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Abstract

This paper studies the stability of the periodic solutions of the second order Hamiltonian

systems with even superquadratic or subquadratic potentials. The author proves that in the
subquadratic case, there exist infinite geometrically distinct elliptic periodic solutions, and in
the superquadratic case, there exist infinite geometrically distinct periodic solutions with at
most one instability direction if they are half period non-degenerate, otherwise they are elliptic.
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§1. Introduction and Main Results

In this paper, we consider the stability of the periodic solutions of the following second
order Hamiltonian systems

ẍ+ V ′
x(t, x) = 0, x ∈ Rn, (1.1)

where n is a positive integer. V : R × Rn → R is a function and for τ > 0 it is τ -periodic
for the variable t. V ′

x denotes its gradient with respect to x. We now state the main results

of this paper.

For the superquadratic case, we have the following two theorems

Theorem 1.1. Suppose V satisfies the following conditions:

(V1) V ∈ C2(R× Rn,R) and V (t+ τ, x) = V (t, x), ∀(t, x) ∈ R× Rn.

(V2) There exist constants µ > 2 and r0 > 0 such that

0 < µV (t, x) ≤ V ′
x(t, x) · x, ∀|x| ≥ r0, t ∈ R.

(V3) V (t, x) ≥ 0, ∀(t, x) ∈ R× Rn.

(V4) V (t, x) = o(|x|2), at x = 0.

(V5) V (t,−x) = V (t, x), ∀(t, x) ∈ R× Rn.

(V6) V ′′
xx(t, x) > 0, ∀(t, x) ∈ R× Rn.

Then Equation (1.1) has 2jτ -periodic solution x2j for j ∈ N. Moreover, x2j has at least 2(n−
1) Floquet multipliers lying on the unit circle in the complex plane if it is half period(jτ)non-
degenerate, x2j is elliptic (i.e., all 2n Floquet multipliers of x2j lying on the unit circle in the

complex plane) if it is half period(jτ) degenerate, and the sequence {x2j} has a geometrically
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distinct subsequence {x2k}k∈N. In particular, if V (t, x) ≡ V (x), i.e. Equation (1.1) is
autonomous, then for any τ > 0, there exists a τ -periodic elliptic solution x.

Theorem 1.2. In Theorem 1.1, if we replace the condition (V2) by the following condition
(V7) There exist constants δ > 0 and r1 > 0 such that V (t, x) ≤ δ

2 |x|
2, ∀|x| ≤ r1, t ∈ R,

then Equation (1.1) has 2jτ -periodic solution x2j for 1 ≤ j < π
τ
√
δ
which has at least 2(n−1)

Floquet multipliers lying on the unit circle in the complex plane if it is half period(jτ) non-

degenerate, x2j is elliptic if it is half period(jτ) degenerate, and the finite sequence {x2j} has

a geometrically distinct subsequence {x2k} for k ∈ {s ∈ N∪{0}|2s < 2π/
√
δ}. In particular,

in the autonomous case, for any 0 < τ < 2π/
√
δ, there exists a τ -periodic elliptic solution

x.
For the subquadratic case, we have the following two theorems.
Theorem 1.3. Suppose V satisfies (V1), (V3), (V5)–(V6) and the following

(V8) There exists constant 1 < α < 2 such that V ′
x(t, x) · x ≤ αV (t, x), ∀(t, x) ∈ R×Rn.

(V9) There holds V ′
x(t, 0) ̸= 0 for t ∈ R.

Then Equation (1.1) has 2jτ -periodic elliptic solution x2j for j ∈ N, and the sequence {x2j}
has a geometrically distinct subsequence {x2k}k∈N. In particular, in the autonomous case,
for any τ > 0, there exists a τ -periodic elliptic solution x.

Theorem 1.4. In Theorem 1.3, if we replace the condition (V8) by the following condition

(V10) There exist positive constants m and b such that τ < π/
√
m and

V (t, x) ≤ m

2
|x|2 + b, ∀(t, x) ∈ R× Rn,

then Equation (1.1) has 2jτ -periodic elliptic solution x2j for j < π/τ
√
m, and the sequence

{x2j} has a geometrically distinct subsequence {x2k} for k ∈ {s ∈ N ∪ {0}|2s < 2π/τ
√
m}.

