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Abstract

Under the assumption that h(z) is strictly monotone the existence of solutions to a type of
nonlinear differential-iterative equations in the form of x′(t) = g(x(t))− h(x(x(t))) is discussed
according to the behavior of the quasi-isoclinic curve C: x = h−1(g(t))
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§1. Introduction

Differential-iterative equation is a kind of special functional differential equations which

were discussed recently[1−6]. Most of the researches[1−3] now available focused on the exis-

tence of autonomous differential-iterative equation in the form of

x′(t) = f(x⟨n⟩(t)),

where x⟨2⟩ = x(x(t)) and x⟨k⟩ = x(x⟨k−1⟩(t)), k = 3, 4, · · · , n, and some in them[4−5] dealt

with the equation x′(t) = (a2 − x2(t))f(x⟨n⟩(t)). We proposed a transformation theorem in

[6] and used it to discuss the existence and behavior of solutions to the equation x′(t) =

ax(t) − bx(x(t)), where 0 < b < a. In this paper we study a more general equation of the

form

x′(t) = g(x(t))− h(x(x(t))), (1.1)

where h is strictly monotone on ℜ and h(ℜ) = ℜ. Without loss of generality we suppose h is

strictly increasing since we can change it into the case by use of the transformation y = −x

and τ = −t when h is decreasing. Then we have

lim
z→±∞

h(z) = ±∞.
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Definition 1.1. A function x(t) defined on an interval I is said to be a solution of (1.1)

on I iff x(t) satisfies (1.1) on I and x(I) ⊂ I.

Definition 1.2. The sets Γ = {(t, x) ∈ ℜ2 : x = h−1(g(t))} and L = {(t, x) ∈ ℜ2 : x = t}
are said to be a quasi-isoclinic curve and a base line to Equation (1.1), respectively.

We suppose in this paper

(H) g, h ∈ C0(ℜ.ℜ) are locally Lipschitz, h is strictly increasing and

lim
z→±∞

h(z) = ±∞,

lim
x→+∞

max{0, g(x)− h(x)}
x2

= 0.

Let m = inf{t ∈ ℜ : g(t)−h(t) = 0}, M = sup{t ∈ ℜ : g(t)−h(t) = 0}, where m = −∞
and M = +∞ are included. And set

A0 = {t ∈ ℜ : g(t)− h(t) = 0},
A+ = {t ∈ ℜ : g(t)− h(t) > 0},
A− = {t ∈ ℜ : g(t)− h(t) < 0}.

Obviously under hypothesis (H) A0 consists of only one point when g is decreasing. It is

easy to show (see [4]).

Proposition 1.1. All the solutions of (1.1) are monotone.

Proposition 1.2. For η ∈ A0 and ξ ∈ ℜ, x(t) ≡ η is a constant solution satisfying

x(ξ) = η.

Proposition 1.3. Suppose f(u, v) is continuous and locally Lipschitz with respect to

(u, v) on ℜ2 and x = x(t) is a solution of x′(t) = f(x(t), x(x(t))) on I. If there is t0 ∈ I

such that x′(t0) = 0, then x(t) ≡ x(t0) on I.

Proof. Let F (y) = f(y, x(y)). Then F is locally Lipschitz with respect to y for y ∈ I since

x is differentiable on the interval. The condition x′(t0) = 0 implies f(x(t0), x(x(t0))) = 0.

Consider {
y′ = f(y, x(y)),
y(t0) = x(t0).

(1.2)

Obviously both y = x(t) and y ≡ x(t0) are solutions of (1.2) on I. The Picard’s theorem

implies x(t) ≡ x(t0) on I.

Proposition 1.4. Every decreasing solution of (1.1) has one and only one common point

with L : x = t.

§2. Existence and Behavior of Increasing Solutions

Under hypothsis (H) the assumption that g is increasing implies that h−1(g(t)) is increas-

ing and the sets {(t, x) ∈ Γ : t ∈ A+}, {(t, x) ∈ Γ : t ∈ A−} are above and below the line

x = t respectively.

