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THE (U+K)-ORBIT OF ESSENTIALLY NORMAL
OPERATORS AND COMPACT PERTURBATIONS
OF STRONGLY IRREDUCIBLE OPERATORS
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Abstract

Let H be a complex, separable, infinite dimensional Hilbert space, T' € L(H). U + K)(T)
denotes the (U + KC)-orbit of T, i.e., (U + K)(T) = {R~'TR: R is invertible and of the form
unitary plus compact}. Let © be an analytic and simply connected Cauchy domain in C and
n € N. A(2,n) denotes the class of operators, each of which satisfies

(i) T is essentially normal; (i) o(T) = Q, pp(T) No(T) = Q;

(iii) ind A=T)=—n,nul(A=T) =0 (A € Q).

It is proved that given T1, T2 € A(Q2,n) and € > 0, there exists a compact operator K with
[|K|| < e such that Th + K € (U + K)(T2). This result generalizes a result of P. S. Guinand and
L. Marcoux![6:15] . Furthermore, the authors give a character of the norm closure of U+K)(T),
and prove that for each T' € A(), n), there exists a compact (SI) perturbation of 7' whose norm
can be arbitrarily small.
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¢1. Introduction

Let ‘H be a complex, separable, infinite dimensional Hilbert space. Let £(H) and K(H)
denote the algebra of bounded linear operators and, respectively, the ideal of compact oper-
ators acting on H. We will call (U+K)(T) ={R™'TR: Re (U+K)(H)} the (U+K)-orbit
of T, where

U+ K)(H) = {R € L(H) R is invertible and of the form unitary } .
operator plus compact operator

A~y T and T —y4c B imply A € (U+K)(T) and, respectively, B € (U+K)(T)~, the
norm closure of (U + K)(T"). While ~;4x defines an equivalence relation, —44x does not.
An operator is strongly irreducible, or briefly, T € (SI), if it does not commute with any
nontrivial idempotent. An operator is essentially normal if [T, T*] := T*T — TT* € K(H).
An operator T is said to be shift-like if T is essentially normal with o(T) = D = {z € C :
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|z] <1} and 0(T) = 0D withind( A —=7) = -1 and nul(A —T) =0 for all A € D. P. S.
Guinand and L. Marcoux!®'%) proved the following

Theorem G-M. Let Ty, Ty be shift-like and let € be a positive number. Then there exists
a compact operator K with ||K|| < € such that Ty + K ~yqxc To.

In this paper we will strengthen the above theorem.

Let Q be an analytic and simply connected Cauchy domain in C and n € N. Then A(Q, n)
will denote the class of operators, each of which satisfies

(i) T is essentially normal;  (ii) o(T) = Q, pr(T)No(T) = Q;

(iii) ind (A —=T) = —n, nul(A = T) = 0 for all A € Q.

The next three results are our main results.

Theorem 1.1. Given T, To € A(Q,n) and € > 0, there exists a compact operator K
with | K| < e such that Th + K ~yyc To.

Theorem 1.2. Let T be in A(Q,n). Then U + K)(T)~ consists of all operators A
satisfying

(i) A is essentially normal; (i) o(A) = Q, pr(A) No(A) = Q;

(iii) ind (A — A) = —n for all XA € Q.

Theorem 1.3. Let T € A(2,n) and € > 0. Then there exists a compact operator K with
|K|| < € such that T + K € (SI).

Theorem 1.3 partially answers an interesting question posed by D. A. Herrero: Given an

essentially normal operator T' with connected spectrum and e > 0, is there a K € K(H)
with |K|| < e, such that T+ K € (SI)?

§2. Proof of the Main Theorems

It follows from the Riemann mapping theorem that there is an analytic function ¢ satis-
fying

(i) ¢(0) = zp, where zp is a fixed point in ;  (ii) ¢ is injective;  (iii) ¢(D) = Q.

By Schwarz reflection principle ¢ has an analytic continuation on D such that ¢(0D) =
99Q. Let Ty be the Toeplitz operator with symbol ¢. Then T} € B1(Q2*) and o(T}) = Q,
where B,,(2) denotes the set of Cowen-Douglas operators of index n, i.e., B, () consists of
operators B satisfying

(i) o(B) D Q; (ii) ran (A — B) = H for all A €

(iii) nul(A— B) =n for all A € € (iv) \/ {ker(A— B): A€ Q} = H.

(iv) can be replaced by (iv)’.