In particular, in the autonomous case, for any τ < 2π√
m
, there exists a τ -periodic elliptic

solution x.

Our results should be compared with those results in [3–6], especially Theorems I-IV of
[4] (also the results in Section 7 of [3]). In Theorems I-IV of [4], they did not assume V
satisfies the condition (V5), but in their conclusions there was a condition for the period

τ ∈ J+(A) or τ ∈ J−(A). In the autonomous case, in [5], they obtained an elliptic periodic
solution for the first order subquadratic Hamiltonian systems. In [8], the author of this
paper and Long studied the stability of characteristics on star-shaped surfaces. The elliptic

solutions are first obtained here for the superquadratic case. All papers mentioned above
only obtained the elliptic solutions for the subquadratic case. The methods in this paper
are related with that in [7].

§2. The ω-Index Theory of Second Order Hamiltonian Systems

In this section, for τ > 0 and ω ∈ U = {z ∈ C| |z| = 1}, we consider the following
boundary valued problem {

q̈(t) +M(t)q(t) = 0, q(t) ∈ Cn,
q(τ) = ωq(0), q̇(τ) = ωq(0),

(2.1)

where M ∈ C(Sτ ,Ls(Rn)) the τ -periodic symmetric n × n continuous matrix function,
Sτ = R/(τZ).

Denote the usual norm and inner product in Cn |q| and p · q for p and q ∈ Cn, and denote
H1(n) = W 1,2(Sτ ,Cn), E(n) = W 1,2([0, τ ],Cn). Then we have

H1(n) = {v ∈ E(n) | v(τ) = v(0), v̇(τ) = v̇(0)}.
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For ω ∈ U, we also denote Hω(n) = {v ∈ E(n) | v(τ) = ωv(0), v̇(τ) = ωv̇(0)}, and define an
operator from H1(n) into E(n) by φω : H1(n) → E(n), φω(v)(t) = ωt/τv(t). Then we have

Hω(n) = φω(H1(n)). We consider the following quadratic form defined in the space Hω(n),

ϕω(q) =

∫ τ

0

{|q̇|2 −M(t)q(t) · q(t)} dt. (2.2)

The space Hω(n) has an orthogonal decomposition Hω(n) = H+
ω (n) ⊕ H0

ω(n) ⊕ H−
ω (n)

according as ϕω is positive, null, or negative definite respectively. Define a linear operator
M on Hω(n) by the following formula

⟨Mq(t), p(t)⟩E(n) =

∫ τ

0

(q(t) +M(t)q(t)) · p(t) dt.

Then M is self-adjoint and compact, and there holds

ϕω(q) = ((I −M)q, q)E(n) for all q ∈ Hω(n).

Thus there hold H0
ω(n) = ker(I −M), dimH0

ω(n) ≤ 2n and dimH−
ω (n) < +∞. We define

the Morse index j(M, τ, ω) and the nullity ν(M, τ, ω) of (2.2) by

j(M, τ, ω) = dimH−
ω (n), ν(M, τ, ω) = dimH0

ω(n).

Let p = q̇ and x = (p, q). For all t ∈ R define B(t) =

(
I 0
0 M(t)

)
. Then B ∈

C(Sτ ,Ls(R2n)) and the first equation of the system (2.1) is transformed into the follow-
ing first order linear Hamiltonian system

ẋ(t) = JB(t)x(t), (2.3)

where Ls(R2n) is the set of 2n × 2n symmetric matrices in R and J =

(
0 −I
I 0

)
is the

standard symplectic matrix on R2n. Let γ be the fundamental solution of (2.3). Then γ is
a continuous path starting from the identity matrix I2n in the symplectic group Sp(2n) =
{M ∈ L(R2n) |MTJM = J}. The ω-index theory for such paths in Sp(2n) is defined in

[10]. This index theory assignes to the system (2.3) or the same to the matrix B through
γ a pair of integers denoted by (iτ,ω(γ), ντ,ω(γ)) := (iτ,ω(B), ντ,ω(B)) ∈ Z× {0, 1, · · · , 2n}.
The following theorem is the main result of this section.

