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THE SECOND EXPONENT SET
OF PRIMITIVE DIGRAPHS***

MIAO ZHENGKE® ** ZHANG KEMIN*
Abstract

Let D = (V, E) be a primitive digraph. The exponent of D, denoted by (D), is the least
integer k such that for any u,v € V there is a directed walk of length k from u to v. The local
exponent of D at a vertex u € V, denoted by exp (u), is the least integer k such that there
is a directed walk of length k from u to v for each v € V. Let V = {1,2,--- ,n}. Following
[1], the vertices of V' are ordered so that exp, (1) < exp,(2) < - < exp,(n) = v(D). Let
En(i) := {exp, (i) | D € PDn}, where PDy, is the set of all primitive digraphs of order n. It
is known that E,(n) = {y(D) | D € PDy,} has been completely settled by [7]. In 1998, E, (1)
was characterized by [5]. In this paper, the authors describe Ej,(2) for all n > 2.
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§1. Introduction and Notations

Let D = (V, E) be a digraph and L(D) denote the set of cycle lengths of D. For u € V
and integer ¢ > 1, let R;(u):= { v € V| there exists a directed walk of length ¢ from u to
v}. We define Ry(u) := {u}. Let u,v € V. If N*(v) = N*(v) and N~ (v) = N~ (v), then
we call v a copy of u.

Let D be a primitive digraph and (D) denote the exponent of D. In 1950, H. Wielandt!6]
found that v(D) < (n —1)? 4+ 1 and showed that there is a unique digraph that attains this
bound. In 1964, A. L. Dulmage and N. S. Mendelsohn!?! observed that there are gaps in the
exponent set £, = {y(D) | D € PD,}, where PD,, is the set of all primitive digraphs of
order n. In 1981, M. Lewin and Y. Vitek!®) found a general method for determining all the
gaps between | %= |+1 and wy, and they conjectured that there is no gap in {1,2,---, [ %= ]+
1}. In 1985, Shao J iayul! proved that the conjecture is true when n is sufficiently large and
gave a counterexample to show that the conjecture is not true in the case when n = 11. In
1987, Zhang Kemin!” proved that the conjecture is true except 48 for n = 11. Therefore,
the problem of determining the exponent set is completely solved.

The local exponent of D at vertex u € V, denoted by exp  (u), is the least integer k such
that there is a directed walk of length & from u to v for each v € V. Let V = {1,2,--- ,n}.
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Following [1], we order the vertices of V' so that exp (1) < exp,(2) <--- <exp, (n) =y(D).
Let En(i) := {exp, (i) | D € PDyn} and L(n) = {(p,q) | 2 <p < g < n,p+q > n,ged(p,q) =
1}. Clearly, E,(n) = E,. In 1998, Shen Jian and S. Neufeld® obtained ES,, (1). In this
paper, we proved the following

s n?—3n
Main Theorem. F,,(2) = {1,2,--- ,%}U U {p—-D(g-1),(p—1)(qg—
(p,q)€L(n),q<n
D41 plg=24n—q+200 U {p=Dn—1)+1, - pn—2)+2} for alln > 2.
(p,n)EL(n)

§2. Determination of E, (2)

Lemma 2.1.1Y Suppose D € PD,,. Then exp, (k) <exp,(k—1)+1 forall2 <k <n.

Lemma 2.2.50 Suppose D € PD,,, and {p,q} C L(D) with p+q <n. Then exp, (1) <

n? —3n+4
—s -

Lemma 2.3.0) Suppose D € PD,, with | L(D) |> 3. Then exp, (1) < %.

Lemma 2.4.0°0 Let D be a primitive digraph on n vertices. If L(D) = {p, q}, where p < q
and p+q > n, then exp, (1) > max{(p —1)(¢ — 1),q — 1}.

Lemma 2.5.050 Let D be a primitive digraph on n vertices. Suppose L(D) > {p,q},
where ged(p,q) = 1 and p < q. If D contains a p-cycle which intersects a q-cycle, then for
all1 <k<n,exp,(k) <plg—2)+n—q+k.

Lemma 2.6.°) E,(1) = {1,2,---, =220 U {(p-1(g-1),(p—g—1)+

(p,9)EL(n)
L. ,plg=2)+n—q+1}.

Lemma 2.7. For any2 <k <mn, E,_1(k—1) C E,(k).

