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Γ-CONVERGENCE OF INTEGRAL FUNCTIONALS
DEPENDING ON VECTOR-VALUED

FUNCTIONS OVER PARABOLIC DOMAINS**
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Abstract

This paper studies Γ-convergence for a sequence of parabolic functionals,

F ε(u) =

∫ T

0

∫
Ω
f(x/ε, t,∇u)dxdt as ε → 0,

where the integrand f is nonconvex, and periodic on the first variable. The author obtains the
representation formula of the Γ-limit. The results in this paper support a conclusion which
relates Γ-convergence of parabolic functionals to the associated gradient flows and confirms one
of De Giorgi’s conjectures partially.
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§1. Introduction

We begin with the characterization of Γ-convergence in [1, 2].

Definition 1.1. Let (X, τ) be a first countable topological space and {Fh}∞h=1 be a se-

quence of functionals from X to R̄ = R ∪ {−∞,∞}, u ∈ X,λ ∈ R̄. We call

λ = Γ(τ) lim
h→∞

Fh(u)

if and only if for every sequence {uh} converging to u in (X, τ)

λ ≤ lim inf
h→∞

Fh(uh), (1.1)

and there exists a sequence {uh} converging to u in (X, τ) such that

λ ≥ lim sup
h→∞

Fh(uh). (1.2)
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We call λ = Γ(τ) lim
ε→a

F ε(u) if and only if for every εh → a (h→ ∞)

λ = Γ(τ) lim
h→∞

F εh(u).

Throughout this paper, we assume that Ω is a bounded open set in Rn. Let p > 1, T > 0,

and m be a positive integer. Denote

ΩT = Ω× (0, T ), Vp(ΩT ,m) = LP ([0, T ],W 1,p(Ω, Rm)),

V 0
p (ΩT ,m) = Lp([0, T ],W 1,p

0 (Ω, Rm)),

Du(x, t) = ∇u(x, t) =
(∂ui(x, t)

∂xj

)
(1 ≤ i ≤ m, 1 ≤ j ≤ n)

for a vector valued function u.

Consider the fuctionals

F ε
1 (v,Ω) =

∫
Ω

f1

(x
ε
,Dv

)
dx, v ∈W 1,p(Ω, Rm) (ε→ 0+) (1.3)

and the corresponding parabolic functionals in the following form:

F ε(u,ΩT ) =

∫
ΩT

f
(x
ε
, t, ,Du

)
dxdt, u ∈ Vp(ΩT ,m) (ε→ 0+), (1.4)

where f :Rn+1 ×Rmn → R is a Caratheodory function satsfying

C1|λ|p ≤ f(x, t, λ) ≤ C2(1 + |λ|p) (1.5)

for some positive constants C2 > C1.

In 1979, E. De Giorgi[3] conjectured that when a sequence of functionals, for instance,

the one in (1.4) or in a more general form, converges in the sence of Γ-convergence to a

limiting functional, the corresponding gradient flows will converge as well (maybe after an

appropriate change of timescale). Also see [4, p.216] and [5, p.507].

In [6], the author proved the De Giorgi’s conjecture for a rather wide kind of functionals.

Thus, a natural question is under what conditions the functional sequence like (1.4) can be

Γ-convergence.

The first result related to this question appeared in [7]. Because the integrands in [7] have

the same scale for the variables x and t, the methods there can not be applied to functionals

(1.4) whose integrands are anisotropic in x and t.

In this paper, we will cleverly combine the arguements in [8, 9, 10], all of which study

the Γ-convergence of elliptic functionals like (1.3) with the weak-topology of W 1,p(Ω, Rm),

to prove that the Γ-convergence holds for the functional (1.4) under Assumption (1.5) and a

periodic hypothesis (see (1.8) below). For this purpose, we construct functionals as follows.