(iv) V{ker(Ag — B)¥ : k=1,2,---} = H for a fixed \g € Q (see [3]).

In order to prove Theorems 1.1 and 1.2, we need several lemmas.

Lemma 2.1. Let M = (ker(Ty — N\)*)L. Then Ty|am is unitarily equivalent to Ty, where
e

Proof. Since M is a hyperinvariant subspace of Ty, M is an invariant subspace of T,,. By
Beurling theorem, M = T, H?, where g is an inner function and H? is the Hardy space. Since
T; € Bi(2), g = (¢ —a)/(1 —a*z), (0 < [a| < 1). Thus T can be considered as a unitary
operator from H? to M and Ty (Ty|m)Tyf = Ty f for f € H?, ie., T;(Ty|m)Ty = Ty,
Lemma 2.2. Let H = C® H? and A € Q and let T = 2, I(“l, € L(H), where

E=aey®1, ey € ker(A—Ty)* and |leo|| =1, « € C and o # 0. Then T ~y4xc Ty
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Proof. Note that ey € ran (T — A\)*. By Lemma 2.1,

T {)\ 0 } €0 {)\ 0 ] C
" lo Tylml M=lker(Ty =N L Ty] H?
where g1, g2 are rank-1 operators and we assume that go = f ® 1, f € H2. Since ey €
ran (Ty —A\)L, f = Beg+gs, where B € C and g3 € ran (T, — ). If 8 =0, let g3 = (T, — \)x,
then computation shows that

1 0 A0 1 0 A 0]
[az@l 1] [92 TA [—x@l 1] - {o T,
This is contradictory to T, € (SI). Thus 8 # 0, and X {)\ 0 }X‘l = { A 0 ],
o Ty| " Beo®@1 T
1 0 A

. A 0 0
.T@]. 1:| S (U+IC)(H) Slnce |:560®]_ T¢:| ~MUAK _E T¢
Lemma 2.2 is complete.

By the same argument of Lemma 2.2, we can prove

Lemma 2.3. Let H =CaH? g ¢ ran(Ty—\), \€ Qand let T = {
Then T ~yqxc To.

Lemma 2.4. Let T € L(C" ® H?) and T = [

, the proof of

where X = {

A 0

g®1 TA € L(H).

C’F 79 } %2, where F € L(C™) with
n é

o(F) C Q, C, € L(C", H?) is a nonzero operator. Then for each ¢ > 0, there exists a
compact operator K, | K|| <€, such that T + K ~yqx Tp.

Proof. We will prove the lemma by induction on n.

Ifn=11T= [C)\ 19 ], where C; = f®1 is a rank-1 operator. Choose g € H?, ||g|| < e,
1 ¢
such that f + g ¢ ran(Ty — \). Set K = [ggl 8} Then ||K|| < € and by Lemma 2.3,

T + K ~MUHIKC T¢
Assume that the conclusion of the lemma is true when n < k — 1, and let n = k. It is
obvious that there is a unitary operator U such that
A 0 0fC
UTU* = |+ F,., 0 |Cr 1
* Cn—l T¢ H2

where F,,_; € L(C"™ 1), A € o(F). By the inductive assumption, we can find a compact
operator K with ||K1|| < €/2 and X3 € (U 4+ K)(H) such that

* -1 A 0
X(UTU + KX =| L |
1 ¢

By the assumption again, we can find a compact operator Ks such that || Ks|| < m
1 1

A0
and X5 ({C T ] +K2) X;' =T, forsome Xy € (U + K)(H). Thus K = U*K U +
1 @

UrX[ LK, X1 U satisfies the requirement of the lemma.

Lemma 2.5. Given A, B € L(H), let Tap denote the Rosenblum operator given by
TAB(X) =AX - XB, X € ,C(H) Let 7 = TAB|IC(H)' Then 7 = _TBA|C1('H) and (T*)* =
Tap, where T* is the dual of T and C(H) is the set of trace class operators.

Proof. Recall that C(#) is isometrically isomorphic to the dual K(H)* of K(H). This
isomorphism is defined by C*(H) 3 K <> ¢ € K(H)*, where ¢ (X) = tr (KX), X € K(H).



240 CHIN. ANN. OF MATH. Vol.21 Ser.B

Thus
bre (i) (X) = ¢ (1(X)) = tr [K(AX — XB)] = tr (KAX) — tr (KXB)
=tr(KAX) —tr (BKX) = tr (=7pa(K)X) = ¢_,,, (k)(X).
Therefore 7* = —TBA‘CI(H).