Theorem 2.1. For τ > 0, M ∈ C(Sτ ,Ls(R2n)) and B ∈ C(Sτ ,Ls(R2n)) defined above,
then there hold

j(M, τ, ω) = iτ,ω(B), ν(M, τ, ω) = ντ,ω(B). (2.4)

We know that the ω-index (iτ,ω(γ), ντ,ω) for a symplectic path γ is defined by geometric
or algebraic methods, but the Morse index (j(M, τ, ω), ν(M, τ, ω) is defined by analytic
methods. Theorem 2.1 tells us that these two concepts are essentially the same. We note

that (2.4) can be regarded as a consequence of Theorem 6.1 of [10]. We now follow the ideas
in [1] to prove it.

We define Lτ = L2([0, τ ],C2n), the Hilbert space with the usual L2 inner product

⟨x, y⟩L2 =

∫ τ

0

⟨x(t), y(t)⟩ dt, ∀x, y ∈ Lτ , (2.5)

and Eτ = W 1,2([0, τ ],C2n) as a subspace of Lτ , where ⟨·, ·⟩ is the inner product of C2n. For

ω = exp(iθ) ∈ U, where i =
√
−1, define Eω

τ to be the subspace {y ∈ Eτ | y(τ) = ωy(0)} of
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Lτ . Any y ∈ Eω
τ has the form y(t) =

∑
k∈Z

ei(θ+2kπ)t/τξk, ξk ∈ C2n with∑
k∈Z

((θ + 2kπ)2 + 1)|ξk|2 < +∞.

Define Eω
τ,k = Eω,+

τ,k ⊕ Eω,−
τ,k with Eω,±

τ,k = ei(θ+2kπ)t/τ (J ± iI)R2n. Then there holds

Eω
τ = ⊕Eω

τ,k. (2.6)

Define A = −J d
dt : E

ω
τ → Lτ . Then A is continuous and symmetric, i.e., it satisfies

⟨Ax, y⟩L2 = ⟨x,Ay⟩L2 , ∀x, y ∈ Eω
τ .

Viewing A as from the subspace Eω
τ of Lτ to Lτ , we have

σ(A) = {λ±
k | k ∈ Z}, λ±

k = ±θ + 2kπ

τ
,

where each eigenvalue λ±
k of A has multiplicity 2n and the corresponding eigenspace is Eω,±

τ,k .

For a given B(t) ∈ C(Sτ ,Ls(R2n)), it induces a symmetric operator on Lτ by

⟨Bx, y⟩L2 =

∫ τ

0

⟨B(t)x(t), y(t)⟩ dt, ∀x, y ∈ Lτ . (2.7)

The system (2.1) is equivalent to the following linear Hamiltonian system

ẏ = JB(t)y for y ∈ Eω
τ . (2.8)

The solutions of (2.8) are one to one correspondent to the critical points of the functional

fτ,ω(y) =
1

2
⟨(A−B)y, y⟩L2 , ∀y ∈ Eω

τ ⊂ Lτ . (2.9)

Then fτ,ω : Eω
τ → C is smooth in the topology of Lτ .

Using the saddle point reduction method (cf.[2]), we obtain a subspace

Zω
τ,k0

=
⊕

|k|≤k0

Eω
τ,k (2.10)

with a sufficiently large k0 ∈ N (see [2, Section 4.2.1]), an injection map uτ,ω,k0 ∈ C∞(Zω
τ,k0

,

Lτ ) and a smooth functional aτ,ω,k0 ∈ C∞(Zω
τ,k0

,C) defined by

aτ,ω,k0(z) = fτ,ω(uτ,ω,k0(z)), ∀z ∈ Zω
τ,k0

. (2.11)

Note that the origin of Zω
τ,k0

as a critical point of aτ,ω,k0 corresponds to the origin of Eω
τ as

a critical point of fτ,ω. Denote by m∗
k0

for ∗ = +, 0, and −, the positive, null, and negative
Morse indices of the functional aτ,ω,k0 at the origin respectively.

