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THE SECOND EXPONENT SET
OF PRIMITIVE DIGRAPHS***
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Abstract

Let D = (V,E) be a primitive digraph. The exponent of D, denoted by γ(D), is the least
integer k such that for any u, v ∈ V there is a directed walk of length k from u to v. The local
exponent of D at a vertex u ∈ V , denoted by exp

D
(u), is the least integer k such that there

is a directed walk of length k from u to v for each v ∈ V . Let V = {1, 2, · · · , n}. Following
[1], the vertices of V are ordered so that exp

D
(1) ≤ exp

D
(2) ≤ · · · ≤ exp

D
(n) = γ(D). Let

En(i) := {exp
D
(i) | D ∈ PDn}, where PDn is the set of all primitive digraphs of order n. It

is known that En(n) = {γ(D) | D ∈ PDn} has been completely settled by [7]. In 1998, En(1)
was characterized by [5]. In this paper, the authors describe En(2) for all n ≥ 2.
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§1. Introduction and Notations

Let D = (V,E) be a digraph and L(D) denote the set of cycle lengths of D. For u ∈ V
and integer i ≥ 1, let Ri(u):= { v ∈ V | there exists a directed walk of length i from u to
v}. We define R0(u) := {u}. Let u, v ∈ V . If N+(v) = N+(v) and N−(v) = N−(v), then
we call v a copy of u.

Let D be a primitive digraph and γ(D) denote the exponent of D. In 1950, H. Wielandt[6]

found that γ(D) ≤ (n− 1)2 + 1 and showed that there is a unique digraph that attains this
bound. In 1964, A. L. Dulmage and N. S. Mendelsohn[2] observed that there are gaps in the
exponent set En = {γ(D) | D ∈ PDn}, where PDn is the set of all primitive digraphs of
order n. In 1981, M. Lewin and Y. Vitek[3] found a general method for determining all the
gaps between ⌊wn

2 ⌋+1 and wn, and they conjectured that there is no gap in {1, 2, · · · , ⌊wn

2 ⌋+
1}. In 1985, Shao Jiayu[4] proved that the conjecture is true when n is sufficiently large and
gave a counterexample to show that the conjecture is not true in the case when n = 11. In
1987, Zhang Kemin[7] proved that the conjecture is true except 48 for n = 11. Therefore,
the problem of determining the exponent set is completely solved.

The local exponent of D at vertex u ∈ V , denoted by exp
D
(u), is the least integer k such

that there is a directed walk of length k from u to v for each v ∈ V . Let V = {1, 2, · · · , n}.
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Following [1], we order the vertices of V so that exp
D
(1) ≤ exp

D
(2) ≤ · · · ≤ exp

D
(n) = γ(D).

Let En(i) := {exp
D
(i) | D ∈ PDn} and L(n) = {(p, q) | 2 ≤ p < q ≤ n, p+q > n, gcd(p, q) =

1}. Clearly, En(n) = En. In 1998, Shen Jian and S. Neufeld[5] obtained ESn(1). In this
paper, we proved the following

Main Theorem. En(2) = {1, 2, · · · , n2−3n+6
2 }∪

∪
(p,q)∈L(n),q<n

{(p− 1)(q− 1), (p− 1)(q−

1)+1, · · · , p(q−2)+n−q+2}∪
∪

(p,n)∈L(n)

{(p−1)(n−1)+1, · · · , p(n−2)+2} for all n ≥ 2.

§2. Determination of En(2)

Lemma 2.1.[1] Suppose D ∈ PDn. Then exp
D
(k) ≤ exp

D
(k − 1) + 1 for all 2 ≤ k ≤ n.

Lemma 2.2.[5] Suppose D ∈ PDn, and {p, q} ⊂ L(D) with p+ q ≤ n. Then exp
D
(1) ≤

n2−3n+4
2 .