Since L(H) is isometrically isomorphic to the dual C(H)* of C'(H), by the similar
arguments we can prove that (7%)* = 745.

Lemma 2.6. Given T € A(Q,n) and € > 0, then there exists a compact operator K with
|K|| < € such that T + K ~y4x Td()n).

Proof. Note that T admits a lower triangular matrix representation with respect to the
ONB {e*?}2°  of H%. Set M), = \/{e"? : j=0,1,--- ,k} and denote by Py the orthogonal
projection onto € My. By Brown-Douglas-Fillmore theorem UTU* = Tén) + K, where U

k=1
is a unitary operator and K is compact. Set K1 = P, KP,, — K, and m will be determined
later. By Lemma 2.1, we can find a unitary operator U; such that

F 0 ... 0
Cy T,

U(UTU* + KU = | . S0
c, T,

where F' € L(C™™), C is a finite rank operator (k = 1,--- ,n). Fix m so that || K| < ¢/8
and o(F) C Q.s. Thus we can find an operator C' € L(C™™) such that ||C| < €/4
and o(F') C Q, where F/ = F 4+ C. Therefore there exists a compact operator Ko with
|| K2|| < €/4 such that

F'r0 ... 0

Cy Ty
UL(UTU* + KU + Ky = | . 0 = A;.

c, Y 1

/
By Lemma 2.4, there is an X € (U + K)(C"™ @ H?) such that X| [g 19 } X =Ty
1 ¢

Thus we can find X; € (U 4+ K)(C* @ (H?)(™) such that

T, 0 ... 0
CT Ty
X1A1X1_1 = ,1 . 0 = A27
-1 0 Ty
where C}, (k=1,2,--- ,n—1) is a finite rank operator. Since A’(T}) does not contain any
compact operators, ker 77,1, [c(g2) = {0}. By Lemma 2.5 [ran7r,1,|c1(n2)]” = CH(H?).

Thus for each k (1 < k < n — 1) we can find compact operators Dy and E} satisfying
TyEy — BTy = —Cf — Dy and | Dy < ¢/ (1X1 [ X7 [8%).
Set
0 0 ... 0 1 0 ... 0
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Then K3 is compact, |Ks| < /(8| Xu/|| X1 "]) and X2 € (U + K)((H?)™). Calculation
indicates that Xa(Az+K3) X5 ' = T4". Thus, X(T+K)X ' = T ", where K = U*K U +
U*Ul*KQUlU—i—XflKgXl is a compact operator with ||K|| <€, X = X2 XU, U is invertible
and of the form unitary plus compact.

Lemma 2.6 implies that A(Q2,n) C (U + K) (T(i()n))*.

Lemma 2.7. Let A, B € L(H). Assume that H = \/ {ker(A\— B)*: X e T,k > 1}
for a certain subset T' of the point spectrum o,(B) of B, and 0,(A) T = &; then Tap is
injective.

Proof. Let p be a monic polynomial with zeros in I" and let x € H be any vector such
that p(B)z = 0; then AX = X B implies p(A) Xz = Xp(B)z = 0.

Since p(A) is injective, we infer Xz = 0. It readily follows that ker X > \/ { ker(A— B)" :
AeTD, k>1} =H. Hence, X =0.

Lemma 2.8.[1:Theorem 4.15) Qyuppose that 7 € L(H) is essentially normal and o(T) =
0.(T)Uoo(T). Assume, moreover, that C(o(T)) = Rat(o(T))~. Then T' —y4x N, where N
is a normal operator such that o(N) = o(T), 0o(T) = 09(N), and nul (A—N) = dim H(\; T)
for all A € 0¢(N), Rat (o(T))~ is the uniform closure of rational functions with poles outside
o(T).

An operator is almost normal if it has the form of normal + compact.

Lemma 2.9. Suppose T € L(H) is almost normal, o(T) is a perfect set with Lebesgue

measure 0, N is normal with c(N) = o(T); then for each € > 0, there exists X € (U+K)(H)
such that

() XTX 1= N e K(H); (i) [XTX - N| <e.

