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Abstract

Let H be a complex, separable, infinite dimensional Hilbert space, T ∈ L(H). (U + K)(T )
denotes the (U + K)-orbit of T , i.e., (U + K)(T ) = {R−1TR : R is invertible and of the form

unitary plus compact}. Let Ω be an analytic and simply connected Cauchy domain in C and
n ∈ N. A(Ω, n) denotes the class of operators, each of which satisfies

(i) T is essentially normal; (ii) σ(T ) = Ω, ρF (T ) ∩ σ(T ) = Ω;
(iii) ind (λ− T ) = −n, nul (λ− T ) = 0 (λ ∈ Ω).
It is proved that given T1, T2 ∈ A(Ω, n) and ϵ > 0, there exists a compact operator K with

∥K∥ < ϵ such that T1 +K ∈ (U +K)(T2). This result generalizes a result of P. S. Guinand and

L. Marcoux[6,15]. Furthermore, the authors give a character of the norm closure of (U +K)(T ),
and prove that for each T ∈ A(Ω, n), there exists a compact (SI) perturbation of T whose norm
can be arbitrarily small.
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§1. Introduction

Let H be a complex, separable, infinite dimensional Hilbert space. Let L(H) and K(H)
denote the algebra of bounded linear operators and, respectively, the ideal of compact oper-
ators acting on H. We will call (U+K)(T ) = {R−1TR : R ∈ (U+K)(H)} the (U+K)-orbit
of T , where

(U +K)(H) =

{
R ∈ L(H) :

R is invertible and of the form unitary
operator plus compact operator

}
.

A ∼U+K T and T →U+K B imply A ∈ (U+K)(T ) and, respectively, B ∈ (U+K)(T )−, the
norm closure of (U +K)(T ). While ∼U+K defines an equivalence relation, →U+K does not.
An operator is strongly irreducible, or briefly, T ∈ (SI), if it does not commute with any
nontrivial idempotent. An operator is essentially normal if [T, T ∗] := T ∗T − TT ∗ ∈ K(H).
An operator T is said to be shift-like if T is essentially normal with σ(T ) = D = {z ∈ C :
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|z| ≤ 1} and σe(T ) = ∂D with ind (λ − T ) = −1 and nul (λ − T ) = 0 for all λ ∈ D. P. S.
Guinand and L. Marcoux[6,15] proved the following

Theorem G-M. Let T1, T2 be shift-like and let ϵ be a positive number. Then there exists

a compact operator K with ∥K∥ < ϵ such that T1 +K ∼U+K T2.

In this paper we will strengthen the above theorem.

Let Ω be an analytic and simply connected Cauchy domain in C and n ∈ N. Then A(Ω, n)
will denote the class of operators, each of which satisfies

(i) T is essentially normal; (ii) σ(T ) = Ω, ρF (T ) ∩ σ(T ) = Ω;

(iii) ind (λ− T ) = −n, nul (λ− T ) = 0 for all λ ∈ Ω.

The next three results are our main results.

Theorem 1.1. Given T1, T2 ∈ A(Ω, n) and ϵ > 0, there exists a compact operator K

with ∥K∥ < ϵ such that T1 +K ∼U+K T2.

Theorem 1.2. Let T be in A(Ω, n). Then (U + K)(T )− consists of all operators A

satisfying

(i) A is essentially normal; (ii) σ(A) = Ω, ρF (A) ∩ σ(A) = Ω;

(iii) ind (λ−A) = −n for all λ ∈ Ω.

Theorem 1.3. Let T ∈ A(Ω, n) and ϵ > 0. Then there exists a compact operator K with
∥K∥ < ϵ such that T +K ∈ (SI).

Theorem 1.3 partially answers an interesting question posed by D. A. Herrero: Given an
essentially normal operator T with connected spectrum and ϵ > 0, is there a K ∈ K(H)

with ∥K∥ < ϵ, such that T +K ∈ (SI)?

§2. Proof of the Main Theorems

It follows from the Riemann mapping theorem that there is an analytic function ϕ satis-

fying

(i) ϕ(0) = z0, where z0 is a fixed point in Ω; (ii) ϕ is injective; (iii) ϕ(D) = Ω.

By Schwarz reflection principle ϕ has an analytic continuation on D such that ϕ(∂D) =

∂Ω. Let Tϕ be the Toeplitz operator with symbol ϕ. Then T ∗
ϕ ∈ B1(Ω

∗) and σ(T ∗
ϕ ) = Ω

∗
,

where Bn(Ω) denotes the set of Cowen-Douglas operators of index n, i.e., Bn(Ω) consists of
operators B satisfying

(i) σ(B) ⊃ Ω; (ii) ran (λ−B) = H for all λ ∈ Ω;

(iii) nul (λ−B) = n for all λ ∈ Ω; (iv)
∨{

ker(λ−B) : λ ∈ Ω
}
= H.

(iv) can be replaced by (iv)
′
.

(iv)′
∨
{ker(λ0 −B)k : k = 1, 2, · · · } = H for a fixed λ0 ∈ Ω (see [3]).

In order to prove Theorems 1.1 and 1.2, we need several lemmas.

Lemma 2.1. Let M = (ker(Tϕ − λ)∗)⊥. Then Tϕ|M is unitarily equivalent to Tϕ, where
λ ∈ Ω.