We denote 2dτ,ω,k0 = dimC Zω
τ,k0

. Then by Theorem 3.1 of [10], there hold

m−
k0

= dτ,ω,k0 + iτ,ω(B), (2.12)

m0
k0

= ντ,ω(B), (2.13)

m+
k0

= dτ,ω,k0 − iτ,ω(B)− ντ,ω(B). (2.14)

For the above given B(t) =

(
I 0
0 M(t)

)
and y = (p, q) ∈ Eω

τ the functional fτ,ω defined by

(2.9) becomes

fτ,ω(y) = fτ,ω(p, q) =
1

2

∫ τ

0

(q̇ · p− ṗ · q − |p|2 −M(t)q · q) dt. (2.15)
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The bilinear form Φ of fτ,ω is defined by

Φ(x, y) =
1

2
(fτ,ω(x+ y)− fτ,ω(x)− fτ,ω(y))

= Re

∫ τ

0

(ẋ2 · y1 + ẏ2 · x1 − x1 · y1 −M(t)x2 · y2) dt
(2.16)

for all x = (x1, x2) and y = (y1, y2) ∈ Eω
τ . Let X be the dense subspace of Eω

τ defined by

X = Hω(n) ×H2, where H2 = {v ∈ W 2,2([0, τ ],Cn) | v(τ) = ωv(0), v̇(τ) = ωv̇(0)}. Define
two subspaces of X by W1 = {(p, q) ∈ X | q = 0}, W2 = {(p, q) ∈ X | p = q̇}.

Lemma 2.1. W1 and W2 are Φ-orthogonal and X = W1 ⊕W2.

Proof. For any x = (p, 0) ∈ W1 and y = (q̇, q) ∈ W2, by direct computation and
(2.16), we obtain Φ(x, y) = 0. On the other hand, for any x = (p, q) ∈ X, we have

x = (p− q̇, 0) + (q̇, q) ∈ W1 ⊕W2. This proves the lemma.

Define Z1,ω
τ,k0

= Zω
τ,k0

∩W1 and Z2,ω
τ,k0

= Zω
τ,k0

∩W2. Then Zω
τ,k0

= Z1,ω
τ,k0

⊕ Z2,ω
τ,k0

.

Lemma 2.2. The injection uτ,ω,k0 : Zω
τ,k0

→ Eω
τ is linear, maps Z1,ω

τ,k0
and Z2,ω

τ,k0
into W1

and W2 respectively, and there holds uτ,ω,k0(Z
ω
τ,k0

) ⊂ X.

Proof. The proof is a simple modification of the proof of Lemma 4 of [1].

Lemma 2.3. For a sufficiently large k0 /∈ σ(A), the Morse index of aτ,ω,k0 on Zω
τ,k0

is

the sum of the Morse indexes of aτ,ω,k0 |Z1,ω
τ,k0

and aτ,ω,k0 |Z2,ω
τ,k0

.

Proof. Denote by Ψk0 the bilinear form of aτ,ω,k0 . Then for Zl ∈ Zl,ω
τ,k0

with l = 1, 2, we
obtain

Ψk0(z1, z2) =
1

2
(aτ,ω,k0(z1 + z2)− aτ,ω,k0(z1)− aτ,ω,k0(z2))

=
1

2
(fτ,ω(uτ,ω,k0(z1) + uτ,ω,k0(z2))− fτ,ω(uτ,ω,k0(z1))− fτ,ω(uτ,ω,k0(z2)))

= Φ(uτ,ω,k0(z1), uτ,ω,k0(z2)) = 0.

Here we have used Lemmas 2.1 and 2.2.