Proof. Since m(o(T)) = 0, it follows from [8] that Rat(c(T))” = C(c(T)). By Lemma
2.8, for each § > 0 there is an X; € (U + K)(H) such that | X;TX; " — N|| < §. Since
T is almost normal, X;7X; " is also almost normal. Therefore there are normal operator
M and compact operator K such that X;TX; ' = M + K. Since |M + K — N|| < 4,
I[(M + K)*, (M + K)]|| < 4||N||§+26%. 1. D. Berg and K. R. Davidson[?! asserts that there
exists a positive valued continuous function f on [0,00), f(0) = 0, such that for each almost
normal operator @, there is a compact operator K(Q) with ||K(Q)| < f(|Q*Q — QQ*||'/?)
and Q@+ K (Q) is normal. According to this theorem, we can find a § and a compact operator
K, such that

() [|K1]| < e/4; (i) XuTX; '+ K1 = M + K + K, is normal;
(111) U(M+K+K1) C O'(T)e/4.

Since T is almost normal and o(T) is a perfect set with m(co(T")) =0, o(T) = o.(T). Thus
o(M) = o(T)Uoo(M). Since M+ K+K; isnormal, c(M+K+K;) = o(T)Uoo(M+K+K7).
Thus we can find a compact operator Ko, |Kz|| < €/2, such that o(M + K + K1 + K3) =
o(T) =o(N) and M + K + K; + K5 is normal. It follows from Voiculescu theorem that
there is a unitary operator U and a compact operator K3 with ||K3|| < ¢/2 such that

U(XlTXf1 + K1+ K) U =UM+ K+ Ky + K2)U" =N + Ks.
Thus UX,TX;'U* — N € K(H), |[UXiTX;'U* — N|| < ¢, and X := UX, satisfies the

requirements of the lemma.

Let T € L(H). X is an approximate normal eigenvalue of T if for each € > 0, there is a
unit vector e. such that ||[(A — T)ec|| < € and ||[(A = T)*e|| < e. It X € 0pe(T) C 01(T),
by Apostol-Foiag-Voiculescu Theorem!®!, there exist a compact operator K and an infinite
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A El Ha
Al HE
Since e, — 0 weakly, ||Ke,| — 0 (n — o0), i.e. |[(A—T)ey,|| — 0. If T is a hyponormal
operator, then [[(A — T)e,||? — ||[(A = T)*en||? = 0 (n — o00). Thus A is an approximate
normal eigenvalue. Thus we get the following proposition.
Proposition 2.1. Assume that T is essentially normal. Then o.(T) is contained in
the set of approrimate normal eigenvalues of T'.
Using Propostion 2.1, we get
Theorem 2.1. Given T, N € L(H), such that o1..(T) is contained in the set of approxi-
mate normal eigenvalues of T, N is a normal operator with o(N) = 0,(N) =T, T C 05-.(T)
and given € > 0, there exists a compact operator K with | K|| < € such that

dimensional subspace H; such that T' = + K. Let {€,}%2, be an ONB of H;.

N 0
T-K~ .
0 T
Proof. Let {A\,}52; be a sequence of complex numbers such that {\,}~ = T and
card{m : A\, = Ay} = oo for each n = 1,2,---. By the definition of approximate normal

eigenvalue, there exists a unit vector e; such that ||(Ay — T)eq|| < €/16 and |[(A —T)*e1]| <
€/16. Thus, we have

[Pey (A1 = T) Pe, || < /16, [|[Pe; (M = T)Pep || = [ Py (M = T)" Pe, || < €/16,

and |P,+ (A — T)P,, || < €/16, where P., and P,. denote the orthogonal projections onto
1 1

V/{e1} and, respectively, [V{el}}l. Under the decomposition H = \/{e1} P [\/{el}]l, T

A+t T
admits the representation T' = [ L 12] . Set K; = [tll T ]; then K7 € K(H),

T21 T1 T21 0
|IK1]| < €¢/8 and T — Ky = [/})1 79 } . Clearly, 0j¢(T1) = o1re(T). Repeat the argument,
1

we can get Ko € K(H), ||Ka|| < €/2* such that

M0 0] Vdie}
T—Ki —Ko=10 X 0] V{e}

0 0 Tof [Vi{ene}]"

By induction, we can find an orthonormal sequence ey, e, - ,e,,--- in H and a sequence
Ki,Ky,--+ Ky, -+ in K(H) such that || K,| < €/2""2 (n=1,2,---) and

> Anen ® ey 0 Ve, - em}

T—ZK,L: n=1 L om=12-
n=1 0 Tm+1 [v{elv"' 76m}}
) ) Nl .
Set C1 = > Ky, N1 = > Apen @ ey then T — Cy = with respect to
n=1 n=1 0 TOO

the decomposition H = \/{e, : 1 < n < o} P [\/{en}]L, and C1 € K(H), ||C1] < €/4.
Applying Voiculescu’s non-commutative Weyl-von Neumann Theorem to Ni, we can find

compact operator C4, ||C4]| < €/8, such that Ny + C) ~ N & Ny. Therefore,

N 0 0
T—Cl—Cgﬁ 0 N1 0
0 0 T

where C5 is compact and ||Cs|| < €/8. Finally, we can find a compact operator C3 with
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N
IC3]] < €/4, such that T — Cy — Cy — C3 =~ [O

.SetK201+C2+C3. ThenK

satisfies all requirements of the theorem.