Proof. Since M is a hyperinvariant subspace of Tϕ, M is an invariant subspace of Tz. By
Beurling theorem, M = TgH

2, where g is an inner function andH2 is the Hardy space. Since
T ∗
ϕ ∈ B1(Ω

∗), g = (z − a)/(1− a∗z), (0 ≤ |a| < 1). Thus Tg can be considered as a unitary

operator from H2 to M and T ∗
g (Tg|M)Tgf = Tϕf for f ∈ H2, i.e., T ∗

g (Tϕ|M)Tg = Tϕ.

Lemma 2.2. Let H = C ⊕ H2 and λ ∈ Ω and let T =

[
λ 0
E Tϕ

]
∈ L(H), where

E = αe0 ⊗ 1, e0 ∈ ker(λ− Tϕ)
∗ and ∥e0∥ = 1, α ∈ C and α ̸= 0. Then T ∼U+K Tϕ.
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Proof. Note that e0 ∈ ran (Tϕ − λ)⊥. By Lemma 2.1,

Tϕ =

[
λ 0

g1 Tϕ|M

]
e0

M = [ker(Tϕ − λ)∗]⊥
≃

[
λ 0

g2 Tϕ

] C
H2

,

where g1, g2 are rank-1 operators and we assume that g2 = f ⊗ 1, f ∈ H2. Since e0 ∈
ran (Tϕ−λ)⊥, f = βe0+g3, where β ∈ C and g3 ∈ ran (Tϕ−λ). If β = 0, let g3 = (Tϕ−λ)x,
then computation shows that[

1 0

x⊗ 1 1

] [
λ 0

g2 Tϕ

] [
1 0

−x⊗ 1 1

]
=

[
λ 0

0 Tϕ

]
.

This is contradictory to Tϕ ∈ (SI). Thus β ̸= 0, and X

[
λ 0
g2 Tϕ

]
X−1 =

[
λ 0

βe0 ⊗ 1 Tϕ

]
,

where X =

[
1 0

x⊗ 1 1

]
∈ (U +K)(H). Since

[
λ 0

βe0 ⊗ 1 Tϕ

]
∼U+K

[
λ 0
E Tϕ

]
, the proof of

Lemma 2.2 is complete.
By the same argument of Lemma 2.2, we can prove

Lemma 2.3. Let H = C⊕H2, g /∈ ran (Tϕ−λ), λ ∈ Ω and let T =

[
λ 0

g ⊗ 1 Tϕ

]
∈ L(H).

Then T ∼U+K Tϕ.

Lemma 2.4. Let T ∈ L(Cn ⊕ H2) and T =

[
F 0
Cn Tϕ

]
Cn

H2 , where F ∈ L(Cn) with

σ(F ) ⊂ Ω, Cn ∈ L(Cn, H2) is a nonzero operator. Then for each ϵ > 0, there exists a
compact operator K, ∥K∥ < ϵ, such that T +K ∼U+K Tϕ.

Proof. We will prove the lemma by induction on n.

If n = 1, T =

[
λ 0
C1 Tϕ

]
, where C1 = f⊗1 is a rank-1 operator. Choose g ∈ H2, ∥g∥ < ϵ,

such that f + g /∈ ran (Tϕ − λ). Set K =

[
0 0

g ⊗ 1 0

]
. Then ∥K∥ < ϵ and by Lemma 2.3,

T +K ∼U+K Tϕ.
Assume that the conclusion of the lemma is true when n ≤ k − 1, and let n = k. It is

obvious that there is a unitary operator U such that

UTU∗ =

λ 0 0

∗ Fn−1 0

∗ Cn−1 Tϕ

 C
Cn−1

H2

,

where Fn−1 ∈ L(Cn−1), λ ∈ σ(F ). By the inductive assumption, we can find a compact
operator K1 with ∥K1∥ < ϵ/2 and X1 ∈ (U +K)(H) such that

X1(UTU
∗ +K1)X

−1
1 =

[
λ 0

C1 Tϕ

]
.

By the assumption again, we can find a compact operatorK2 such that ∥K2∥ < ϵ
(2∥X1∥∥X−1

1 ∥)

and X2

([
λ 0

C1 Tϕ

]
+K2

)
X−1

2 = Tϕ for some X2 ∈ (U + K)(H). Thus K = U∗K1U +

U∗X−1
1 K2X1U satisfies the requirement of the lemma.

Lemma 2.5. Given A, B ∈ L(H), let τAB denote the Rosenblum operator given by
τAB(X) = AX −XB, X ∈ L(H). Let τ = τAB |K(H). Then τ∗ = −τBA|C1(H) and (τ∗)∗ =

τAB, where τ
∗ is the dual of τ and C1(H) is the set of trace class operators.

Proof. Recall that C1(H) is isometrically isomorphic to the dual K(H)∗ of K(H). This
isomorphism is defined by C1(H) ∋ K ↔ ϕK ∈ K(H)∗, where ϕK(X) = tr (KX), X ∈ K(H).
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Thus

ϕτ∗(K)(X) = ϕK(τ(X)) = tr [K(AX −XB)] = tr (KAX)− tr (KXB)

= tr (KAX)− tr (BKX) = tr (−τBA(K)X) = ϕ−τBA(K)(X).

Therefore τ∗ = −τBA

∣∣
C1(H)

.

Since L(H) is isometrically isomorphic to the dual C1(H)∗ of C1(H), by the similar
arguments we can prove that (τ∗)∗ = τAB .

Lemma 2.6. Given T ∈ A(Ω, n) and ϵ > 0, then there exists a compact operator K with

∥K∥ < ϵ such that T +K ∼U+K T
(n)
ϕ .