Lemma 2.3.[5] Suppose D ∈ PDn with | L(D) |≥ 3. Then exp
D
(1) ≤ n2−3n+4

2 .

Lemma 2.4.[5] Let D be a primitive digraph on n vertices. If L(D) = {p, q}, where p < q
and p+ q > n, then exp

D
(1) ≥ max{(p− 1)(q − 1), q − 1}.

Lemma 2.5.[5] Let D be a primitive digraph on n vertices. Suppose L(D) ⊃ {p, q},
where gcd(p, q) = 1 and p < q. If D contains a p-cycle which intersects a q-cycle, then for
all 1 ≤ k ≤ n, exp

D
(k) ≤ p(q − 2) + n− q + k.

Lemma 2.6.[5] En(1) = {1, 2, · · · , n2−3n+4
2 } ∪

∪
(p,q)∈L(n)

{(p− 1)(q − 1), (p− 1)(q − 1) +

1, · · · , p(q − 2) + n− q + 1}.
Lemma 2.7. For any 2 ≤ k ≤ n, En−1(k − 1) ⊂ En(k).
Proof. Suppose m ∈ En−1(k − 1). Then there exists a digraph D1 ∈ PDn−1 such that

exp
D1

(k − 1) = m. Let V (D) = {v1, v2, · · · , vn−1, vn}. And let D[V (D)\vn] ∼= D1. Further

let vn be a copy of vertex u which has exponent exp
D1

(1), i.e. exp
D1

(u) = exp
D1

(1). Then

D ∈ PDn and exp
D
(k) = exp

D1
(k − 1). Thus m ∈ En(k).

Lemma 2.8. Let n be odd with n ≥ 5 and n+1
2 ≤ i ≤ n − 2. If D is a digraph

with a Hamilton cycle (v1, v2, · · · , vn, v1) and two additional arcs (vn, v2), (vi, vi+2), then

exp
D
(2) = (n−2)(n−3)

2 + n− i+ 1.
Proof. Since R1(vj) = {vj+1} for 1 ≤ j ≤ i− 1 or i+ 1 ≤ j ≤ n− 1,

exp
D
(vi+1) > exp

D
(vi+2) > · · · > exp

D
(vn−1) > exp

D
(vn),

exp
D
(v1) > exp

D
(v2) > · · · > exp

D
(vi).

So exp
D
(v1) = min{exp

D
(vn), expD

(vi)}. It is easy to check that

| R(n−2)j+i(vn) |= min{n, 3 + 2j} and | R(n−2)j+i−1(vn) |= min{n, 2 + 2j}.

Thus exp
D
(vn) = (n−2)(n−3)

2 + i. Similarly we get exp
D
(vi) = (n−2)(n−3)

2 + n − i. Since

i ≥ n+1
2 , exp

D
(vn) > exp

D
(vi). Thus exp

D
(1) = exp

D
(vi) = (n−2)(n−3)

2 + n − i and

exp
D
(vj) > exp

D
(vi) for j ̸= i. Hence exp

D
(2) = (n−2)(n−3)

2 + n− i+ 1.
Theorem 2.1. Let positive integers p, q and n be given such that (p, q) ∈ L(n). Then∪

(p,q)∈L(n),q<n

{(p− 1)(q − 1), (p− 1)(q − 1) + 1, · · · , p(q − 2) + n− q + 2}

∪ ∪
(p,n)∈L(n)

{(p− 1)(n− 1) + 1, · · · , p(n− 2) + 2} ⊂ En(2).
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Proof. We denote by Cq the cycle of the form (v1, v2, · · · , vq, v1). Let x = (p−1)(q−1)+a,
where 0 ≤ a ≤ n− p.