Lemma 2.10. Let T € A(D,n), € > 0. Then there exist an operator T' € A(D,n) and a
compact operator K such that | K|| <€, T" admits a lower triangular matriz representation
with respect to some ONB of H and T' + K ~y 1 T.

Proof. By Apostol’s triangular representation theorem T = [1(;0 ZB} } Z?((;:)) and
Ho is a hyperinvariant subspace of T, (2.1)
T, admits a lower triangular matrix representation, (2.2)
ps—r(T) C p(To). (2.3)

By Brown-Douglas-Fillmore theorem T' ~ Tz(n) + K, K is compact, and 7(T) is a unitary

element in the Calkin algebra A(H) = L(H)/K(H), i.e., 7(T*)x(T) — (1) = 0. Thus
w(T3To) — (1) 7(Tz B) ] - {0 0]
T(B*Tp) ©(B*B+T;yT) —«(1)] [0 0]
Since D C p(To) C p(7(Ty)), 7(Tp) is invertible and «(Tp)~! = 7(Tp)*. Thus 7(Tp) is a
unitary element in A(Ho(T)). Since Tp is invertible, by Brown-Douglas-Fillmore theorem
To ~ Uy + Ko, where Up is unitary and Ky is compact. By (2.3) o(Uy + Ky) C 9D. Since
. . . . . [TI; +BB*—1  BI}

m(T) is a unitary element in A(H), TT* — 1 € K(H), ie., { T,B* T - 1
is compact. Since 7(7Tp) is a unitary element, ToT§ — 1 is compact, thus BB* and B are
compact. Since T} € B, (D) and D No(Ty) = @, by Proposition 2.1 ker 7r;7 = {0} and
therefore ker 7,1, = {0}. By Lemma 2.5, ran 77,7, is dense in K(#H;, Ho). Thus for 6 > 0,
there exist compact operators E, G € L(H;(T), Ho(T)) such that ToG — GT; = B + E and

WElh=o G Ho(T) 0 —E7 Ho(T)
- 0 - 0 1

Set X; = {0 ) ] Hi(T) and K= [0 0 } Hi(T) . Then X (To®T1)+ K1) X,
=T, where X; € (U + K)(H), K; is compact and ||K1|| < §/2. Since o(Tp) C D, Lemma
2.9 indicates that there are compact operator Ky and Xs € (U + K)(H) such that || K| < 6
and Xo((No & T7) + Kg)X;l = Ty @ T;, where Ny is a diagonal normal operator with
o0(No) = o(Tp). By Theorem 2.1 we can find a compact operator K3 and a unitary operator
U such that |K3]| < é and U((No @ T;) + K3)U* =Ty, ie., U*(T; —UK3U*)U = Ny @ T;.
Thus let 0 = ¢/(4]| X2 ||| X5 Y), K = UKy U*—U?K3U*?4+UX, 'K XoU*, T' = T satisfy
the requirement of the lemma.

Lemma 2.11. Let T € A(D,n), 0 < e < 1/10 and |T*T — 1|| < €. Then there exists a
unitary operator W such that W*TW — TS™ is compact and |IW*TwW — Tz(n)H <e.

Proof. Consider the polar decomposition T'= U|T| of T, where U is a partial isometry,
ranU = ranT. By the Wold decomposition theorem (see [17]), U =~ ™ @ V', where
V is a unitary operator. By the assumption |||T]? — 1| < €, |22 — 1| < € for all z €
o(|T]). Since € < 1/10, z > 1/2 and € > |22 — 1| = |z + 1||z — 1| > 3|z — 1]/2. Thus
o(|T)) C {x € R: |x — 1| < 2¢/3}. Since |T| is self-adjoint, |||T]| — 1|| < 2¢/3 and therefore
T — Ul = |U|T| = Ul| = [[T(T] = Dl < [UI}IT| - 1| < 2¢/3. Note that T ~ T8 + K,
where K is compact. Thus [T|?—1=T*T—1 ~ (Tz(n)JrK)*(TZ(")qLK)fl, and |T|> = 1+ K,
and |T| =1+ K for some K1, Ko € K(H).
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Since V is unitary and U ~ Tz(n) @V, by Theorem 2.1 there is a unitary operator W such
that

|IW*UW — T || < ¢/3, (2.4)
K3 := W*UW — T is compact. (2.5)