Proof. Note that Tϕ admits a lower triangular matrix representation with respect to the
ONB {eikθ}∞k=0 of H2. Set Mk =

∨
{eijθ : j = 0, 1, · · · , k} and denote by Pk the orthogonal

projection onto
n⊕

k=1

Mk. By Brown-Douglas-Fillmore theorem UTU∗ = T
(n)
ϕ +K, where U

is a unitary operator and K is compact. Set K1 = PmKPm −K, and m will be determined
later. By Lemma 2.1, we can find a unitary operator U1 such that

U1(UTU
∗ +K1)U

∗
1 =


F 0 . . . 0

C1 Tϕ
0...

. . .

Cn
0

Tϕ

 ,
where F ∈ L(Cnm), Ck is a finite rank operator (k = 1, · · · , n). Fix m so that ∥K1∥ < ϵ/8
and σ(F ) ⊂ Ωϵ/8. Thus we can find an operator C ∈ L(Cnm) such that ∥C∥ < ϵ/4
and σ(F ′) ⊂ Ω, where F ′ = F + C. Therefore there exists a compact operator K2 with
∥K2∥ < ϵ/4 such that

U1(UTU
∗ +K1)U

∗
1 +K2 =


F ′ 0 . . . 0

C1 Tϕ
0...

. . .

Cn
0 Tϕ

 = A1.

By Lemma 2.4, there is an X ′
1 ∈ (U + K)(Cnm ⊕H2) such that X ′

1

[
F ′ 0
C1 Tϕ

]
X ′−1

1 = Tϕ.

Thus we can find X1 ∈ (U +K)(Cnm ⊕ (H2)(n)) such that

X1A1X
−1
1 =


Tϕ 0 . . . 0

C ′
1 Tϕ

0...
. . .

C ′
n−1

0 Tϕ

 = A2,

where C ′
k (k = 1, 2, · · · , n− 1) is a finite rank operator. Since A′(Tϕ) does not contain any

compact operators, ker τTϕTϕ
|K(H2) = {0}. By Lemma 2.5 [ran τTϕTϕ

|C1(H2)]
− = C1(H2).

Thus for each k (1 ≤ k ≤ n − 1) we can find compact operators Dk and Ek satisfying
TϕEk − EkTϕ = −C ′

k −Dk and ∥Dk∥ < ϵ/(∥X1∥∥X−1
1 ∥8k).

Set

K3 =


0 0 . . . 0

D1 0 . . . 0
...

. . .
...

Dn−1 0 . . . 0

 , X2 =


1 0 . . . 0

E1 1 . . . 0
...

. . .
...

En−1 0 . . . 1

 .
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Then K3 is compact, ∥K3∥ < ϵ/(8∥X1∥∥X−1
1 ∥) and X2 ∈ (U + K)((H2)(n)). Calculation

indicates that X2(A2+K3)X
−1
2 = T

(n)
ϕ . Thus, X(T +K)X−1 = T

(n)
ϕ , where K = U∗K1U+

U∗U∗
1K2U1U +X−1

1 K3X1 is a compact operator with ∥K∥ < ϵ, X = X2X1U1U is invertible
and of the form unitary plus compact.

Lemma 2.6 implies that A(Ω, n) ⊂ (U +K)(T
(n)
ϕ )−.

Lemma 2.7. Let A,B ∈ L(H). Assume that H =
∨{

ker(λ − B)k : λ ∈ Γ, k ≥ 1
}

for a certain subset Γ of the point spectrum σp(B) of B, and σp(A) ∩ Γ = ∅; then τAB is
injective.

Proof. Let p be a monic polynomial with zeros in Γ and let x ∈ H be any vector such
that p(B)x = 0; then AX = XB implies p(A)Xx = Xp(B)x = 0.

Since p(A) is injective, we infer Xx = 0. It readily follows that kerX ⊃
∨{

ker(λ−B)k :

λ ∈ Γ, k ≥ 1
}
= H. Hence, X = 0.

Lemma 2.8.[1,Theorem 4.15] Suppose that T ∈ L(H) is essentially normal and σ(T ) =
σe(T )∪σ0(T ). Assume, moreover, that C(σ(T )) = Rat(σ(T ))−. Then T →U+K N , where N
is a normal operator such that σ(N) = σ(T ), σ0(T ) = σ0(N), and nul (λ−N) = dimH(λ;T )
for all λ ∈ σ0(N), Rat (σ(T ))− is the uniform closure of rational functions with poles outside
σ(T ).

An operator is almost normal if it has the form of normal+ compact.

Lemma 2.9. Suppose T ∈ L(H) is almost normal, σ(T ) is a perfect set with Lebesgue
measure 0, N is normal with σ(N) = σ(T ); then for each ϵ > 0, there exists X ∈ (U+K)(H)
such that

(i) XTX−1 −N ∈ K(H); (ii) ∥XTX−1 −N∥ < ϵ.

Proof. Since m(σ(T )) = 0, it follows from [8] that Rat(σ(T ))− = C(σ(T )). By Lemma
2.8, for each δ > 0 there is an X1 ∈ (U + K)(H) such that ∥X1TX

−1
1 − N∥ < δ. Since

T is almost normal, X1TX
−1
1 is also almost normal. Therefore there are normal operator

M and compact operator K such that X1TX
−1
1 = M + K. Since ∥M + K − N∥ < δ,

∥[(M +K)∗, (M +K)]∥ < 4∥N∥δ+2δ2. I. D. Berg and K. R. Davidson[2] asserts that there
exists a positive valued continuous function f on [0,∞), f(0) = 0, such that for each almost
normal operator Q, there is a compact operator K(Q) with ∥K(Q)∥ ≤ f

(
∥Q∗Q−QQ∗∥1/2

)
and Q+K(Q) is normal. According to this theorem, we can find a δ and a compact operator
K1 such that

(i) ∥K1∥ ≤ ϵ/4; (ii) X1TX
−1
1 +K1 =M +K +K1 is normal;

(iii) σ(M +K +K1) ⊂ σ(T )ϵ/4.