Case 1. p = 2. Then q is odd.
Subcase 1.1. q = n. Let D = Cn ∪ {(vi, vi−1) | a + 2 ≤ i ≤ q = n}. Then exp

D
(1) =

exp
D
(vn) = (n−1)+a and exp

D
(2) = exp

D
(vn−1) = (n−1)+a+1. Thus {n, n+1, · · · , 2n−

2} ⊂ En(2).
Subcase 1.2. q = n − 1. Let D = (V,E) with V = {v1, v2, · · · , vn−1, vn}. For 0 ≤

a < n − 2, let D[V \vn] be exactly like the digraph in Subcase 1.1. And let vn be a copy
of vn−1, then exp

D
(2) = n − 2 + a. If let vn be a copy of vn−2, then exp

D
(2) = n − 1 + a.

For a = n− 2, let D consist of Cn−1 and the arcs (v1, vn), (vn, v1). Then exp
D
(2) = 2n− 3.

Thus {n− 2, n− 1, · · · , 2n− 3} ⊂ En(2).
Case 2. p ≥ 3.
Subcase 2.1. 0 ≤ a < q − p. Consider Cq with additional arcs {(vp+i, v1+i) | 0 ≤ i ≤

q − p− a}. For vertex vj(q < j ≤ n), further arcs (v1, vj), (vj , v3) and (vp+1, vj) are added.
In the proof of [5,Theorem 4], it is showed that exp

D
(vq−a) = x and Rl(vi) = Rl−1(vi+1) for

all l ≥ ri +2, where ri = ⌊ i−p
p−1⌋ for p ≤ i ≤ q− a− 1. Let r = max{ri | p ≤ i ≤ q− a− 1} =

⌊ q−a−p−1
p−1 ⌋. Since x > r + 1,

Rp(q−2)(vp) = Rp(q−2)−1(vp+1) = · · · = Rx(vq−a−1) = Rx−1(vq−a) ̸= V (D),

Rp(q−2)+1(vp) = Rp(q−2)(vp+1) = · · · = Rx+1(vq−a−1) = Rx(vq−a) = V (D).

Thus exp
D
(vi) > exp

D
(vq−a) for p ≤ i ≤ q − a− 1. On the other hand, R1(vi) = {vi+1} for

2 ≤ i ≤ p−1 and q−a+1 ≤ i ≤ q−1 and R1(vq) = {v1}, R1(v1) = {v2, vq+1, vq+2, · · · , vn},
R1(vi) = {v2} for q+ 1 ≤ i ≤ n. Then exp

D
(vi) > exp

D
(vp) > exp

D
(vq−a) for 1 ≤ i ≤ p− 1

and q + 1 ≤ i ≤ n. Hence exp
D
(1) = exp

D
(vq−a) = x and exp

D
(2) = x+ 1. Therefore

{(p− 1)(q − 1) + 1, (p− 1)(q − 1) + 2, · · · , p(q − 2) + 1} ⊂ En(2).

Subcase 2.2. q − p ≤ a ≤ n− p. Let D consist of Cq and the walks

{(vq, vq+1, · · · , va+p−1, va+p, va+1)} ∪ {(vq, vj , v2) | a+ p+ 1 ≤ j ≤ n}.
It is easy to check that exp

D
(vq) = x. Since R1(vj) = {vj+1} for 1 ≤ j ≤ q − 1 or q + 1 ≤

j ≤ a + p − 1, R1(vq) = {vq+1, v1, va+p+1, · · · , vn}, R1(va+p) = {va+1} and R1(vj) = {v2}
for a+ p+ 1 ≤ j ≤ n,

exp
D
(v1) > exp

D
(v2) > · · · > exp

D
(va) > exp

D
(va+1) > · · · > exp

D
(vq−1) > exp

D
(vq),

exp
D
(vq+1) > exp

D
(vq+2) > · · · > exp

D
(va+p) > exp

D
(va+1)

and exp
D
(vj) = exp

D
(v1) for a + p + 1 ≤ j ≤ n. Thus exp

D
(1) = exp

D
(vq) = x and

exp
D
(2) = exp

D
(vq−1) = x+ 1. Hence

{p(q − 2) + 2, p(q − 2) + 3, · · · , p(q − 2) + n− q + 2} ⊂ En(2).