Thus W*TW — T\ = W*(T — U)W + WUW — T = W*U(|T| — D)W + K3 =
W*(UK2)W + Ks. It is compact, and

* n * €
IW*TW = T < [WH(T = U)W || + [|Ks]| < |T = Ul + 5 <e

Proposition 2.2. Let T € A(D,n) admit a lower triangular matriz representation

T = {f; g Zl , where, F' is a diagonal operator on a finite dimensional Hilbert spaceH,

2
S € A(D,n) and ||S*S — 1|| < § < 1/10. Then there exists Q € (U + K)(T)~ satisfying
dist (Q,U(Té"))) <40 and Q — W*(Tén))W € K(H), for some unitary operator W.

Proof. Case 1. Assume that o(F) C {X : |\ < 1/(1 + 36)}. We will proceed by
induction on the dimension m of H; to prove that there exists @ € (U + K)(T') such that
dist (Q,Z/I(Tz(n))) <dand Q — W*Tz(")W is compact for some unitary W.

A 0] =H

When m =1,T = [ Vel !

r®e S | Ho
dictory to T' € A(D,n)). If € ran (S — \), computation shows that T~ A @ S. This is
also contradictory to T' € A(D,n). Thus x ¢ ran (S — \). For z® e € L(H1, Ha),

T [1 O'[)\ 0}{ 1 0]{)\ O}
Utk e 1| |z®e S| |-2z®e 1] ye S|’

where y = x4+ (A — S)z. Since A — S is a Fredholm operator, we always can choose z so that
y €ker(A—5)* and y # 0. For o € C (a # 0) and w € Ho, we have

1 0] [a"t 0 A 0l [a O 1 0 A 0
T~y = ;
w®e 1 0 1]|ly®e S0 1] |-w®e 1 vRe S

where v = ay + (A — S)w.

, where € Hy and  # 0 (z = 0 is contra-

Set Q1 = L} g . g,] We will choose adequate o and w so that ||Q5Q1 — 1|| < 4. Note
that
. AP+ (e@v)(vee) ew(ST0)
QiQ1 = % N .
(S*v)®e S*S
We intend to choose a and w so that
AP+ o =1=0 or [jv] =+1-AR, (2.6)
S*v=0 (2.7)
and a # 0.

Since S* is a Fredholm operator and nul S = 0, S*S is invertible. Set S*S = A. Thus
S*v = S*lay + (A= S)w] = aS*y + (AS* — A)w = aS*y + ANAT'S* — 1w.

Since A > 0, 0(A) C (1—3,1+46). Therefore ||A7|| < 1/(1-96). It follows from ||S*|| < 1+§
that

[ATES | < [ATHIIS™ ] < (1 +6)/(1 = 6) < 1+ 34,
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By assumption, [[AA71S*|| < 1. Thus (AA71S* — 1) and (AS* — A) are invertible. Choose
w = (—aX*)(AS* — A)~ 1y, we have

S5*v = aS*y + (AS* — A)(—aX*)(AS* — A)"ly = a\'y — a\*y = 0.

Since
loll = lloy + (A = S)wll = [llag]> + (A = S)(—ar )(AS* — 4)~1y||]"/*
= laf [[ly]> + |A* (A — S)(AS™ — 4)~1y|2] 2
and since A and y are fixed, we can choose o # 0 so that |lv|| = (1 — |A]*)*/2. Thus

1

0 S*S
Q1 € A(D,n). By Lemma 2.11 dist (Ql,Z/I(TZ(n))) <6 and Q1 — WHTMW s compact for
some unitary operator W.

for the chosen v, Q1Q1 = { ] and ||Q7Q1 — 1| < 4. Since Q1 € (U + K)(T),

To complete the induction step, we now assume that the result is true when F' is an
(m —1) x (m — 1) diagonal matrix.