Proof. Suppose m € E,_1(k —1). Then there exists a digraph Dy € PD,,_; such that
exp, (k—1)=m. Let V(D) = {v1,v2, -+ ,0p—1,0n}. And let D[V (D)\v,] = D;. Further

1
let v, be a copy of vertex u which has exponent exp, (1), i.e. exp, (u) =exp, (1). Then
1 1 1
D € PD, and exp, (k) = exp,, (k—1). Thus m € E, (k).

Lemma 2.8. Let n be odd with n > 5 and ”T“ <1< n-—2. If Dis a digraph
with a Hamilton cycle (v1,vs, -+ ,vn,v1) and two additional arcs (vy,,vs2), (vi,vite), then
exp, (2) = %—i—n—i—f—l.

Proof. Since Ri(vj) ={vjq1}for1<j<i—lori+1<j<n-1,

exp, (vigy1) > exp, (vig2) > - > exp, (Vn-1) > exp, (Vn),
exp, (v1) >exp,(v2) > - >exp, (v5).
So exp, (v1) = min{exp_ (vy), exp, (vs)}. It is easy to check that
| R(n—2)j4i(vn) |= min{n,3 + 25} and | R(,_2)j4i—1(vn) [= min{n,2 + 2j}.

Thus exp, (v,) = w + 4. Similarly we get exp_ (v;) = W +n —i. Since
i > 2 exp (v,) > exp, (v;). Thus exp (1) = exp, (v;) = % +n —14 and
exp,, (vj) > exp, (v;) for j # i. Hence exp  (2) = W +n—i+1.
Theorem 2.1. Let positive integers p, q and n be given such that (p,q) € L(n). Then
U {e-Da-1.-Da-1D)+1,-,plg—2)+n—q+2}
(P,@)€L(n),q<n
U U {e-Dr-1)+1- pn-2)+2} C E,(2).

(p,n)EL(n)
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Proof. We denote by C, the cycle of the form (v1,ve, - - - ,v4,v1). Let = (p—1)(¢g—1)+a,
where 0 < a <n —p.

Case 1. p = 2. Then q is odd.

Subcase 1.1. ¢ =n. Let D = C, U {(v;,v;—1) | a +2 <i < ¢ =mn}. Then exp, (1) =
exp, (vn) = (n—1)+aand exp_(2) = exp, (vp—1) = (n—1)+a+1. Thus {n,n+1,--- ,2n—
2} C E,(2).

Subcase 1.2. ¢ =n—1. Let D = (V,E) with V = {vy,v9, -+ ,0p_1,0,}. For 0 <
a < n —2,let D[V\v,] be exactly like the digraph in Subcase 1.1. And let v, be a copy
of v,_1, then exp_(2) =n — 2+ a. If let v, be a copy of v,,_2, then exp_(2) =n —1+a.
For a =n —2, let D consist of C},_1 and the arcs (v1,vy), (vn,v1). Then exp_(2) = 2n — 3.
Thus {n —2,n—1,---,2n — 3} C E,(2).

Case 2. p > 3.

Subcase 2.1. 0 < a < g — p. Consider C, with additional arcs {(vpts, v14:) | 0 <@ <
g —p—a}. For vertex vj(¢ < j < n), further arcs (v1,v;), (v;,v3) and (vp11,v;) are added.
In the proof of [5,Theorem 4], it is showed that exp  (v4—q) = = and R;(v;) = Ryj—1(vi41) for
all I > r; + 2, where r; = L%J forp<i<g—a—1 Letr=max{r; | p<i<g—a-—1} =
| =2=p=1| Since & > r + 1,

p—1
Ry(q—2)(Up) = Rp(g—2)-1(Up+1) = -+ = Ra(Vg—a—1) = Ra—1(vg—a) # V(D),
Rp(q—2)+1(vp) = Rpg-2) (Upt1) =+ = Ryi1(Vg—a—1) = Ra(vg—a) = V(D).
Thus exp, (v;) > exp, (vg—q) for p <i < g —a —1. On the other hand, Ry (v;) = {viy1} for
2<i<p-—landg—a+1<i<g—1and Ri(vq) ={v1}, Ri(v1) = {v2,Vg41,Vg42, -, Un},
Ri(vi) = {va} for ¢ +1 <4 <n. Then exp  (v;) > exp, (vp) > exp, (v4_q) for 1 <i<p—1
and ¢ +1 < i < n. Hence exp (1) = exp, (v4—q) = = and exp_ (2) = z + 1. Therefore
{p-D@@-D+L{-D@—-1)+2,--,plg—2)+1} C En(2).
Subcase 2.2. ¢ —p <a <n—p. Let D consist of C; and the walks