Subcase 2.3. q < n. Consider Cq with additional arcs {(vp+i, v1+i) | 0 ≤ i ≤ q − p}.
For vertices vj(q + 1 ≤ j ≤ n), further arcs (vq−1, vj), (vj , v1) and (vj , vq−p+1) are added.
It is analogous to the Subcase 2.1 that we can get exp

D
(1) = exp

D
(vq) = exp

D
(vn). Thus

exp
D
(2) = (p− 1)(q − 1).

Combining Cases 1 and 2, the proof of the theorem is completeed.

Theorem 2.2. {1, 2, · · · , n2−3n+6
2 } ⊂ En(2) for n ≥ 4.

Proof. By Lemmas 2.6 and 2.7, {1, 2, · · · , n2−5n+8
2 } ⊂ En(2).
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Case 1. n is odd.
Let p = n−1

2 , q = n. Then {n2−4n+5
2 , n2−4n+7

2 , · · · , n2−3n+6
2 } ⊂ En(2) by Theorem 2.1.

Let p = n−1
2 , q = n−2. Then {n2−6n+9

2 , n2−6n+11
2 , · · · , n2−5n+12

2 } ⊂ En(2) by Theorem 2.1.

Let i take over all numbers in {n+1
2 , n+3

2 , · · · , n− 2} in Lemma 2.8, we get{n2 − 5n+ 12

2
,
n2 − 5n+ 14

2
, · · · , n

2 − 4n+ 7

2

}
⊂ En(2) for n ≥ 5.

Case 2. n is even.
Let p = n

2 , q = n− 1. Then {n2−4n+4
2 , n2−4n+6

2 , · · · , n2−3n+6
2 } ⊂ En(2) by Theorem 2.1.

Subcase 2.1. n ≡ 0 (mod 4). Let p = n−2
2 , q = n. Then{n2 − 5n+ 6

2
,
n2 − 5n+ 8

2
, · · · , n

2 − 4n+ 8

2

}
⊂ En(2)

by Theorem 2.1.
Subcase 2.2. n ≡ 2 (mod 4). Let p = n

2 , q = n− 2. Then{n2 − 5n+ 6

2
,
n2 − 5n+ 8

2
, · · · , n

2 − 4n+ 8

2

}
⊂ En(2)

by Theorem 2.1.
Combining Cases 1 and 2, the proof is completed.
Theorem 2.3. Let (p, n) ∈ L(n). If p ≥ 3, then there is no D ∈ PD(n) such that

L(D) = {p, n} and expD(2) = (p− 1)(n− 1).
Proof. Let D0 be the digraph on n vertices with L(D0) = {p, n} such that the number

of arcs in D0 is as much as possible. Then

D0
∼= Cn ∪ {(vp+i, v1+i) | 0 ≤ i ≤ n− p}.

Since p ≥ 3, it is easy to verify that exp
D0

(2) = (p − 1)(n − 1) + 1. Suppose D be any

digraph on n vertices with L(D) = {p, n}. Then D is a subdigraph of D0. Thus

exp
D
(2) ≥ exp

D0
(2) = (p− 1)(n− 1) + 1.

Remark. Theorem 2.3 is not true for p = 2. To see this, we consider the digraph D =
(v1, v2, · · · , vn, v1) ∪ (vn, vn−1, · · · , v1, vn). It is obvious that L(D) = {2, n} and exp

D
(2) =

n− 1.
Proof of Main Theorem. Combining Lemmas 2.1–2.5, Theorems 2.1–2.3 and n− 1 ≤

n2−3n+6
2 , the Main Theorem is true for all n ≥ 4. On the other hand, it is easy to verify

that E2(2) = {1, 2} and E3(2) = {1, 2, 3, 4}. The Main Theorem is also true for n = 2, 3.
So the proof of the Main Theorem is completed.
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