For η ∈ A+, let u1 = sup{t ∈ A0 : t ≤ η}, u2 = inf{t ∈ A0 : t > η}.
Theorem 2.1. Suppose (H) holds. If η ∈ A+,m < η < M , then (1.1) has a strictly

increasing solution x(t) satisfying x(ξ) = η for arbitray ξ ∈ ℜ. And

(i) x = x(t) intersects Γ at a point (c, h−1(g(c))), c ∈ (u1, u2) and such a solution can be

extended to the left to −∞ with lim
t→−∞

x(t) = c and

(ii) x(t) can be extended to the right in one of the three ways.



No.2 GE, W. G., LI, C. Z. et al, DIFFERENTIAL-ITERATIVE EQUATIONS 219

(a) x = x(t) meets Γ at a point (σ1, h
−1(g(σ1))), σ1 > u2, σ1 > inf{t ≥ η : t ∈ A0} and

then x(t) can be extended to +∞ with x(t) < σ1, lim
t→+∞

x(t) = σ1;

(b) x = x(t) does not meet Γ but has a common point with L at t0 > inf{t ≥ η : t ∈ A0}
with x′(t) ≥ 1;

(c) x(t) has no common point with L∪Γ for t > inf{t > η : t ∈ A0} and then x(t) can be

extended to +∞ with x(+∞) = +∞.

Proof. Let u1 = max{t ≤ η : t ∈ A0}, u2 = min{t ≥ η : t ∈ A0}, and I = [v1, v2],

where v1 = min{u1, ξ}, v2 = max{u2, ξ}. Set M = max
(x,y)∈[u1,u2]

| g(x)− h(y) |> 0. Take in

consideration a set

G = {z ∈ C0(I, [u1, u2]) : z(ξ) = η, 0 ≤ z(t2)− z(t1) ≤ M(t2 − t1) for t1 ≤ t2}
and a map T : G → C0(I, [u1, u2]) defined by

(Tz)(t) =
[
η +

∫ t

ξ

max{0, g(z(s))− h(z(z(s)))}ds
]u2

u1

, (2.1)

where [A]u
2

u1
stands for min{u2,max{u1, A}}. Obviously

| [A]u2
u1

− [B]u2
u1

|≤| A−B | .
It is easy to show that G is convex and compact and T continuous. Since (Tz)(ξ) =

η, u1 ≤ (Tz)(t) ≤ u2 and for t1, t2 ∈ I, t1 ≤ t2,

0 ≤ (Tz)(t2)− (Tz)(t1) ≤
∫ t2

t1

max{0, g(z(s))− h(z(z(s)))}ds ≤ M(t2 − t1),

we have TG ⊂ G. The Schauder’s fixed point theorem implies the existence of x ∈ G such

that x = Tx. If

u1 < x(t) < u2, when v1 < t < v2, (2.2)

then

x(t) = η +

∫ t

ξ

max{0, g(z(s))− h(z(z(s)))}ds (2.3)

holds on I. We show at first {t ∈ I : x(t) = u2} = Φ.

Suppose the contrary that {t ∈ I : x(t) = u2} ≠ Φ and let inf{t ∈ I : x(t) = u2} = t0. In

this case u1 < x(ξ) = η < u2 implies ξ < t0 ≤ v2. Then v2 = u2 and t0 ≤ u2. Consequently

x(t) satisfies (2.2) on [ξ, t0]. When t ∈ [t0, u2], we have g(x(s)) − h(x(x(t))) = 0 since

x(t) = u2 and x(x(t)) = u2. Then (2.2) holds on [ξ, u2]. That is to say, x(t) satisfies{
y′ = max{0, g(y)− h(x(y))},
y(t0) = u2,

(2.4)

on [ξ, u2]. At the same time, y ≡ u2 is also a solution to (2.3). It is easy to see that

F (·) = max{0, g(·) − h(x(·))} is locally Lipschitz and then we have x(t) ≡ u2 on [ξ, u2].

However, x(ξ) = η ̸= u2, a contradiction. Therefore {t ∈ I : x(t) = u2} = Φ. Similarly

{t ∈ I : x(t) = u1} = Φ. Hence

u1 < x(t) < u2, t ∈ I. (2.5)

It follows from (2.2) that

x′(t) = max{0, g(x(t))− h(x(x(t)))}. (2.6)

We show x′(t) > 0 for t ∈ I. Otherwise there is a t0 ∈ I such that x′(t0) = 0.
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Because f(u, v) = max{0, g(u)−h(v)} is locally Lipschitz, Proposition 1.3 implies x(t) ≡
x(t0) and then η = x(ξ) = x(t0). It follows that

g(x(ξ))− h(x(x(ξ))) = g(η)− h(η) ≤ 0.