Let T = [5 g} satisfy the condition of the lemma, where F' is an m x m matrix. Then

F' 0 0
F" 0
T~ 0 X 0f= , ,
X! T
X1 ) S
where F’ is an (m — 1) x (m — 1) diagonal matrix, X| = 0 and Ty = A0 . But
X1 To S

Ty is precisely of the form handled when m = 1, and so we can find R € (U + K)(#H5) such
that if R™!T1R = Q1, then Q; € A(D,n), |QiQ1 — 1| < 6, |[R'T\R - T{"| < § and
R 'TYR — Tz(n) is compact, where T} is acting on H}. Then

, {1 OHF’ oHl 0}[ F 0 }_T,
“lo r') X, ©]lo R] |R'X! R'TIR] ™

Thus T" € (U + K)(T) and therefore 77 € A(D,n) and satisfies the same condition as
T does. By the inductive assumption, we can find @ € (U + K)(T") = (U + K)(T) such
that dist (Q,u(Tz(n))) < dand Q — WHT{W e K(#H) for some unitary operator W. This
completes the proof of Case 1. Note that our distance estimate is actually d as opposed to
46 in this case.

Case 2. o(F) N {A: |\ > 1/(1+30)} £ 2.

By an appropriate choice of basis, we can assume that the eigenvalues {Ay,--- , Ay} of F
are listed in nonincreasing order of absolute value. Thus
- )\1 -
: 0
-
T ~ o Ari1 0 = EP A0 /1
0 : G Ty] Hp
Am
Laxy oo Ty Xpp1 .. Xy S



246 CHIN. ANN. OF MATH. Vol.21 Ser.B

where |\;| € [1/(1436),1) if and only if 1 <i <r, G = (21, -+ ,x,) € L(H], Hb),

)\r-i-l 0
... 0 ,
Tpgl oo Ty S
/ T N O r
Set Vo = | ¥ 017 ¢ (44 K)(#). Then ViTY,? = & = ( )\i)@TO
0 1 HQ 1 G T =1
T 0

T
(k= o0),ie, T =yik ( &b )\i)@To- Moreover, it is not difficult to check that Tp satisfies
i=1
all the conditions of Case 1. Because of this, we can conclude that (@ )\Z-> PTo ~u+x
i=1
(@ )\i) PR1, where Q1 € (U + K)(Tp), ||Q1 — Tz(n)|| <6 and Q; — T™ is compact. Let
i=1

Q= (@Ai)@Ql, thus Q € (U + K)(T)~. Since ||Ai| — 1| < [1/(1 + 36) — 1| < 36
i=1
(1 <4 < r), we may easily find X, € 9D such that |A\; — A}| < 30 (1 < i < r). Since
T is essentially normal and 0D C o, (TZ(")), by the arguments of Proposition 2.1 we have
7™ = W[( &) )\;)EBTZ(H)}W* + K, where K is a compact operator with ||K|| < §, W is a
i=1

unitary operator. Thus

lo-wrow) = || (D)@ - (Bx)er - w |
=1 i=1

< (D = 3) B — 7| + 1K1l < 35+ 5 =
=1

Moreover, @ — W*Tz(n)W is compact, since Q1 — Tz(n) is compact.

Proposition 2.3. Suppose that T € A(D,n). Then given §, 0 < § < 1/10, we can
find a compact operator K with || K| < § such that Tz(n) + K ~ysx T. In particular,
T € U+ K)(T)~, and so U+ K)(TE)~ = U + K)(T)~.

Proof. By Lemma 2.10, T =y x T’, where T' € A(D,n) and is a lower triangular. Thus
T* € B,(D). From the definition of B, (D) operators we may assume that the diagonal

entries {A,}72, of T" are pairwise distinct and form a dense subset of D. Thus, for each
k > 1, we have

A1 0
. : G, O
T = x i = ’ .
Ak 0 Zy, T]é
Z11 .. 2k T]g

Since T*T" — 1 =: K € K(H), we obtain
GiGr + Z; 2y, Z,’;‘T,g] B {1 o] {Klk ng]
T} Z Tl o1 Ka, Kuk

with respect to these decompositions of the spaces. Since K is compact, we can choose
N large enough so that if & > N, || K| < 6/4. Let S = T). Then S € A(D,n) and

[|S*S —1|| < §/4. By Lemma 2.11, d(S,U(TZ(n))) < /4. Since the eigenvalues of G are
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all distinct, we can find an invertible matrix R such that F = R~'GyR is diagonal. Let
X = ZyxR. Then

, R 0][Gy O][R 0] [F 0
1 { 0 J {ZN S} { J {X S} o

By Proposition 2.2 we can find an operator Q@ € U + K)(Tp)” = U + K)(T)~ and a
unitary operator W such that

(i) Q — WH*T{W is compact,

(i) |Q-W*T{W | <.