{(quUqul» T 7va+pflava+p7va+1)} U {(Uq,’l)j,’l)g) | a+p+1<j< n}
It is easy to check that exp, (vy) = x. Since Ri(vj) = {vjp1} for 1<j<g—lorg+1<
j<a+p-—1, Rl(Uq) = {Uq+1,vl7va+p+17 o, Unl}, Rl(va+p) = {Vat1} and Rl(”j) = {va}

fora+p+1<j5<n,

exp, (v1) >exp, (va) > - > exp, (Va) > exp, (Vay1) > -+ > exp, (vg—1) > exp, (vq),

exp, (Vg41) > exp, (vg42) > - > exp, (Vatp) > exp, (Vat1)
and exp_ (v;) = exp,(v1) for a+p+1 < j < n. Thus exp, (1) = exp,(vq) = 2 and
exp, (2) = exp,(vg—1) = = + 1. Hence
{pla=2)+2,p(¢—=2)+3,--- ,p(g—2) +n—q+2} C En(2).

Subcase 2.3. ¢ < n. Consider C,; with additional arcs {(vpyi,vi4:) | 0 < i < ¢ —p}.

For vertices v(q +1 < j < n), further arcs (vq—1,v;), (vj,v1) and (vj,vq—p41) are added.

It is analogous to the Subcase 2.1 that we can get exp, (1) = exp, (vq) = exp, (v,). Thus
exp,(2) = (p—1)(g—1).

Combining Cases 1 and 2, the proof of the theorem is completeed.

Theorem 2.2. {1,2,---, %} C E,(2) forn > 4.

2_5n
Proof. By Lemmas 2.6 and 2.7, {1,2,-- , ==2"t8} C E,(2).
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Case 1. n is odd.

Let p = %,q = n. Then {22737”“5, 22737&7,"' ,%} C E,(2) by Theorem 2.1.
Let p = 251 g = n—2. Then {#=8nt2 n=6ntll ... ‘n-5ntl2} - F, (2) by Theorem 2.1.
Let 7 take over all numbers in {”TH7 ”T%, -+ ,n— 2} in Lemma 2.8, we get

2_5n+12 n?—5n+14 2 _dn+7
{” 2”* . 2”+ L 2”+ }cEn(2) for m > 5.
Case 2. n is even. , , ,
Let p=2,q=n—1. Then {Z—gntd n=antb ... n=3n+6} - p (2) by Theorem 2.1.
_ _n-2  _
Subcase 2.1. n =0 (mod 4). Let p = "5=,q = n. Then
{n2—5n+6 n? —5n+8 n2—4n+8}cE(2)
2 ) 2 b b 2 n
by Theorem 2.1.
Subcase 2.2. n =2 (mod4). Let p= 5,qg=mn—2. Then
n?—5n+6 n?—-5n+8 n? —4n+8
{ 2 ’ 2 v 2 } C En(2)

by Theorem 2.1.

Combining Cases 1 and 2, the proof is completed.

Theorem 2.3. Let (p,n) € L(n). If p > 3, then there is no D € PD(n) such that
L(D) ={p,n} and expp(2) = (p — 1)(n — 1).

Proof. Let Dy be the digraph on n vertices with L(Dg) = {p,n} such that the number
of arcs in Dy is as much as possible. Then

Dy=C,U {(’l}p+i,’l}1+i) | 0<1<n —p}.
Since p > 3, it is easy to verify that exp_ (2) = (p — 1)(n — 1) + 1. Suppose D be any
0
digraph on n vertices with L(D) = {p,n}. Then D is a subdigraph of Dy. Thus
exp,,(2) 2 exp, (2) = (p—1)(n—-1)+1.

Remark. Theorem 2.3 is not true for p = 2. To see this, we consider the digraph D =
(v1,v2,-++ ,Un, 01) U (U, V1, -+ ,V1,0y). It is obvious that L(D) = {2,n} and exp  (2) =
n — 1.

Proof of Main Theorem. Combining Lemmas 2.1-2.5, Theorems 2.1-2.3 and n — 1 <
%, the Main Theorem is true for all n > 4. On the other hand, it is easy to verify
that F2(2) = {1,2} and E3(2) = {1,2,3,4}. The Main Theorem is also true for n = 2,3.
So the proof of the Main Theorem is completed.
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