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Abstract

This paper introduces a generic eigenvalue flow of a parameter family of operators, where the
corresponding eigenfunction is continuous in parameters. Then the author applies the result to

the study of polynomial growth L-harmonic functions. Under the assumption that the operator
has some weakly conic structures at infinity which is not necessarily unique, a Harnack type
uniform growth estimate is obtained.

Keywords Harmonic functions, Polynomial growth, Eigenvalue, Laplacian operator

1991 MR Subject Classification 35J

Chinese Library Classification O175.25, O175.9 Document Code A

Article ID 0252-9599(2000)02-0259-10

§1. Introduction

Let us consider an elliptic operator L defined on Rn by

L =
∂

∂xi

[
aij(x)

∂

∂xj

]
(1.1)

with |aij |L∞(Rn) ≤ C and λI ≤ (aij(x)) ≤ ΛI for some positive constants λ,Λ. The solution

u of Lu = 0 is called the L-harmonic function.

In a recent work[6], Lin studied the L-harmonic functions and gave a Liouville type

theorem, provided the operator is asymptotically conic. We are concerned here with the

polynomial growth L-harmonic functions, that is, the L-harmonic function satisfying |u| ≤
C(1 + |x|)d. This problem, in general, has not been well understood, except the cases that

for n = 2, L is the Laplace-Beltrami operator and n ≥ 3 for some conic operators (see [6])

It is not known in general if there is a polynomial growth, nonconstant L-harmonic function

on Rn. On the other hand, it is not hard to show there are many nonconstant L-harmonic

functions on Rn whenever aij(x) are local Lipschitz continuous (see [5]). The nonconstant

L-harmonic function on Rn grows at least like a power of |x|.
The purpose of the article is to generalize the result of [6] to a larger class of elliptic

operators by applying the generic eigenvalue flow. The operators we consider here are close
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to, in some weak sense at the infinity, a family of elliptic operator on Rn. We first study

the eigenvalues of the family of limiting operators.

It is well known that eigenvalues are continuously dependent on parameters in some nice

space. We are interested in the continuity of eigenfunctions for one-parameter family of

elliptic operators. Whenever the eigenfunction is continuously dependent on the parameters

for the limiting operator, we can utilize it to construct almost L-harmonic functions for the

original operator. And we have good estimate for those almost L-harmonic functions. Then

we can obtain an estimate of the L-harmonic functions. In [18], K. Uhlenbeck proved that in

the generic sense eigenvalues have one-dimensional eigenspace. Clearly, if all eigenvalues are

of simple multiplicity, then the eigenfunctions are continuously dependent on the parameter.

But in some cases, eigenspaces are not always one-dimensional. As we show in an example in

[19], eigenvalues do often intersect when the parameter varies. And the study of intersection

of those eigenvalues is useful in applications, especially for the multiple parameter case.

In Section 2, we first consider the G-convergent operator and then study the eigenfunc-

tions on the cross section of the limiting operators. We shall apply the transversality theory

to construct eigenfunction flows, where the eigenfunctions are continuous in the parameter.

Then we apply it to the study of polynomial growth L-harmonic functions in Section 3.

Here we make use of the so-called three annuli lemma, inspired by an idea of J. Cheeger.

The three annuli lemma was used before by L. Simon[13], Cheeger and Tian[2], etc. Finally,

we obtain an a priori estimate for the growth of L-harmonic functions.

§2. Weakly Asymptotically Conic
Operators and Generic Eigenfunction Flow

For any bounded Lipschitz domain Ω in Rn, the operator L given in (1.1) defines a map

from H1
0 (Ω) to H−1

0 (Ω) by Lu. We know that for any f ∈ H−1
0 (Ω), there exists a unique

u ∈ H1
0 (Ω) satisfying Lu = f . Let C(λ,Λ) be the space of all linear operators given by (1.1)

with λI ≤ (aij(x) ≤ ΛI. We say that a sequence of operators Lk in C(λ,Λ) is G-convergent

to L, as k → ∞, if for any f, g ∈ H−1(Ω),

lim
k→∞

⟨g, L−1
k f⟩ = ⟨g, L−1f⟩.

There are many properties of G-convergence (see [6]). For convenience, we list a few basic

properties.

(i) If Lk is G-convergent to L, Lkuk = fk and fk → f in H−1(Ω), as k → ∞, then uk → u

weakly in H1
0 (Ω) as k → ∞ and Lu = f .

(ii) If Lk is G-convergent to L, Lkuk = f , uk ∈ H1
0 (Ω), then there exists u ∈ H1

0 (Ω) such

that uk → u weakly in H1
0 (Ω) and

⟨Lkuk, uk⟩ → ⟨Lu, u⟩ as k → ∞.