Since T is almost normal and σ(T ) is a perfect set withm(σ(T )) = 0, σ(T ) = σe(T ). Thus
σ(M) = σ(T )∪σ0(M). SinceM+K+K1 is normal, σ(M+K+K1) = σ(T )∪σ0(M+K+K1).
Thus we can find a compact operator K2, ∥K2∥ < ϵ/2, such that σ(M +K +K1 +K2) =
σ(T ) = σ(N) and M + K + K1 + K2 is normal. It follows from Voiculescu theorem that
there is a unitary operator U and a compact operator K3 with ∥K3∥ < ϵ/2 such that

U(X1TX
−1
1 +K1 +K2)U

∗ = U(M +K +K1 +K2)U
∗ = N +K3.

Thus UX1TX
−1
1 U∗ − N ∈ K(H), ∥UX1TX

−1
1 U∗ − N∥ < ϵ, and X := UX1 satisfies the

requirements of the lemma.

Let T ∈ L(H). λ is an approximate normal eigenvalue of T if for each ϵ > 0, there is a
unit vector eϵ such that ∥(λ − T )eϵ∥ < ϵ and ∥(λ − T )∗eϵ∥ < ϵ. If λ ∈ σlre(T ) ⊂ σle(T ),
by Apostol-Foiaş-Voiculescu Theorem[9], there exist a compact operator K and an infinite
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dimensional subspace H1 such that T =

[
λ E

0 A

] H1

H⊥
1

+K. Let {en}∞n=1 be an ONB of H1.

Since en → 0 weakly, ∥Ken∥ → 0 (n → ∞), i.e. ∥(λ − T )en∥ → 0. If T is a hyponormal
operator, then ∥(λ − T )en∥2 − ∥(λ − T )∗en∥2 → 0 (n → ∞). Thus λ is an approximate
normal eigenvalue. Thus we get the following proposition.

Proposition 2.1. Assume that T is essentially normal. Then σlre(T ) is contained in
the set of approximate normal eigenvalues of T .

Using Propostion 2.1, we get
Theorem 2.1. Given T , N ∈ L(H), such that σlre(T ) is contained in the set of approxi-

mate normal eigenvalues of T , N is a normal operator with σ(N) = σe(N) = Γ, Γ ⊂ σlre(T )
and given ϵ > 0, there exists a compact operator K with ∥K∥ < ϵ such that

T −K ≃
[
N 0

0 T

]
.

Proof. Let {λn}∞n=1 be a sequence of complex numbers such that {λn}− = Γ and
card {m : λm = λn} = ∞ for each n = 1, 2, · · · . By the definition of approximate normal
eigenvalue, there exists a unit vector e1 such that ∥(λ1 −T )e1∥ < ϵ/16 and ∥(λ1 −T )∗e1∥ <
ϵ/16. Thus, we have

∥Pe1(λ1 − T )Pe1∥ < ϵ/16, ∥Pe1(λ1 − T )Pe⊥1
∥ = ∥Pe⊥1

(λ1 − T )∗Pe1∥ < ϵ/16,

and ∥Pe⊥1
(λ1 − T )Pe1∥ < ϵ/16, where Pe1 and Pe⊥1

denote the orthogonal projections onto∨
{e1} and, respectively,

[∨
{e1}

]⊥
. Under the decomposition H =

∨
{e1}

⊕[∨
{e1}

]⊥
, T

admits the representation T =

[
λ1 + t11 T12

T21 T1

]
. Set K1 =

[
t11 T12
T21 0

]
; then K1 ∈ K(H),

∥K1∥ < ϵ/8 and T −K1 =

[
λ1 0
0 T1

]
. Clearly, σlre(T1) = σlre(T ). Repeat the argument,

we can get K2 ∈ K(H), ∥K2∥ < ϵ/24 such that

T −K1 −K2 =

λ1 0 0

0 λ2 0

0 0 T2


∨
{e1}∨
{e2}[∨
{e1, e2}

]⊥ .
By induction, we can find an orthonormal sequence e1, e2, · · · , en, · · · in H and a sequence

K1,K2, · · · ,Kn, · · · in K(H) such that ∥Kn∥ < ϵ/2n+2 (n = 1, 2, · · · ) and

T −
m∑

n=1

Kn =

 m∑
n=1

λnen ⊗ en 0

0 Tm+1

 ∨
{e1, · · · , em}[∨
{e1, · · · , em}

]⊥ m = 1, 2, · · · .

Set C1 =
∞∑

n=1
Kn, N1 =

∞∑
n=1

λnen ⊗ en; then T − C1 =

[
N1 0

0 T∞

]
with respect to

the decomposition H =
∨
{en : 1 ≤ n < ∞}

⊕[∨
{en}

]⊥
, and C1 ∈ K(H), ∥C1∥ < ϵ/4.