Let Y = (0, 1)
n
= {0 < yi < 1, i = 1, 2, · · ·n} , kY = (0, k)

n
, and kT = kY × (0, T ). For

λ ∈ Rmn and a.e. t ∈ R, define

f̄(t, λ) = inf
k∈N

inf
{
|kY |−1

∫
kY

f(y, t, λ+Dϕ(y, t))dy:ϕ ∈ V 0
p (kT ,m)

}
, (1.6)

here and below |E| def.= Ln(E) and Lk is used to denote the k-dimensional Lebesque measure.

Obviously (1.5) implies that f̄(t,Du) is nonnegative and measurable, so we can define

the homogenized functional

F (u,ΩT ) =

∫
ΩT

f̄(t,Du)dxdt, u ∈ Vp(ΩT ,m). (1.7)
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The main result of this paper is the following theorem.

Theorem 1.1. If hypotheses (1.4) and (1.5) are satisfied, and suppose

f(y, t, λ) is Ȳ -periodic on the first variable y, (1.8)

then for every T > 0 and every bounded open set Ω ⊂ Rn with Ln(∂Ω) = 0,

Γ(τ) lim
ε→0

F ε(u,ΩT ) = F (u,ΩT ),∀u ∈ Vp(ΩT ,m),

where τ is taken as the sw-topology of Vp(ΩT ,m). (See the Definition 1.2 in [6] for the

sw-topology.)

The proof of this theorem will be given in Section 4.

§2. Preliminary Lemmas

We collect some properties of the Γ-limits in [1, 2] which are well-known but important

for the coming arguements.

If the lim sup in (1.2) is replaced by lim inf , Definition 1.1 is turned to the definition

of low Γ-limit. In this case, we denote it by λ = Γ−(τ) limh→∞ Fh(u). Similarly, we have

upper Γ-limit and denote it by λ = Γ+(τ) lim
h→∞

Fh(u).

Obviously, Γ(τ) lim
h→∞

Fh(u) exists if and only if Γ+(τ) lim
h→∞

Fh(u) = Γ−(τ) lim
h→∞

Fh(u).

Lemma 2.1. F−(u) = Γ−(τ) lim
h→∞

Fh(u) exists for every u ∈ X, and F−(u) is lower

semicontinuous in (X, τ). If F (u) = Γ(τ) lim
h→∞

Fh(u) exists for every u ∈ X , then F(u) is

also lower semicontinuous in (X, τ) .

Lemma 2.2. For each sequence {Fh} of functionals in (X, τ), there exists a subsequence

Fhk and F∞ from X to R̄, such that

F∞(u) = Γ(τ) lim
k→∞

Fhk(u), ∀u ∈ X.

Lemma 2.3. Suppose that λ = Γ(τ) lim
ε→0

F ε(u) and εh → 0 (h→ ∞). Then

Γ−(τ) lim
h→∞

F εh(u) = Γ(τ) lim
h→∞

F εh(u) = λ.

Lemma 2.4. Suppose that f :R×R→ R̄. Then there exists a function δ: ε→ δ(ε) such

that ε→ 0 implies δ(ε) → 0 and

lim sup
ε→0

f(δ(ε), ε) ≤ lim sup
δ→0

lim sup
ε→0

f(δ, ε). (2.1)

Moreover, the opposite inequality for low limits and the equality for limits hold true respec-

tively.

From now on, we restrict ourselves to the sequence of functionals (1.4), or more general

functionals

F ε(u,Ω× (a, b)) =

∫ b

a

∫
Ω

f
(x
ε
, t,Du

)
dxdt (ε→ 0+). (2.2)

We will fix T > 0 and allow Ω and (a, b) to be arbitrary. Let S = Rn × (0, T ), βT be the

σ -ring generated by the set {Ω× (a, b): 0 ≤ a < b ≤ T,Ω ⊂ Rn are bounded open sets}.
Then (S, βT , L

n+1) is a measure space. Let

Vp,loc = Lp([0, T ],W 1,p
loc (R

n, Rm)). (2.3)
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Lemma 2.5. Assume that (1.4), (1.5) and (1.8) are satisfied. Then for every sequence

ε→ 0+, there exist a subsequence εh → 0+ (h→ 0) and a family of σ-finite and σ-additive

measures H(u,Ω × (a, b)) on βT , such that for every u ∈ Vp,loc, every finite interval (a, b)

and every bounded open set Ω ⊂ Rn with Ln(∂Ω) = 0,

Γ(τ) lim
h→∞

F εh(u,Ω× (a, b)) = H(u,Ω× (a, b)), (2.4)

0 ≤ H(u,Ω× (a, b)) ≤ C

∫ b

a

∫
Ω

(1 + |Du|p)dxdt, (2.5)

where τ is the sw-topology of Vp(Ω× (a, b)).