However η ∈ A+ implies g(η)− h(η) > 0, a contradiction.

Obviously x′(t) > 0 means g(x(t))− h(x(x(t))) > 0 and then (2.6) becomes

x′(t) = g(x(t))− h(x(x(t))), t ∈ I.

That is to say, x(t) is a solution of (1.1) on I with x(ξ) = η.

Finally we consider the continuation of x(t).

It follows from that x(v2) < u2 ≤ v2. Consider{
y′ = g(y)− h(x(y)),
y(v2) = x(v2), x(v2) ≤ y ≤ v2.

(2.7)

The solution y(t) of (2.7) is uniquely determined by∫ y

x

ds

g(s)− h(x(s))
= t− ξ. (2.8)

(a) If there is a σ ∈ [x(v2), v2] such that g(σ)− h(x(σ)) = 0, then we claim that

lim
y→σ

∫ y

x(v2)

ds

g(s)− h(x(s))
= +∞.

Otherwise suppose the limit is τ < +∞. Then y(τ + ξ) = σ,

y′(τ + ξ) = g(σ)− h(x(σ)) = 0.

Proposition 1.3 implies y(t) ≡ σ for t ∈ [v2, v2 + τ ], a contradiction.

Therefore y is defined on [v2,+∞) with y(v2) = u2 and lim
t→∞

y(t) = σ. If g(y)−h(x(y)) > 0

for y ∈ (u2, v2], then

lim
y→v2

∫ y

ξ

ds

g(s)− h(x(s))
= d1 = t− ξ,

and v2 = y(v4) where v4 := v2 + d1 > v2. So y(t) is defined on [v2, v4] and y(v4) = v2 < v4.

Let

x̃ =

{
x(t), t ∈ [v1, v2],
y(t), t ∈ [v2, v4],

and x(t) stands for x̃(t) on [v1, v4]. Continue the above process with v2 replaced consequently

by v4, v6, · · · .
Suppose there is σ ∈ (v2k, v2k+2] such that g(σ)− h(x(σ)) = 0. Then we can extend x(t)

to +∞ with lim
t→+∞

x(t) = σ. Otherwise we have an infinite series {v2k}, k = 1, 2, · · · , such
that g(t)− h(x(t)) ̸= 0 for t ∈ {v2k, v2k+2}.

(b) When {v2k} is bounded and lim
k→+∞

v2k = t0, we claim that x(t0) = t0 since otherwise

x(t) can be further extended to the right. It follows from x(t) < t, t ∈ [ξ, t0), that x
′(t0) ≥ 1.

(c) If {v2k} is unbounded, then x(t) is defined on [u1,+∞). We show that lim
t→+∞

x(t) = ∞.

Otherwise suppose lim
t→+∞

x(t) = d < ∞ and hence

lim
t→+∞

x′(t) = lim
t→+∞

[g(x(t))− h(x(x(t)))] = g(d)− h(x(d)) = 0.

Obviously d > η. It follows that x = x(t) meets Γ at a point d, a contradiction to the

process.
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The last part of the proof is to show x(t) can be extended to the left to −∞ with

lim
t→−∞

x(t) = c > u1.

We have shown in (2.5) that x(u1) > u1 = h−1(g(u1)) and x(u2) < u2 = h−1(g(u2)).

It follows that {t ∈ (u1, u2) : x(t) = h−1(g(t))} ̸= Φ. Set c = max{t ∈ (u1, u2) : x(t) =

h−1(g(t))} and x(c) > c. Then the unique solution of{
y′ = g(y)− h(x(y)),
y(v1) = x(v1), c < y ≤ x(c)

(2.9)

is determined by ∫ y

x(v1)

ds

g(s)− h(x(s))
= t− v1.

A similar discussion as above leads to the conclusion that

lim
y→C

∫ y

x(v1)

ds

g(s)− h(x(s))
= −∞,

and then y(t) is defined on (−∞, v1) and lim
t→−∞

y(t) = C. The proof is completed by setting

x̃(t) =

{
x(t), t ∈ [v1, v2],
y(t), t ≤ v1

and replacing symbol x̃(t) by x(t) again.