Applying Voiculescu’s non-commutative Weyl-von Neumann Theorem to N1, we can find
compact operator C ′

2, ∥C ′
2∥ < ϵ/8, such that N1 + C ′

2 ≃ N ⊕N1. Therefore,

T − C1 − C2 ≃

N 0 0

0 N1 0

0 0 T∞


where C2 is compact and ∥C2∥ < ϵ/8. Finally, we can find a compact operator C3 with
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∥C3∥ < ϵ/4, such that T − C1 − C2 − C3 ≃
[
N 0

0 T

]
. Set K = C1 + C2 + C3. Then K

satisfies all requirements of the theorem.
Lemma 2.10. Let T ∈ A(D,n), ϵ > 0. Then there exist an operator T ′ ∈ A(D,n) and a

compact operator K such that ∥K∥ < ϵ, T ′ admits a lower triangular matrix representation
with respect to some ONB of H and T ′ +K ∼U+K T .

Proof. By Apostol’s triangular representation theorem T =

[
T0 B
0 Tl

]
H0(T )
Hl(T )

and

H0 is a hyperinvariant subspace of T , (2.1)

Tl admits a lower triangular matrix representation, (2.2)

ρs−F (T ) ⊂ ρ(T0). (2.3)

By Brown-Douglas-Fillmore theorem T ≃ T
(n)
z +K, K is compact, and π(T ) is a unitary

element in the Calkin algebra A(H) = L(H)/K(H), i.e., π(T ∗)π(T )− π(1) = 0. Thus[
π(T ∗

0 T0)− π(1) π(T ∗
0B)

π(B∗T0) π(B∗B + T ∗
l Tl)− π(1)

]
=

[
0 0

0 0

]
.

Since D ⊂ ρ(T0) ⊂ ρ(π(T0)), π(T0) is invertible and π(T0)
−1 = π(T0)

∗. Thus π(T0) is a
unitary element in A(H0(T )). Since T0 is invertible, by Brown-Douglas-Fillmore theorem
T0 ≃ U0 +K0, where U0 is unitary and K0 is compact. By (2.3) σ(U0 +K0) ⊂ ∂D. Since

π(T ) is a unitary element in A(H), TT ∗ − 1 ∈ K(H), i.e.,

[
T0T

∗
0 +BB∗ − 1 BT ∗

l

TlB
∗ TlT

∗
l − 1

]
is compact. Since π(T0) is a unitary element, T0T

∗
0 − 1 is compact, thus BB∗ and B are

compact. Since T ∗
l ∈ Bn(D) and D ∩ σ(T ∗

0 ) = ∅, by Proposition 2.1 ker τT∗
0 T∗

l
= {0} and

therefore ker τTlT0 = {0}. By Lemma 2.5, ran τT0Tl
is dense in K(Hl,H0). Thus for δ > 0,

there exist compact operators E, G ∈ L(Hl(T ),H0(T )) such that T0G−GTl = B + E and
∥E∥ < δ.

SetX1 =

[
1 −G
0 1

] H0(T )

Hl(T )
and K1 =

[
0 −E
0 0

] H0(T )

Hl(T )
. ThenX1((T0⊕Tl)+K1)X

−1
1

= T , where X1 ∈ (U + K)(H), K1 is compact and ∥K1∥ < δ/2. Since σ(T0) ⊂ ∂D, Lemma
2.9 indicates that there are compact operator K2 and X2 ∈ (U +K)(H) such that ∥K2∥ < δ
and X2((N0 ⊕ Tl) + K2)X

−1
2 = T0 ⊕ Tl, where N0 is a diagonal normal operator with

σ(N0) = σ(T0). By Theorem 2.1 we can find a compact operator K3 and a unitary operator
U such that ∥K3∥ < δ and U((N0 ⊕ Tl) +K3)U

∗ = Tl, i.e., U
∗(Tl − UK3U

∗)U = N0 ⊕ Tl.
Thus let δ = ϵ/(4∥X2∥∥X−1

2 ∥), K = UK2U
∗−U2K3U

∗2+UX−1
2 K1X2U

∗, T ′ = Tl satisfy
the requirement of the lemma.

Lemma 2.11. Let T ∈ A(D,n), 0 < ϵ < 1/10 and ∥T ∗T − 1∥ < ϵ. Then there exists a

unitary operator W such that W ∗TW − T
(n)
z is compact and ∥W ∗TW − T

(n)
z ∥ < ϵ.

Proof. Consider the polar decomposition T = U |T | of T , where U is a partial isometry,

ranU = ranT . By the Wold decomposition theorem (see [17]), U ≃ T
(n)
z ⊕ V , where

V is a unitary operator. By the assumption ∥|T |2 − 1∥ < ϵ, |z2 − 1| < ϵ for all z ∈
σ(|T |). Since ϵ < 1/10, z > 1/2 and ϵ > |z2 − 1| = |z + 1||z − 1| > 3|z − 1|/2. Thus
σ(|T |) ⊂ {x ∈ R : |x − 1| < 2ϵ/3}. Since |T | is self-adjoint, ∥|T | − 1∥ < 2ϵ/3 and therefore

∥T − U∥ = ∥U |T | − U∥ = ∥U(|T | − 1)∥ ≤ ∥U∥∥|T | − 1∥ < 2ϵ/3. Note that T ≃ T
(n)
z +K,

whereK is compact. Thus |T |2−1 = T ∗T−1 ≃ (T
(n)
z +K)∗(T

(n)
z +K)−1, and |T |2 = 1+K1

and |T | = 1 +K2 for some K1, K2 ∈ K(H).
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Since V is unitary and U ≃ T
(n)
z ⊕V , by Theorem 2.1 there is a unitary operator W such

that

∥W ∗UW − T (n)
z ∥ < ϵ/3, (2.4)

K3 :=W ∗UW − T (n)
z is compact. (2.5)

Thus W ∗TW − T
(n)
z = W ∗(T − U)W + W ∗UW − T

(n)
z = W ∗[U(|T | − 1)]W + K3 =

W ∗(UK2)W +K3. It is compact, and

∥W ∗TW − T (n)
z ∥ ≤ ∥W ∗(T − U)W∥+ ∥K3∥ ≤ ∥T − U∥+ ϵ

3
< ϵ.