Proof. We follow the proof of in [9, Theorem 3.1]. D is used to denote the algebra

generated by all open cubes in Rn+1 with rational vertices and E the class of all bounded

open sets in Rn+1. Applying Lemma 2.2 and a diagonalization argument, we can find a

sequence εh (h→ ∞) such that Γ(τ) lim
h→∞

F εh(u,Q) exists for all Q ∈ D, i.e.,

H−(u,Q) = H+(u,Q), ∀Q ∈ D,

where H−(u,Q) = Γ−(τ) lim
h→∞

F εh(u,Q) and H+(u,Q) = Γ+(τ) lim
h→∞

F εh(u,Q).

In the same way as in [9, pp.738–739], by Lemma B in [6], we can prove that H− is

(finitely) super-additive and H+ is sub-additive over D. For e ∈ E, define

H(u, e) = sup
Q⊂⊂e

H−(u,Q) = sup
Q⊂⊂e

H+(u,Q), Q ∈ D.

Then H(u, e) is an increasing, inner regular and finitely additive set function. Therefore, the

routine methods implies that (2.4) holds and H(u,Ω× (a, b)) can be extended to a σ-finite

and σ-additive measure on βT (see [11, Proposition 5.5 and Theorem 5.6 ]. From (2.4) and

(1.5), the estimate (2.5) follows immediately.

§3. Γ-Lmits of Layered Affine Functions

Throughout this section, suppose that (1.4), (1.5) and (1.8) are satisfied. τ is used to de-

note the sw-topology of Vp(ΩT ,m). For simiplicity, Vp(ΩT ) denotes the space Vp(ΩT ,m). We

intend to determine the Γ-limits of F ε(u,ΩT ) for u = λ(t)·x+a(t) with λ ∈ Lp([0, T ],M(m×
n)) and a ∈ Lp([0, T ], Rm), where we define the norm on M(m × n), the space of all real

m× n matrices, as the same as on Rmn.

Lemma 3.1. For each uλ,a = λ(t) · x + a(t) with λ ∈ Lp([0, T ],M(m,n)) and a ∈
Lp([0, T ], Rm), there exists a sequence of functions {uε} ⊂ Vp(ΩT ) satifying

{uε − uλ,a} ⊂ V 0
p (ΩT ) and uε

τ→ uλ,a in Vp(ΩT ) as ε→ 0+

such that

lim
ε→0+

F ε(uε,ΩT ) =

∫
ΩT

f̄(t, λ)dxdt = F (uλ,a,ΩT ),

where f̄(t, λ) is given by (1.6) and F by (1.7).

Proof. Fix δ ∈ (0, 1), one can choose k ∈ N and ϕδ ∈ V 0
p (kT ,m) (see (1.6)) such that

f̄(t, λ(t)) ≤ |kY |−1

∫
kY

f(y, t, λ+Dϕδ)dy ≤ f̄(t, λ(t)) + δ. (3.1)
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We use E∗
η to denote the extension of ηȲ on the ηY -period, and let

Ω∗
η = {e ∈ E∗

η , e ⊂ Ω}, Eη =
∪

e∈E∗
η

e, Ωη =
∪

e∈Ω∗
η

e.

Then Eη = Rn. As Ω is bounded, Ω∗
η is a finite set for each η > 0 , and

lim
η→0+

Ln(Ω\Ωη) = 0. (3.2)

For every t ∈ [0, T ] , extend ϕδ(y, t) so that it is a kY -periodic function on the variable y.