Lemma 2.1. Given a differential-iterative equation

x′(t) = f(x(t), x(x(t))), (2.10)

where f ∈ C0(ℜ2,ℜ), such that for a σ ∈ ℜ and a small ε > 0 satisfying f(σ, σ) = 1, f(t, t) <

0, for t ∈ (σ, σ + ε), (2.10) has an increasing solution x(t) on I = [σ, σ + ε] such that

x(σ) = σ, x(t) < t, for t ∈ (σ, σ + ε].

Proof. Let I = [σ, σ + ε] and M = max
x∈I,σ≤y≤x

{f(x, y)}. Take a set

G = {z ∈ C0(I, I) : z(σ) = σ, 0 ≤ z(t2)− z(t1) ≤ M(t2 − t1) for t1 ≤ t2}
and a map T : G → C0(I, I) defined by

(Tg)(t) =
[
σ +

∫ t

σ

f(z(s), z(z(s)))ds
]t
, t ∈ I.

By a normal discussion shown in Theorem 2.1, we can show that a fixed point x of T in

G is the needed solution of (2.10) on I.

Theorem 2.2. Suppose (H) holds. If η ∈ A+, η > M , then (1.1) has a strictly increasing

solution x(t) satisfying x(ξ) = η for arbitrary ξ ∈ ℜ. Such a solution x(t) can be extended

to the left to −∞ with lim
t→−∞

x(t) = c > M and to the right in one of the two ways.

(a) x(t) meets L at a point t0 > M with x′(t0) ≥ 1;

(b) x(t) has no common point with L and then x(t) can be extended to +∞ with x(+∞) =

+∞.

Proof. The condition that η ∈ A+ and η > M implies Γ is above L when t > M .

ForM < η ≤ ξ, the proof is similar to that of Theorem 2.1 except that x(t) can never meet

Γ below line L. So we prove the theorem only for the case η ≥ ξ. (When η = ξ, g(t)−h(t) >

1, t ∈ (η, η + δ) is required for a certain δ > 0 small enough.)

Let y(τ) = 1
x(t)−(ξ−1) and τ = 1

t−(ξ−1) . Then (1.1) is transformed into

dy(τ)

dτ
= f(τ, y(τ), y(y(τ))), (2.11)
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where y(τ, y(τ), y(y(τ))) = y2(τ)
τ2

[
g
(

1
y(τ) + (ξ − 1)

)
− h

(
1

y(y(τ)) + (ξ − 1)
)]
.

It is easy to see that if x(t) is a solution of (1.1), satisfying x(ξ) = η ≥ ξ and x(t) ≥ t for

t ≥ ξ, then it becomes an appropriate solution y(τ) of (2.10) satisfying

y(1) =
1

η − ξ + 1
≤ 1 and 0 < y(τ) ≤ τ for τ < 1.

Let

fn(τ, y, z) =

{
y2

τ2+εn
max{0, g( 1y + (ξ − 1))− h( 1z + (ξ − 1))}, y ≥ z > 0,

0, z = 0,

where εn = ε
2n > 0. Obviously fn is continuous on the set

D = {(τ, y, z) ∈ ℜ3 : 0 ≤ z ≤ y ≤ 1, 0 ≤ τ ≤ 1}

and locally Lipschtiz with y and z when z ̸= 0. Condition (H) implies

0 ≤ lim
y→0

fn(τ, y, z) ≤ lim
y→0

y2

εn
max

{
0, g

(1
y
+ (ξ − 1)

)
− h

(1
z
+ (ξ − 1)

)}
= 0,

and then there is M > 0 such that

fn(τ, y, z) ≤ M, 0 ≤ max
{
0, g

(1
y
+ (ξ − 1)

)
− h

(1
z
+ (ξ − 1)

)}
≤ M, (τ, y, z) ∈ D.

Take a close and convex subset of C([0, 1], [0, 1]),

H =
{
z ∈ C([0, 1], [0, 1]) : z(1) =

1

η + ξ + 1
, 0 ≤ z(s) ≤ s,

0 ≤ z(s2)− z(s1) ≤
M(s2 − s1)

εn
, ∀s1 < s2

}
,

and a map P : H → C([0, 1], [0, 1]) defined by

(Pz)(τ) =
[ 1

η + ξ + 1
+

∫ τ

0

fn(s, z(s, z(z(s)))ds
]τ
0
, 0 ≤ τ ≤ 1.