Proposition 2.2. Let T ∈ A(D,n) admit a lower triangular matrix representation

T =

[
F 0
X S

]
H1

H2
, where, F is a diagonal operator on a finite dimensional Hilbert spaceH1,

S ∈ A(D,n) and ∥S∗S − 1∥ < δ < 1/10. Then there exists Q ∈ (U + K)(T )− satisfying

dist (Q,U(T (n)
z )) < 4δ and Q−W ∗(T

(n)
z )W ∈ K(H), for some unitary operator W .

Proof. Case 1. Assume that σ(F ) ⊂ {λ : |λ| < 1/(1 + 3δ)}. We will proceed by
induction on the dimension m of H1 to prove that there exists Q ∈ (U + K)(T ) such that

dist (Q,U(T (n)
z )) < δ and Q−W ∗T

(n)
z W is compact for some unitary W .

When m = 1, T =

[
λ 0

x⊗ e S

] ∨
{e} = H1

H2

, where x ∈ H2 and x ̸= 0 (x = 0 is contra-

dictory to T ∈ A(D,n)). If x ∈ ran (S − λ), computation shows that T ∼ λ ⊕ S. This is
also contradictory to T ∈ A(D,n). Thus x /∈ ran (S − λ). For z ⊗ e ∈ L(H1,H2),

T ∼U+K

[
1 0

z ⊗ e 1

] [
λ 0

x⊗ e S

] [
1 0

−z ⊗ e 1

]
=

[
λ 0

y ⊗ e S

]
,

where y = x+(λ−S)z. Since λ−S is a Fredholm operator, we always can choose z so that
y ∈ ker(λ− S)∗ and y ̸= 0. For α ∈ C (α ̸= 0) and ω ∈ H2, we have

T ∼U+K

[
1 0

ω ⊗ e 1

] [
α−1 0

0 1

] [
λ 0

y ⊗ e S

] [
α 0

0 1

] [
1 0

−ω ⊗ e 1

]
=

[
λ 0

v ⊗ e S

]
,

where v = αy + (λ− S)ω.

Set Q1 =

[
λ 0

v ⊗ e S

]
. We will choose adequate α and ω so that ∥Q∗

1Q1 − 1∥ < δ. Note

that

Q∗
1Q1 =

[ |λ|2 + (e⊗ v)(v ⊗ e) e⊗ (S∗v)

(S∗v)⊗ e S∗S

]
.

We intend to choose α and ω so that

|λ|2 + ∥v∥2 − 1 = 0 or ∥v∥ =
√
1− |λ|2, (2.6)

S∗v = 0 (2.7)

and α ̸= 0.

Since S∗ is a Fredholm operator and nulS = 0, S∗S is invertible. Set S∗S = A. Thus

S∗v = S∗[αy + (λ− S)ω] = αS∗y + (λS∗ −A)ω = αS∗y +A(λA−1S∗ − 1)ω.

Since A > 0, σ(A) ⊂ (1−δ, 1+δ). Therefore ∥A−1∥ < 1/(1−δ). It follows from ∥S∗∥ ≤ 1+δ
that

∥A−1S∗∥ ≤ ∥A−1∥∥S∗∥ < (1 + δ)/(1− δ) < 1 + 3δ.



No.2 JI, Y. Q., JIANG, C. L. et al ORBIT OF ESSENTIALLY NORMAL OPERATORS 245

By assumption, ∥λA−1S∗∥ < 1. Thus (λA−1S∗ − 1) and (λS∗ − A) are invertible. Choose
ω = (−αλ∗)(λS∗ −A)−1y, we have

S∗v = αS∗y + (λS∗ −A)(−αλ∗)(λS∗ −A)−1y = αλ∗y − αλ∗y = 0.

Since

∥v∥ = ∥αy + (λ− S)ω∥ =
[
∥αy∥2 + ∥(λ− S)(−αλ∗)(λS∗ −A)−1y∥2

]1/2
= |α|

[
∥y∥2 + ∥λ∗(λ− S)(λS∗ −A)−1y∥2

]1/2
and since λ and y are fixed, we can choose α ̸= 0 so that ∥v∥ = (1 − |λ|2)1/2. Thus

for the chosen v, Q∗
1Q1 =

[
1 0

0 S∗S

]
and ∥Q∗

1Q1 − 1∥ < δ. Since Q1 ∈ (U + K)(T ),

Q1 ∈ A(D,n). By Lemma 2.11 dist (Q1,U(T (n)
z )) < δ and Q1 −W ∗T

(n)
z W is compact for

some unitary operator W .

To complete the induction step, we now assume that the result is true when F is an
(m− 1)× (m− 1) diagonal matrix.

Let T =

[
F 0
x S

]
satisfy the condition of the lemma, where F is an m×m matrix. Then

T ≃

 F ′ 0 0

0 λ 0

X1 x2 S

 =

[
F ′ 0

X ′
1 T1

]
,

where F ′ is an (m − 1) × (m − 1) diagonal matrix, X ′
1 =

[
0
X1

]
and T1 =

[
λ 0
x2 S

]
. But

T1 is precisely of the form handled when m = 1, and so we can find R ∈ (U +K)(H′
2) such

that if R−1T1R := Q1, then Q1 ∈ A(D,n), ∥Q∗
1Q1 − 1∥ < δ, ∥R−1T1R − T

(n)
z ∥ < δ and

R−1T1R− T
(n)
z is compact, where T1 is acting on H′

2. Then

T ∼U+K

[
1 0

0 R−1

] [
F ′ 0

X ′
1 T1

] [
1 0

0 R

]
=

[
F ′ 0

R−1X ′
1 R−1T1R

]
:= T ′.