Thus, setting K = WQW* —Tz("), we have ||K|| < § and T+ K ~y+x T. Therefore
T € (U+K)(T)~. By Lemma 2.6, (U+K)(T™)~ = U + K)(T)~.

Now we are in a position to prove Theorems 1.1, 1.2 and 1.3.

Proof of Theorem 1.1. By Lemma 2.6, there are a compact operator K; with || K| <
€/2 and an operator Y € (U + K)(H) such that Th + K; = Yqun)Y_l. Let ¢ be the
analytic function in Lemmas 2.2-2.3. Then ¢ is analytic in D and ¢~ = 1 is analytic in
Q. We can find 1, 6, > 0 such that 1(Qs,) D Ds,. Set A = (Ty) € A(D,n), B = T\,
Let m; = max{|¢(z)| : [2| = 1 + d2} and my = max{||(z — B)7!|| : |2|] = 1 + §2}. By
Proposition 2.2, there are a compact operator Ko and an operator X € (U + K)(H) such
that X(B + K2) X! = A, and ||Kz| < min{1/[(m + 1)ma],d2}, where m € N satisfies
[mima(1+ 62)]/m < €/(2|Y|||[Y~1). This implies that o(B + K1) = D. Therefore

HXB+E)X ) =X¢B+EK)X ' =¢(A)=¢op(T) =

Set
K3 =¢(B+ K3) — T(n) ¢(B + K3) — ¢(B)
1
= — ¢(z)[(z—B—K2)_1—(z—B)_1] dz
2710 J)z)=1+6,
1 oo
= — o(2)(z — z— 1K2 dz.
27 Jjz)=145, 2:: I’
Thus
2mmy ( 1 +62 - n
| K5 < Z )M |
> m1m2(1 —1-52) €
<m m2 1 + 52 = < .
' Z m 2V Iy

Since K5 is compact, K3 is compact. Thus Tén)ﬁ—Kg ~yaic To, 6., there is a Z € (UHK) (H)
such that 73" + K»=ZT5Z~". Thus

T+ K Y KY ' =Y(T"™W 4 K) Y =Y 2Ty 271,
¢

and K = K; + YK3Y ! satisfies the requirements of the theorem.

Proof of Theorem 1.2. If A satisfies (i), (ii) and (iii), then for each ¢ > 0 by |9,
Theorem 3.48], there exists a compact operator K, |K|| < €, such that A+ K € A(Q,n).
By Theorem 1.1, A+ K € U+ K)(T)". Thus A e U+ K)(T)". f Ae U+ K)(T),
then X, TX, ! — A (n — oo) for a sequence of invertible operators {X,,} C (U + K)(H).
Since 7(X,) m(T)7(X,; ') — 7(A) (n — o0o) and since each 7(X,,) is a unitary element,
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0e(T) = 0.(A) =0 and nul(A—T) =nul (A— A) for all A € [0(T)Uoc(A)\oe(T). Thus A
is essentially normal, Q C 0(A) and for A € Q, ind (A — A) = —n. Conversely, assume that
A€ a(A)Np(A) but A ¢ Q. Since A € p(X,TX,; 1), ind(A — A) =0 =nul (A — A). Thus
A € p(A), a contradiction. Thus o(A4) = Q.

Proof of Theorem 1.3. By Theorem 1.1, it suffices to prove that there exists a compact
operator K, || K| < ¢, such that Td()") + K € (SI), or (Tg)(”) + K € (SI), where ¢ is an
analytic homeomorphism from D onto Q. Since T € B1(f), by [12, Lemma 2.3], we can
find compact operators Ki, Ko, , K, such that |[K;| < €/2, A4; == T} + K; € B1(Q)
(i=1,2,---,n) and ker7a,4, = {0} (i # j). Since 0,.(A1) Noy(A;) # @ (i = 2,3,--- ,n),

by [9, Theorem 3.53] there are compact operators C2,Cs, - -+, Cy, such that C; ¢ ran7a, a,
and [|C;| < /2 (i =2,3, -+ ,n).
Set
Ky Cy ... Cp
Ky
K =
0 K,

Then K is compact and ||K|| < €. Tt is easily seen that (T;)(”) + K € (SI).
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