Obviously H is compact, P continuous and Ph ⊂ H. By the Schauder’s theorem of fixed

points, we have yn ∈ H such that

yn(τ) =
[ 1

η − ξ + 1
+

∫ τ

1

fn(s, yn(s), yn(yn(s)))ds
]τ
0
, 0 ≤ τ ≤ 1.

A similar discussion as in Theoerm 1.1 shows that

0 < yn(τ) ≤
1

η − ξ + 1
. (2.12)

Then

yn(τ) =
[ 1

η − ξ + 1
+

∫ τ

1

fn(s, yn(s), yn(yn(s)))ds
]τ
, 0 ≤ τ ≤ 1, 0 ≤ yn(τ) ≤ 1,

and for any σ ∈ (0, 1), clearly

0 ≤ fn(τ, yn(τ), yn(yn(τ))) ≤
1

σ2
M, σ ≤ τ ≤ 1.

Then {yn(τ)} is uniformly bounded and uniformly continuous. This implies {yn(τ)} has a

subseries which tends to a function y(t) > 0,

y(τ) =
[ 1

η − ξ + 1
+

∫ τ

1

f(s, y(s), y(y(s)))ds
]τ
, τ ∈ (0, 1].
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Obviously η = y(τ) must meet L : y = τ at a point τ0 ∈ [0, 1]. Then

y(τ) =
1

η − ξ + 1
+

∫ τ

1

f(s, y(s), y(y(s)))ds.

It follows from y(t) > 0 that η(s) ̸= 0 implies y(y(s)) ̸= 0 for t ∈ [τ0, 1]. The function

f(τ, y, z) is locally Lipschitz when y, z ̸= 0 and Proposition 1.3 implies y′(τ) > 0 for y(τ) ̸= 0.

Therefore

y(τ) =
1

η − ξ + 1

∫ τ

1

y2(s)

s2

[
g
( 1

y(s)
+ (ξ − 1))− h

( 1

y(y(s))
+ (ξ − 1)

)]
ds, τ ∈ (τ0, 1)

with y(τ0) = τ0. That is to say, y(τ) is a solution to (2.10) with y(1) = 1
η−ξ+1 .

After making the inverse transformation of (2.10), we obtain the solution to (1.1), x(t) =
1

y(1/(t−ξ+1)) + (ξ − 1) defined on [ξ, 1
τ0

− ξ + 1] satisfying x(ξ) = η and x(1/τ0 − ξ + 1) =

1/τ0 − ξ + 1. Clearly when τ0 = 0, x(t) is defined on [ξ,+∞) with lim
t→+∞

x(t) = +∞.

The proof for the assertion that x(t) can be extended to −∞ is similar to that in Theorem

2.1.

Theorem 2.3. Suppose (H) holds. If η ∈ A+, η < m, then (1.1) has a strictly increasing

solution x(t) satisfying x(ξ) = η for any ξ ∈ ℜ. Such a solution can be extended to the whole

ℜ, and if x(t) meets Γat a point t1 > m, then lim
t→+∞

x(t) = t1. Otherwise lim
t→+∞

x(t) = +∞.

On the other hand, if x(t) meets Γ at a point t0 < m, then lim
t→−∞

x(t) = t0. Otherwise

lim
t→−∞

x(t) = −∞.

Proof. (i) Set I = [ξ,m] when ξ < η or ξ = η with g(t)−h(t) < 1, t ∈ [η− δ, η), required

for δ < 0. The same proof as in Theorem 2.1 shows the existence of solution x(t), which can

be extended both to the right and to the left in three ways. The theorem is valid except the

case that x(t) meets L at a point t̃, t̃ < ξ or t̃ > m.

(ii) Applying a transformation in the form y = 1
x−(ξ+1) , τ = 1

t−(ξ+1) when ξ > η or ξ = η

with g(t)−h(t) > 1, t ∈ [η−δ, η), required for a certain δ > 0, the same proof as in Theorem

1.2 gives the same results as in (i).