Thus T ′ ∈ (U + K)(T ) and therefore T ′ ∈ A(D,n) and satisfies the same condition as
T does. By the inductive assumption, we can find Q ∈ (U + K)(T ′) = (U + K)(T ) such

that dist (Q,u(T
(n)
z )) < δ and Q −W ∗T

(n)
z W ∈ K(H) for some unitary operator W . This

completes the proof of Case 1. Note that our distance estimate is actually δ as opposed to
4δ in this case.

Case 2. σ(F ) ∩ {λ : |λ| ≥ 1/(1 + 3δ)} ≠ ∅.

By an appropriate choice of basis, we can assume that the eigenvalues {λ1, · · · , λm} of F
are listed in nonincreasing order of absolute value. Thus

T ≃



λ1
. . .

λr

0

λr+1

0
. . .

λm

0

x1 . . . xr xr+1 . . . xm S


=

 r⊕
1
λi 0

G T0

 H′
1

H′
2
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where |λi| ∈
[
1/(1 + 3δ), 1

)
if and only if 1 ≤ i ≤ r, G = (x1, · · · , xr) ∈ L(H′

1,H′
2),

T0 =


λr+1 0

0

. . .

λm

0

xr+1 . . . xm S

 ∈ L(H′
2).

Set Yk =

[
k 0
0 1

]
H′

1

H′
2
∈ (U + K)(H). Then YkTY

−1
k =

 r⊕
1
λi 0

1
k G T0

 →
( r⊕

i=1

λi

)⊕
T0

(k → ∞), i.e., T →U+K

( r⊕
i=1

λi

)⊕
T0. Moreover, it is not difficult to check that T0 satisfies

all the conditions of Case 1. Because of this, we can conclude that
( r⊕

i=1

λi

)⊕
T0 ∼U+K( r⊕

i=1

λi

)⊕
Q1, where Q1 ∈ (U + K)(T0), ∥Q1 − T

(n)
z ∥ < δ and Q1 − T

(n)
z is compact. Let

Q =
( r⊕

i=1

λi

)⊕
Q1, thus Q ∈ (U + K)(T )−. Since ||λi| − 1| < |1/(1 + 3δ) − 1| < 3δ

(1 ≤ i ≤ r), we may easily find λ′i ∈ ∂D such that |λi − λ′i| < 3δ (1 ≤ i ≤ r). Since

T
(n)
z is essentially normal and ∂D ⊂ σe(T

(n)
z ), by the arguments of Proposition 2.1 we have

T
(n)
z =W

[( r⊕
i=1

λ′i

)⊕
T

(n)
z

]
W ∗ +K, where K is a compact operator with ∥K∥ < δ, W is a

unitary operator. Thus

∥Q−W ∗T (n)
z W∥ =

∥∥∥( r⊕
i=1

λi

)⊕
Q1 −

( r⊕
i=1

λ′i

)⊕
T (n)
z −W ∗KW

∥∥∥
≤

∥∥∥( r⊕
i=1

(λi − λ′i)
)⊕

(Q1 − T (n)
z )

∥∥∥+ ∥K∥ ≤ 3δ + δ = 4δ.

Moreover, Q−W ∗T
(n)
z W is compact, since Q1 − T

(n)
z is compact.

Proposition 2.3. Suppose that T ∈ A(D,n). Then given δ, 0 < δ < 1/10, we can

find a compact operator K with ∥K∥ < δ such that T
(n)
z + K ∼U+K T . In particular,

T
(n)
z ∈ (U +K)(T )−, and so (U +K)(T

(n)
z )− = (U +K)(T )−.

Proof. By Lemma 2.10, T →U+K T ′, where T ′ ∈ A(D,n) and is a lower triangular. Thus
T ′∗ ∈ Bn(D). From the definition of Bn(D) operators we may assume that the diagonal
entries {λk}∞k=1 of T ′ are pairwise distinct and form a dense subset of D. Thus, for each
k ≥ 1, we have

T ′ =


λ1

*

. . .

λk

0
...
0

Z11 . . . Z1k T ′
k

 :=

[
Gk 0

Zk T ′
k

]
.

Since T ′∗T ′ − 1 =: K ∈ K(H), we obtain[
G∗

kGk + Z∗
kZk Z∗

kT
′
k

T ′
kZk T ′∗

k T
′
k

]
=

[
1 0

0 1

]
+

[
K1k K2k

K3k K4k

]
with respect to these decompositions of the spaces. Since K is compact, we can choose
N large enough so that if k ≥ N , ∥K4k∥ < δ/4. Let S = T ′

N . Then S ∈ A(D,n) and

∥S∗S − 1∥ < δ/4. By Lemma 2.11, d(S,U(T (n)
z )) < δ/4. Since the eigenvalues of GN are
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all distinct, we can find an invertible matrix R such that F = R−1GNR is diagonal. Let
X = ZNR. Then

T ′ ∼U+K

[
R−1 0

0 1

] [
GN 0

ZN S

] [
R 0

0 1

]
=

[
F 0

X S

]
= T0.