Then define

vε,δ(x, t) =

{
uλ,a(x, t) + εϕδ(xε , t), Ωεk,
uλ,a(x, t), Ω\Ωεk. (3.3)

It is easy to know that vε,δ ∈ Vp(ΩT ), vε,δ − uλ,a ∈ V 0
p (ΩT ). For each D ∈ Ωεk, by the

periodicity of g(y, t) = f(y, t, λ(t) +Dϕδ(y, t)), we have∫
D×(0,T )

f
(x
ε
, t,Dvε,δ

)
dxdt =

∫ T

0

[
εn

∫
D/ε

f(y, t, λ(t) +Dϕδ(y, t)dy
]
dt

= Ln(D)

∫ T

0

dt|kY |−1

∫
kY

f(y, t, λ(t) +Dϕδ)dy.
(3.4)

Summing up the both sides for all D ∈ Ωεk and applying (3.1), we obtain

Ln(Ωεk)

∫ T

0

f̄(t, λ(t))dt ≤
∫ T

0

dt

∫
Ωεk

f
(x
ε
, t,Dvε,δ

)
dx

≤ Ln(Ωεk)

∫ T

0

(f̄(t, λ(t)) + δ)dt.

Thus, it follows from (1.5) and (3.3) that

Ln(Ωεk)

∫ T

0

f̄(t, λ(t))dt ≤
∫
ΩT

f
(x
ε
, t,Dvε,δ

)
dxdt

≤ Ln(Ωεk)

∫ T

0

(f̄(t, λ(t)) + δ)dt+

∫ T

0

dt

∫
Ω\Ωεk

f
(x
ε
, t, λ(t)

)
dx

≤ Ln(Ωεk)

∫ T

0

(f̄(t, λ(t)) + δ)dt+ CLn(Ω\Ωεk)

∫ T

0

(1 + |λ|p)dt. (3.5)

By this estimate and (3.2), we see that

lim
δ→0+

lim
ε→0+

∫
ΩT

f
(x
ε
, t,Dvε,δ

)
dxdt =

∫
ΩT

f̄(t, λ(t))dtdx. (3.6)

Moreover, we have

∥vε,δ − uλ,a∥pLp(ΩT ) = εp
∑

D∈Ωεk

|D|
∫ T

0

dt|kY |−1

∫
kY

|ϕδ|pdy. (3.7)

Applying (3.6), (3.7), and Lemma 2.4, one can find a sequence δ(ε) → 0+ as ε → 0+ such

that {uε = vε,δ(ε): ε > 0} satisfy that

{uε − uλ,a} ⊂ V 0
p (ΩT ), lim

ε→0+
∥uε − uλ,a∥pLp(ΩT ) = 0,

lim
ε→0+

F ε(uε,ΩT ) = F (uλ,a,ΩT ).
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On the other hand, the coercive condition in (1.5) and (3.5) imply that {Duε} is bounded

in Lp(ΩT , R
mn). Thus, by Lemma B in [6], we obtain uε

τ→ uλ,a. This proves the desired

result.

Lemma 3.2. Let uλ,a(x, t) = λ(t) ·x+ a(t) be the same as in Lemma 3.1. Then for each

sequence uε
τ→ uλ,a in Vp(ΩT ) (ε→ 0+),

lim inf
ε→0+

F ε(uε,ΩT ) ≥ F (uλ,a,ΩT ) =

∫
ΩT

f̄(t, λ(t))dtdx.

Proof. (1) Firstly, assume uε
τ→ uλ,a and uε − uλ,a ∈ V 0

p (ΩT ). As Ω is bounded, we

find an open cube D whose sides are parallel to axes and whose center concides with the

origin, such that Ω̄ ⊂ D . The side length of D is denoted by 2d, and let

kε =
[2d
ε

]
+ 3, aε =

[
− d

ε

]
,

xε = (aε, · · · , aε) ∈ Rn, Dε = ε(xε + kεY ),

where [κ] denote the maximum integer not greater than κ. It is not difficult to get

D ⊂ Dε, lim
ε→0+

Ln(Dε) = Ln(D). (3.8)

Let

Q = D\Ω̄, QT = Q× (0, T ). (3.9)

Applying Lemma 3.1 to the open set Q, we can choose a sequence

vε → uλ,a sw in Vp(QT ), vε − uλ,a ∈ V 0
p (QT )

such that

lim
ε→0+

F ε(vε, QT ) =

∫
Q

f̄(t, λ)dxdt. (3.10)

For fixed t ∈ [0, T ], define

ϕε(x, t) =

uε − uλ,a, x ∈ Ω̄,
vε − uλ,a, x ∈ D\Ω̄ = Q,
0, x ∈ Dε\D.