Lemma 2.4. For sufficiently large k0 /∈ σ(A), the Morse index m̂− of aτ,ω,k0 |Z2,ω
τ,k0

satisfies m̂− = iτ,ω(B).

Proof. Note that dimZω
τ,k0

= 2dτ,ω,k0 . From direct computations on eigenvectors of A,

we obtain dimZ1,ω
τ,k0

= dτ,ω,k0 . For any z = (z1, 0) ∈ Z1,ω
τ,k0

\ {0}, there holds Ψk0(z, z) =

aτ,ω,k0(z) = fτ,ω(z) < 0. So Ψk0 is negative definite on Z1,ω
τ,k0

and the Morse index of

aτ,ω,k0 |Z1,ω
τ,k0

is equal to dτ,ω,k0 . By (2.12) and Lemma 2.3, we obtain m̂− = iτ,ω(B).

Lemma 2.5. Denote by m̃− the Morse index of fτ,ω|W2 . Then m̃− = j(M, τ, ω).

Proof. Note that fτ,ω(q̇, q) = ϕω(q) for all (q̇, q) ∈ W2. Since H2 is dense in Hω(n) and
there holds dimW2 = dimH2, we obtain m̃− = j(M, τ, ω).

Proof of Theorem 2.1. By the equivalent of the systems (2.1) and (2.8) for B(t) =(
I 0
0 M(t)

)
, we obtain ν(M, τ, ω) = νω(B, τ).

For the first equality in (2.4), by Lemmas 2.4 and 2.5, it suffices to prove m̃− = m̂− for k0
large enough. Since uτ,ω,k0 : Z2,ω

τ,k0
→ W2 is a linear injection and aτ,ω,k0(z) = fτ,ω(uτ,ω,k0(z))

for z ∈ Z2,ω
τ,k0

, we obtain m̂− ≤ m̃− for large k0. On the other hand, suppose fτ,ω is

negative definite on a subspace W−
2 of W2. Since W−

2 is finite dimensional, there exists

a constant δ > 0 such that fτ,ω(x) ≤ −δ < 0, ∀x ∈ W−
2 with ∥x∥ = 1. We denote by
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Pk0 : Eω
τ → Zω

τ,k0
the projection. Then by the Lemma 2 of [1] or Lemma 2.4 of [11], it is

clear that ∥uτ,ω,k0(Pk0x)− x∥W 1,2 → 0 as k0 → +∞. Thus for k0 large enough, there holds

aτ,ω,k0(Pk0x) = fτ,ω(uτ,ω,k0(Pk0x)) ≤ −1

2
δ < 0, ∀x ∈ W−

2 with ∥x∥ = 1.

Therefore aτ,ω,k0 is negative definite on Pk0(W
−
2 ) by its 2-homogeneity. Since W−

2 is a finite
dimensional space, we can choose k0 large enough so that dimPk0(W

−
2 ) = dimW−

2 . This
proves that m̂− ≥ m̃− and the Theorem 2.1.

From Corollary 4.12 of [10], we have the following consequence.
Corollary 2.1. The locally constant function j(M, τ, ω) is not continuous only at the

Floquet multipliers of M lying on the unit circle, and we have

lim
ε→0+

(j(M, τ, eε
√
−1ω)− j(M, τ, e−ε

√
−1ω)) = p− q, (2.17)

where (p, q) is the Krein type of ω ∈ U.

Proof. By Corollary 4.12 of [10], there holds lim
ε→0+

(iτ (e
ε
√
−1ω) − iτ (e

−ε
√
−1ω)) = p − q.

So we obtain (2.17).

§3. The Stability of the Periodic Solutions
of Second Order Hamiltonian Systems

In this section, we give a proof of Theorems 1.1–1.4 stated in the first section. In his
pioneering work[12], Rabinowitz introduced the following variation formulation for the system
(1.1),

ϕ(x) =

∫ 2τ

0

(1
2
|ẋ|2 − V (t, x)

)
dt, ∀x ∈ W 1,2(S2τ ,Rn), (3.1)

where E2τ = W 1,2(S2τ ,Rn) is a Hilbert space with the usual norm

∥x∥2τ =
(∫ 2τ

0

(|ẋ|2 + |x|2) dt
)1/2

, ∀x ∈ E2τ .