(iii) ξ = η, g(η) − h(η) = 1. Set s = inf{t ≤ η : f(s) − h(s) = 1 for all t ≤ s ≤ η}.
The existence and continuation to the right of x(t) can be proved in the way as showed in

Theorem 2.1. If s = −∞, then x(t) = t for t ≤ η. If s > −∞, then there is δ > 0 such that

for t ∈ [s − δ, s), one of the inequalities g(t) − h(t) < 1 and g(t) − h(t) > 1 is valid. Then

the continuation of solutions is changed into the case (i) or (ii).

In order to prove our assertion it suffices to discuss the case that x(t) meets L at a

point t1 > m with x(t1) = t1. Obviously x′(t1) ≥ 1 implies g(t1) − h(t1) ≥ 1 > 0 and

then t1 ∈ A+, t1 > m1. Taking (t1, t1) as (ξ, η) discussed in Theorems 2.1 or 2.2, we

can extend x(t) to the right furthermore. Continue the process and then get a set {tn},
tn−1 < tn, x(tn) = tn. If {tn} is finite or infinite but bounded, the continuation to the

right is proved as in using Theorems 2.1 or 2.2. If {tn} is infinte and unbounded, then

lim
t→+∞

x(t) = +∞ since x(t) is increasing.

The continuation to the left can be proved in a similar way.

When the same argument is applied to the case discussed in Theorem 2.1 or 2.2 we have

Corollary 2.1. Suppose (H) holds. If η ∈ A+, then (1.1) has a solution x(t) defined on

ℜ satisfying x(ξ) = η for any ξ ∈ ℜ. If x(t) has a common point t1 > η[t1 < η] with the line
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L : x = t, then lim
t→+∞

x(t) = t2 [ lim
t→−∞

x(t) = t1]. Otherwise

lim
t→+∞

x(t) = +∞ [ lim
t→−∞

x(t) = −∞].

Corollary 2.2. Suppose (H) holds. If g(t) is bounded in the positive direction, then all

increasing solutions are bounded in the same direction.

§3. Existence and Behavior of Decreasing Solutions

Theorem 3.1. Suppose (H) holds. If η ∈ A−, (1.1) has a decreasing solution x(t) defined

on ℜ satisfying x(ξ) = η for any ξ ∈ ℜ. Let σ be the unique common point of x = x(t)

and x = t and S1 = {t ≤ σ : x(t) = h−1(g(t))}, S2 = {t > σ : x(t) = h−1(g(t))},t1 =

maxS1, t2 = minS2 (If S1 = Φ, [S2 = Φ], then t1[t2] is defined to be −∞[+∞]). Then

lim
t→−∞

x(t) = t2 and lim
t→+∞

x(t) = t1.

Proof. (i) If m < η < M , then let

u1 = max{t ≤ η : t ∈ A0}, u2 = min{t ≥ η : t ∈ A0}
and I = [v1, v2], where v1 = min{u1, ξ}, v2 = min{u2, ξ}. Set M = max

(x,y)∈I2
| g(x)−h(y) |> 0.

Take in C0(I, [u1, u2]) a subset

H = {z ∈ C0(I, [u1, u2] : z(ξ) = η, 0 ≤ z(t2)− z(t1) ≤ M(t2 − t1), t1 ≤ t2}
and a map P : H → C0(I, [u1, u2]) defined by

(Tz)(t) =
[
η +

∫ t

ξ

min{0, g(z(s))− h(z(z(s)))}ds
]u2

u1

, t ∈ I. (3.1)

A similar discussion as that in Theorem 2.1 leads to the conclusion.

(i) If η < m, then the proof is almost the same as the case (i) except that I = [min{ξ, η},
max{ξ, η}] this time and u1 and u2 are replaced by min{ξ, η} and m respectively.

(ii) If η > M , then lim
x→+∞

h−1(g(x)) = +∞. Let τ = min{t > M : h−1(g(t)) = η}.

Obviously τ > M since h−1(g(M)) = M < η and lim
t→+∞

h−1(g(t)) = +∞. Take a set and

a map similar to those in (i) except I = [min{ξ,M},max{τ, ξ}], u1 = min{ξ,M}, u2 = τ .

Then applying the same discussion as the proof of Theorem 2.1 leads to our assertion.
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