(3.11)

By the periodicity of f(y, t, λ), using the variable transformation, we obtain∫
Dε

f
(x
ε
, t, λ+Dϕε(x, t)

)
dx = εn

∫
xε+kεY

f(y, t, λ+Dxϕ
ε(εy, t))dy

= (kεε)
n|kεY |−1

∫
kεY

f(y, t, λ+Dψε(y, t))dy,
(3.12)

where ψε(y, t) = ε−1ϕε
(
ε(y + xε), t

)
. Obviously, (3.11) gives us ψε ∈ V 0

p

(
(kεY ) × (0, T )

)
.

Thus, we deduce from (3.12) and (1.6) that for each t ∈ [0, T ],

|Dε|−1

∫
Dε

f
(x
ε
, t, λ+Dϕε(x)

)
dx = |kεY |−1

∫
KεY

f(y, t, λ+Dψε(y, t))dy ≥ f̄(t, λ).

Therefore ∫ T

0

∫
Dε

f
(x
ε
, t, λ+Dϕε

)
dxdt ≥ Ln(Dε)

∫ T

0

f̄(t, λ)dt.
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On the other hand , by (1.5) and (3.8), we have

lim inf
ε→0+

∫ T

0

dt

∫
Dε

f
(x
ε
, t, λ+Dϕε

)
dxdt = lim inf

ε→0+

∫ T

0

dt

∫
D

f
(x
ε
, t, λ+Dϕε

)
dx.

This yields

lim inf
ε→0+

F ε
(
uλ,a + ϕε, D × (0, T )

)
≥

∫ T

0

∫
D

f̄(t, λ)dxdt.

Combing this estimate, (3.9), (3.10) with (3.11), we have

lim inf
ε→0+

F ε(uε,ΩT ) = lim inf
ε→0+

[F ε(uλ,a + ϕε, D × (0, T ))− F ε(vε, Q× (0, T ))]

≥
∫ T

0

∫
D

f̄(t, λ)dxdt−
∫ T

0

∫
Q

f̄(t, λ)dxdt

=

∫
ΩT

f̄(t, λ)dxdt.

(2) In order to remove the restriction uε−uλ,a ∈ V 0
p (ΩT ), it is sufficient to apply the De

Giorgi’s arguements and the result of the case (1). See [11] or [8, p.197] for the details.

Definition 3.1. Let {Ωi: i = 1, 2, · · · , h} be a finite partition of Ω into open sets (except

for a set of measure zero), λi ∈ Lp([0, T ],M(m,n)), ai ∈ Lp([0, T ], Rm). We call the

function

W (x, t) =


λi(t) · x+ ai(t), x ∈ Ωi,

0, x ∈ Ω\
h∪

i=1

Ωi,

an Lp -layered affine function on ΩT .

Summing up Lemmas 3.1 and 3.2 (observing that Ω may be arbitrary there ), Lemmas

2.5 and 2.3, we obtain the following theorem.

Theorem 3.1. Suppose that Ω is a bounded open set in Rn with Ln(∂Ω) = 0, H(u,ΩT )

is given by Lemma 2.5. Then

Γ(τ) lim
ε→0+

F ε(w,ΩT ) =

∫
ΩT

f̄(t,Dw)dxdt = H(w,ΩT )

for any w, an Lp-layered affine function on ΩT .

