn),;>q -
. >

§3. The Discussion About Condition (1.1) and Some Examples

In the case ® = ¥, Theorems 2.1 and 2.2 become the classical maximal function in-
equalities for nonnegative submartingale. The following theorem gives an exact result under
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P € As.
Theorem 3.1. Let & € Ay be a nondecreasing convex function on [0,00). Then qp > 1

if and only if there exists ¢; > 0, such that fg @ds <cp(et), VE>0.
Proof. (i) We first prove the necessity. Notice that the Condition ft “o(ss)ds < c1p(eqt)

implies ¢ (s) | 0 (as s — 0) and ft‘ps)ds<oo and from ®(¢ f0<p s)ds < tp(t) we get
nf tg((t)) > 1. Denote
ap = 2Fp(2F) — ®(2F) — [2F 1281 — @ (2871 (—o0 < k < 400). (3.1)
Then
271 [p(2%) — (2] < a < 2%[0(2°) — (257, (3.2)
> 2 Fap <p@™) - p(0) < Y 27Fay. (3.3)
k=—o00 k=—oc0
Therefore
gm m—1 ok+1 m—1
o(2™) = / p(s)ds = Z / p(s)ds < Z 2k p(2k 1)
0 k=—00 2k k=—oc0
(3.4)
m—1 k+1
<Z2k222+1a1§22m1+1
k=—oc0 1=—00 i=—o00

On the other hand

2771
/O

m—1

ds_Z/ d>22k2k+1

k=—o0

1 m—1 k 1 m—1 (3'5)

: g o) =2() to(t) : S
Notice that %I>lg (1) = 0 if mf 0 = 1, and (3.1), (3.4) imply the fact: Vj > 1,

3t; € (27,21 such that

" gkt )N 25 (279) = B(2) _ tip(t) =D () _ 1
(Z 2 k+1ak) Z ay < B2 < qj(g) 1 S?'

k=—00 k=—oc0

Then for kg =n; —j + 1,

nj IR 1 ko _ 1
E i—k+1 E E i—k+1 E
( oM ak) Qe > F, ( oy ak) ak§2j71 .

k=ko+1 k=—oc0 k=—o0 k=—o0

nj ko
Thus Y, 27%ap <2 > 27%a, and

k=—o00 k=—o0
@ (L) 1 & 8 8
2
B D D T B |
f02tj ¢gS) ds — 12 k;oo( k_ZOO (nj —ko+1) 3

Since ® € Ay, for every ¢ > 0, we can find a ¢; > 0 such that ¢(4ct) < clgo( ),Vt > 0. Thus

for every c,j > 1, 3t; > 0 such that % < 8C1 . which contradicts fo 20) gg < cplct).
T as

The necessity follows.
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(ii) To prove sufficiency, using the same method in (i) we get

Y 2 Fa<p@M) —p(0) < Y 27 ay,

k=—o0 k=—o0
m—1
o™ > Y 2mh gy,
k=—0o0
2" QO(S)d < 1 - 27’L’~‘r1 : 1

and by using Ay condition the sufficiency follows.

The following examples show that the double ® function inequalities in this paper is
very extensive. Here we write f(t) ~ g(¢) if there exist positive constants a,b such that
af(t) < g(t) <bf(t) for all t > 0.

1

Example 3.1. Suppose 1 < p < oo and ®(t) = ¥(t) = ;t7, ¢ > 0. In this case
P(t) = (t) ="'t > 0.

Example 3.2.

0, 0<t<l, _fo, 0<t<1,
Q_{t—L t>1, @“”‘{ﬂ%u t>1,
0, 0<t<1 0 0<t<1
< k) — — K — K — —_ )
“O{L t>1, w(t) {1+by,t>L
Example 3.3.
3
L 0<t<e t 0<t<e
d(t)y=< ver T='S6 U(t)y=<" =Pse
() {lotg“ t>e, (*) t(1+1loglogt), t>e,
3Vt <
o< 2\1/5,()_t<e, w>{L 0<t<e,
Ggir 26 1+loglogt, t>e.
Example 3.4. Suppose 0 < e < 1.
t t
o(t) = { Ten 0<tslo gy [amens  0<ish
t, t>1, L1 +1logt) t>1,
1 1 <
o(t) ~ { [T=TogD) e 0<t<1, W(t) ~ § O-log D O<t=l,
1, t>1, L(1+1logt) t>1.
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