By the condition (V1), it is well known that ϕ ∈ C2(E2τ ,R), i.e. ϕ is continuously 2-times

Fréchet differentiable on E2τ , and there hold

(ϕ′(x), y)2τ =

∫ 2τ

0

(ẋ · ẏ − V ′
x(t, x) · y) dt, ∀x, y ∈ E2τ , (3.2)

(ϕ′′(x)y, z)2τ =

∫ 2τ

0

(ẏ · ż − V ′′
xx(t, x)y · z) dt, ∀x, y, z ∈ E2τ . (3.3)

By the conditions (V1) and (V2), ϕ satisfies the (PS) condition on E2τ . So finding the
periodic solutions is equivalent to finding the critical points of the functional ϕ on E2τ .

By the condition (V5), one can restrict ϕ on the closed subspace of E2τ , E2τ,odd = {v ∈
E2τ | v(τ) = −v(0)} and denote its restriction by ϕodd. It is easy to check that any critical
point of ϕodd on E2τ,odd is a critical point of ϕ on E2τ . This critical point satisfies x(τ+ t) =

−x(t).
Proposition 3.1. Suppose V satisfies the conditions (V1)–(V5). Then there exists a

critical point x2 of ϕodd on E2τ,odd with its Morse index m−(x2) ≤ 1.

Proof. It is easy to check that E2τ,odd is orthogonal to Rn, and ϕodd(0) ≤ 0. For any

x ∈ E2τ,odd, we have
∫ 2τ

0
x(t) dt = 0, so we can take ∥x∥ =

( ∫ 2τ

0
|ẋ|2 dt

)1/2
. By the condition

(V4), one can choose a small number ρ > 0 such that ϕodd(x) ≥ η for any x ∈ E2τ,odd with



No.2 LIU, C. G. STABILITY OF SOLUTIONS OF HAMILTONIAN SYSTEMS 231

∥x∥ = ρ, where η > 0 is a constant. By the condition (V2), one can choose an element
e ∈ E2τ,odd with ∥e∥ > ρ such that ϕodd(e) ≤ 0. Since ϕodd also satisfies the (PS) condition

on E2τ,odd, by the Mountain pass lemma there exists a critical point x2 of ϕodd on E2τ,odd

with its Morse index m−(x2) ≤ 1.
By the condition (V5), one can check that

ϕodd(x) = 2

∫ τ

0

(1
2
|ẋ|2 − V (t, x)

)
dt, ∀x ∈ E2τ,odd.

We now consider the following quadratic form

Qodd(v) =

∫ τ

0

(
|v̇|2 − (V ′′

xx(t, x2(t))v, v)
)
dt, ∀v ∈ Hω(n)

and denote its Morse index by j(x2, τ, ω). By Proposition 3.1 and the arguments of the
previous section, we obtain

j(x2, τ,−1) ≤ 1. (3.4)

Proposition 3.2. Suppose V satisfies (V1)–(V6). Then there holds

j(x2, τ, ω) ≥ n, ω = e
√
−1θ, θ → 0. (3.5)

Proof. Since the set [0, τ ] is compact and on this interval V ′′
xx(x2(t)) > 0, we can suppose

that V ′′
xx(x2(t)) ≥ λ > 0 for small λ. On Hω(n) we define the following quadratic form

Q(g) =

∫ τ

0

(
|ġ|2 − λ|g|2

)
dt.

Any g ∈ Hω(n) has the form

g(t) =

+∞∑
k=−∞

exp
( (2kπ + θ)

√
−1t

τ

)
ak, ak ∈ Cn.