§4. A Proof of Theorem 1.2

In this section, we suppose that all the hypotheses of Theorem 1.2 are satisfied. Applying

the same arguement as in [9, Section 5], we can prove that for almost t ∈ [0, T ], f̄(t, λ) is

convex if n = 2; and convex with respect to each column vector if n > 2. This implies that

Lemma 4.1. For a.e. t ∈ [0, T ], f̄(t, λ) is continuous in M(m,n).

Lemma 4.2. Suppose v ∈ Vp(ΩT ) (1 < p < ∞). Then there exists a sequence of

Lp-layered affine functions

vk(x, t) =


λki (t) · x+ aki (t), x ∈ Ωi,

0, x ∈ Ω\
hk∪
i=1

Ωi,

such that ∥v − vk∥Vp(ΩT ) −→ 0 as k → ∞.
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Proof. (1) Suppose 1 < p ≤ 2. Fix v ∈ Vp(ΩT ). For any ε > 0 we can choose u ∈ V2(ΩT )

such that

∥u− v∥Vp(ΩT ) < ε. (4.1)

Because H
def.
= W 1,2(Ω) is a Hilbert space, one can assume that {ψl}∞l=1 is its complete

orthonormal basis. Let Cl(t) = ⟨u(t, ·), ψl⟩H . Then Cl(t) ∈ L2[0, T ], and for a.e. t ∈ [0, T ],

Ik(t) =
∥∥∥u−

k∑
l=1

Clψl(x)
∥∥∥
H

−→ 0 (k → ∞).

Thus the dominated convergence theorem implies that for some integer k,∥∥∥u−
k∑

l=1

Clψl

∥∥∥
Vp(ΩT )

≤ ε. (4.2)

It is well known that there exist piecewise affine functions ωl(x) in Ω such that

max
1≤l≤k

∥ψl − ωl∥W 1,p(Ω) ≤ ε
(
1 +

k∑
l=1

∥Cl∥−1
Lp(Ω)

)
.

Let vε(x, t) =
k∑

l=1

Cl(t)ωl(x). Then

∥∥∥vε − k∑
l=1

Clψl

∥∥∥
Vp(ΩT )

≤ C(p)ε. (4.3)

Combing (4.1), (4.2) with (4.3), we get ∥v − vε∥Vp(ΩT ) ≤ C(m,n, p)ε. Observing that each

vε can be written as a layered function on ΩT , we have completed the proof.

(2) Suppose 2 < p < ∞. Applying Sobolev embedding theorem we can find an integer

k, k−1
n ≥ 1

2 − 1
p , such that H1

def.
= W k,2(Ω) ↪→ W 1,p(Ω). Given v ∈ Vp(ΩT ), for ε > 0, one

can find u ∈ Lp([0, T ],W k,2(Ω)) such that

∥u− v∥Vp(ΩT ) < ε. (4.4)

Let {ψl}∞l=1 be the complete orthonormal basis of the Hilbert space H1. Then

Cl(t)
def.
= ⟨u(·, t), ψl⟩H1 ∈ Lp[0, T ].

The remaining part is entirely the same as the case (1).

Now we are in a position to prove Theorem 1.1. We will use the idea of [9, pp.750–751].

For u ∈ Vp(ΩT ), we can extend u so that u ∈ Vp,loc (recall (2.3) ). From Lemma 4.2, choose

a sequence of Lp-layered functions ωk(x, t), such that

∥u− ωk∥Vp(ΩT ) −→ 0 (k → ∞). (4.5)

By taking a subsequence, one can assume that Dωk → Du almost everywhere on ΩT and

f̄(t,Dωk) −→ f̄(t,Du) a.e in ΩT

by virtue of the continuity of f̄(t, ·) (see Lemma 4.1 ).