By Proposition 2.2 we can find an operator Q ∈ (U + K)(T0)
− = (U + K)(T )− and a

unitary operator W such that

(i) Q−W ∗T
(n)
z W is compact,

(ii) ∥Q−W ∗T
(n)
z W∥<δ.

Thus, setting K = WQW ∗−T (n)
z , we have ∥K∥ < δ and T

(n)
z +K ∼U+K T . Therefore

T
(n)
z ∈(U+K)(T )−. By Lemma 2.6, (U+K)(T

(n)
z )− = (U +K)(T )−.

Now we are in a position to prove Theorems 1.1, 1.2 and 1.3.
Proof of Theorem 1.1. By Lemma 2.6, there are a compact operator K1 with ∥K1∥ <

ϵ/2 and an operator Y ∈ (U + K)(H) such that T1 + K1 = Y T
(n)
ϕ Y −1. Let ϕ be the

analytic function in Lemmas 2.2–2.3. Then ϕ is analytic in D and ϕ−1 = ψ is analytic in

Ω. We can find δ1, δ2 > 0 such that ψ(Ωδ1) ⊃ Dδ2 . Set A = ψ(T2) ∈ A(D,n), B = T
(n)
z .

Let m1 = max{|ϕ(z)| : |z| = 1 + δ2} and m2 = max{∥(z − B)−1∥ : |z| = 1 + δ2}. By
Proposition 2.2, there are a compact operator K2 and an operator X ∈ (U + K)(H) such
that X(B + K2)X

−1 = A, and ∥K2∥ < min{1/[(m + 1)m2], δ2}, where m ∈ N satisfies
[m1m2(1 + δ2)]/m < ϵ/(2∥Y ∥∥Y −1∥). This implies that σ(B +K1) = D. Therefore

ϕ(X(B +K1)X
−1) = X ϕ(B +K1)X

−1 = ϕ(A) = ϕ ◦ ψ(T ) = T2.

Set

K3 = ϕ(B +K2)− T
(n)
ϕ = ϕ(B +K2)− ϕ(B)

=
1

2πi

∫
|z|=1+δ2

ϕ(z)
[
(z −B −K2)

−1 − (z −B)−1
]
dz

=
1

2πi

∫
|z|=1+δ2

ϕ(z)(z −B)−1
∞∑

n=1

[
(z −B)−1K2

]n
dz.

Thus

∥K3∥ ≤ 2πm1(1 + δ2)m2

2π

∞∑
n=1

∥(z −B)−1∥n∥K2∥n

< m1m2(1 + δ2)
∞∑

n=1

1

(m+ 1)n
=

m1m2(1 + δ2)

m
<

ϵ

2∥Y ∥∥Y −1∥
.

SinceK2 is compact, K3 is compact. Thus T
(n)
ϕ +K3∼U+KT2, i.e., there is a Z∈(U+K)(H)

such that T
(n)
ϕ +K2=ZT2Z

−1. Thus

T1+K1+Y K3Y
−1=Y (T

(n)
ϕ +K3)Y

−1 = Y ZT2Z
−1,

and K = K1 + Y K3Y
−1 satisfies the requirements of the theorem.

Proof of Theorem 1.2. If A satisfies (i), (ii) and (iii), then for each ϵ > 0 by [9,
Theorem 3.48], there exists a compact operator K, ∥K∥ < ϵ, such that A +K ∈ A(Ω, n).
By Theorem 1.1, A + K ∈ (U + K)(T )−. Thus A ∈ (U + K)(T )−. If A ∈ (U + K)(T )−,
then XnTX

−1
n → A (n → ∞) for a sequence of invertible operators {Xn} ⊂ (U + K)(H).

Since π(Xn)π(T )π(X
−1
n ) → π(A) (n → ∞) and since each π(Xn) is a unitary element,
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σe(T ) = σe(A) = ∂Ω and nul (λ−T ) = nul (λ−A) for all λ ∈ [σ(T )∪ σ(A)]\σe(T ). Thus A
is essentially normal, Ω ⊂ σ(A) and for λ ∈ Ω, ind (λ− A) = −n. Conversely, assume that
λ ∈ σ(A) ∩ ρ(A) but λ /∈ Ω. Since λ ∈ ρ(XnTX

−1
n ), ind (λ − A) = 0 = nul (λ − A). Thus

λ ∈ ρ(A), a contradiction. Thus σ(A) = Ω.
Proof of Theorem 1.3. By Theorem 1.1, it suffices to prove that there exists a compact

operator K, ∥K∥ < ϵ, such that T
(n)
ϕ + K ∈ (SI), or (T ∗

ϕ )
(n) + K ∈ (SI), where ϕ is an

analytic homeomorphism from D onto Ω. Since T ∗
ϕ ∈ B1(Ω), by [12, Lemma 2.3], we can

find compact operators K1,K2, · · · ,Kn such that ∥Ki∥ < ϵ/2, Ai := T ∗
ϕ + Ki ∈ B1(Ω)

(i = 1, 2, · · · , n) and ker τAiAj = {0} (i ̸= j). Since σr(A1) ∩ σl(Ai) ̸= ∅ (i = 2, 3, · · · , n),
by [9, Theorem 3.53] there are compact operators C2, C3, · · · , Cn such that Ci /∈ ran τA1Ai

and ∥Ci∥ < ϵ/2i (i = 2, 3, · · · , n).
Set

K =


K1 C2 . . . Cn

K2

. . .
0 Kn

 .
Then K is compact and ∥K∥ < ϵ. It is easily seen that (T ∗

ϕ )
(n) +K ∈ (SI).
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