Thus there holdsQ(g) =
+∞∑

k=−∞

[(
2kπ+θ

τ

)2

−λ
]
|ak|2. Since θ → 0, we can see that

(
2kπ+θ

τ

)2

−

λ < 0 for k = 0. Thus the dimension of the negative space of Q(g) is at least n. It is clear
that Qodd(g) ≤ Q(g) for all g ∈ Hω(n). So we obtain (3.6).

Proof of Theorem 1.1. If ω ∈ U is a Floquet multiplier of x2 with its Krein type
(p, q), then we say ω has positive multiplicity p and negative multiplicity q. By Corollary
2.1, Propositions 3.1 and 3.2, there holds

n+ n+ − n− − d−1 ≤ j(x2, τ, ω) + n+ − n− + j−(x2, τ,−1) = j(x2, τ,−1) ≤ 1,

where n+ and n− are the total positive and negative multiplicity of the Floquet multipliers

of x2 lying on the upper unit circle respectively, 2d−1 is the multiplicity of −1 as the Floquet

multipliers of x2, and j−(x2, τ,−1) = lim
ε→0+

[j(x2, τ,−1) − j(x2, τ, e
(π−ε)

√
−1)]. Thus we get

n− + d−1 ≥ n − 1. Since the Floquet multipliers lying on the unit circle are symmetric,
we obtain at least 2(n− 1) Floquet multipliers lying on the unit circle if 1 is not a Floquet

multiplier, i.e., x2 is half period non-degenerate, otherwise x2 has 2n Floquet multipliers
lying on the unit circle, i.e., it is elliptic. We note that all solutions of autonomous systems
are degenerate, so in this case the above obtained solution is elliptic. Since V (t, x) is also a

jτ -periodic function about variable t for j ∈ N, by the above arguments, we can obtain x2j

for j ∈ N as x2 satisfies the stability condition. That every two elements of the subsequence
{x2k}k∈N are geometrically distinct follows from the fact that one is periodic for some period

but another is anti-periodic.
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Proof of Theorem 1.2. If the condition (V4) is replaced by (V7), then in Proposition

3.1, if 2τ < 2π/
√
δ, we can still obtain a critical point x2 of ϕodd on E2τ,odd with its Morse

index m−(x2) ≤ 1. In fact, under the condition (V7), by the Wirtinger’s inequality, for any
x ∈ E2τ,odd with ∥x∥ small (we note E2τ can be embedded in C(S2τ ,Rn)), there holds

ϕodd(x) ≥
1

2
∥x∥ − δ

2
· 4τ

2

4π2
∥x∥ =

1

2

(
1− δτ2

π2

)
∥x∥2.

So if 0 < τ < π/
√
δ, there exists a small positive number ρ such that ϕodd(x) ≥ η > 0 for

any x ∈ E2τ,odd with ∥x∥ = ρ and some constant η. Thus we can still use the Mountain
pass lemma. The remainders are the same as in the proof of Theorem 1.1.

Proof of Theorem 1.3. Under the conditions (V3) and (V8), we can prove that for
some constant c there holds 0 ≤ V (t, x) ≤ |x|α+c, ∀(t, x) ∈ R×Rn. By the same arguments
as in [9], we can prove that ϕodd is weak lower semi-continuous and coercive on E2τ,odd, and

attains its minimum on E2τ,odd. By the condition (V9), as a critical point of ϕodd, the
minimun point x2 is nonconstant. So we have its Morse index m−(x2) = 0. Thus there
holds

n+ n+ − n− − d−1 ≤ j(x2, τ, ω) + n+ − n− + j−(x2, τ,−1) = j(x2, τ,−1) = 0.

From this estimate, we obtain n− + d−1 ≥ n. Note that n− + d−1 ≤ n, so we have
n− + d−1 = n. The remainders are the same as in the proof of Theorem 1.1.

Proof of Theorem 1.4. Under the conditions (V1) and (V10), by the Wirtinger’s
inequality, if 2τ < 2π/

√
m, we can still prove that ϕodd is weak lower semi-continuous and

coercive on E2τ,odd, and attains its minimum on E2τ,odd. The remainders are the same as

in the proof of Theorems 1.1, 1.2 and 1.3.
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