We deduce, from the absolute continuity of
∫
|Du|pdxdt, Egoroff theorem, Theorem 3.1

and inequality (2.5), that

lim inf
k→∞

∫
ΩT

f̄(t,Dωk)dxdt ≤
∫
ΩT

f̄(t,Du)dxdt.
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Therfore, by the semi-continuity of H(u,ΩT ) (see Lemma 2.1 ),

H(u,ΩT ) ≤ lim inf
k→∞

H(ωk,ΩT ) = lim inf
k→∞

∫
ΩT

f̄(t,Dωk)dxdt ≤
∫
ΩT

f̄(t,Du)dxdt. (4.6)

On the other hand, according to Lemma 2.5 and Lebesgue-Nikodym theorem (see [12, §3 of

Chapter 3]), we have

H(u,ΩT ) =

∫
ΩT

h(x, t)dxdt (4.7)

for some h ∈ L1
loc(R

n × (0, T )) and all ΩT = Ω × (0, T ). By approximation argument, one

can easily prove that for a.e (x, t) ∈ ΩT , there exists rk → 0+ such that

u(x+ rk(y − x), t)− u(x, t)

rk

τ→ Du(x, t) · (y − x) in Vp(B(x, 1)× (0, T )). (4.8)

Since ∣∣∣ ∫ T

0

h(x, t)dt−
∫ T

0

|B(x, rk)|−1

∫
B(x,rk)

h(y, t)dydt
∣∣∣

≤ |B(x, rk)|−1

∫
B(x,rk)

∣∣∣ ∫ T

0

[h(x, t)− h(y, t)]dt
∣∣∣dy,∫ T

0

h(y, t)dt ∈ L1
loc(R

n),

we have∫ T

0

h(x, t)dt = lim
k→∞

∫ T

0

|B(x, rk)|−1

∫
B(x,rk)

h(y, t)dydt for a.e. x ∈ Ω. (4.9)

Fix k and x, set r = rk, Br = B(x, r), Br,T = Br × (0, T ). By (4.7) and Lemma 2.5, we

can find a sequence uh
τ→ u in Vp(Br,T )(h→ 0) such that∫ T

0

|Br|−1

∫
Br

h(y, t)dydt = |Br|−1H(u,Br,T )

= lim
h→∞

∫ T

0

|Br|−1

∫
Br

f
(y + εhkh

εh
, t,Duh

)
dydt,

(
kh

def.
=

[x(r − 1)

εh

])
≥ lim inf

h→∞

∫ T

0

|B r
2
|−1

∫
B r

2

f
(y + x(r − 1)

εh
, t,Duh(y + ah, t)

)
dydt(

note that ah
def.
= x(r − 1)− εhkh → 0+

)
= lim inf

h→∞

∫ T

0

|B 1
2
|−1

∫
B 1

2

f
(ry
εh
, t,D

(
uh(x+ r(y − x) + ah, t)− u(x, t)

)
r−1

)
dydt.

(4.10)

Let ur,x(y, t) = r−1[u(x+ r(y − x), t)− u(x, t)]. Obviously

r−1[uh(x+ r(y − x) + ah, t)− u(x, t)]
τ→ r−1ur,x in Vp(B 1

2 ,T
) as h→ ∞.

Let

δh = r−1εh, a = |B 1
2
|−1, F−(u,Q) = Γ−(τ) lim

h→∞
F δh(u,Q).
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By (4.10), Lemmas 2.1 and 2.3, (4.8) and Theorem 3.1 in that order, we deduce that

lim
k→∞

∫ T

0

|B(x, rk)|−1

∫
B(x,rk)

h(y, t)dydt

≥ a · lim inf
k→∞

F−(urk,x, B 1
2 ,T

)

≥ a · F−(Du(x, t)(y − x), B 1
2 ,T

)

= a

∫ T

0

∫
B(x, 12 )

f̄(t,Du(x, t)dtdy

=

∫ T

0

f̄(t,Du(x, t))dt.

Combing this estimate with (4.9), we obtain∫
ΩT

h(x, t)dxdt ≥
∫
ΩT

f̄(x,Du)dxdt,

which together with (4.7) implies the opposite inequality of (4.6). Hence

H(u,ΩT ) =

∫
ΩT

f̄(t,Du)dxdt, ∀u ∈ Vp(ΩT ).

Observing that

F (u,ΩT ) =

∫
ΩT

f̄(t,Du)dxdt

is independent of {εh}, we have completed the proof of Theorem 1.1 by Lemma 2.5.
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