(iii) Let Lkuk = 0 in BR and Lk is G-convergent to L as operatorH1
0 (ΩBR

) → H−1(ΩBR
).

Suppose |uk|L2(BR) ≤ 1 and uk → u weakly in L2. Then Lu = 0 in BR and uk → u weakly

in H1
loc(BR).

It is easy to see that aijk (x) → aij(x) a.e in Ω implies that Lk is G-convergent to L.

We say that a sequence of operators Lk in C(λ,Λ) defined on Rn is G-convergent to L,

if Lk is G-convergent to L for any bounded Lipschitz domain Ω in Rn.
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Now we consider a family of operators in Rn which will be our limit operator. Also the

parameter t can be allowed to vary in a compact set of some manifolds, and we only consider

t ∈ S1 for simplicity.

Let ∆g(t) be the Laplace-Beltrami operator on Rn with the metric

g(t) = dr2 + r2gij(t, θ)dθ
idθj ,

where (r, θ) is the polar-coordinate on Rn, θ ∈ Sn−1 and gij(t, θ) is Lipschitz continuous

and periodic in t with period of 2π.

We say that an operator L satisfies Assumption (S1), if for any sequence {rk}, rk → ∞,

there exist a subsequence, still denoted by rk, and a t0 ∈ [0, 2π) such that

Lrk =
∂

∂xi

(
aij(rkx)

∂

∂xj

)
is G-convergent to ∆g(t0,θ) as k → ∞.

Remark 2.1.[6] L satisfies Assumption (S1) implies that L is weakly asymptotically

conic.

Example 2.1. Consider Rn with the metric

g = dr2 + r2(2 + sin(log(log(e+ r)))dθ2

in the polar coordinate. The corresponding Laplace-Beltrami operator on Rn satisfies the

assumption (S1), where the limit operator is given by the metric g(t) = dr2+r2(2+sin t)dθ2.

In fact, for any sequence {rk}, there exists a subsequence, still denoted by {rk}, such that the

corresponding Laplace-Beltrami operator is G-convergent to ∆g(t0) with some t0 ∈ [0, 2π).

Now we consider the eigenfunctions defined on (Sn−1, g(t)) where the metric tensor g(t)

depends on the parameter t twice continuously differentiable and periodic with period of 2π.

Then we know that eigenvalues are continuous differentiable in t and

0 = λ0(t) < λ1(t) ≤ λ2(t) ≤ · · · .

Let G = {g(t)|g(t) is a metric of Sn−1, g(t) ∈ C2([0, 2π], T (M)
⊗

T (M))}.
Let Sk = {u ∈ H2

k(S
n−1),

∫
Sn−1 u

2 = 1}. And let

M2 = {g|g ∈ C2(T (Sn−1)
⊗

T (Sn−1)) is the metric of Sn−1}.

We consider the map ϕ : Sk ×R×M2 7→ Hk−2(S
n−1) given by

ϕ(u, λ, g) = ∆gu+ λu = Lgu. (2.1)

By the study of the regular value of ϕ, K. Uhlenbeck obtained the following result in [18].

Lemma 2.1. For a metric g ∈ M2, the set {g ∈ M2|∆g has one-dimensional eigenfunc-

tion} is residual in M2.

Therefore for g(t) ∈ G we may assume that ∆g(0) has one-dimensional eigenfunction.

Consider the eigenvalues of ∆g(t) for t varying. As we proved in an example in [19], they

may have intersections.

For a fixed C0, we consider those eigenvalues of ∆g(t) with λk(t) < C0. Let t0 be the first

point where

· · · < λk−1(t0) < λk(t0) = · · · = λk+l(t0) < λk+l+1(t0) < C0. (2.2)

Moreover, we may assume that those eigenvalues which are less than C0 are one-dimensional

in a small left neighborhood of t0 and t ̸= t0. Since we assume ∆g(0) has one-dimensional
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eigenfunctions, the normalized ϕk(t) with λk(t) < C0 is in C(Sn−1 × [0, ϵ)) for some small

ϵ > 0. And ϕk(t) is a continuous flow, if λk(t) does not intersect other eigenvalues. We have

proved in [19] that it can be continuously defined at the intersection point, up to a small

perturbation. In fact, we have the following results in [19].

Lemma 2.2. Let t0 be as above. Then for a residual set of g(t) ∈ G,

lim
t→t0

(ϕk(t), ϕk+1(t), · · · , ϕk+l(t)) (2.3)

exists by a proper choice of the sign of those eigenfunctions.

Moreover the eigenfunction flow has a very important property, which is proved in [19].

Lemma 2.3. If g(t) is a periodic function of t with period of 2π, then for a residual set

of g(t) ∈ G the eigenfunction flow is a periodic function with period of 2π. Moreover, the

corresponding eigenvalue λk(t) satisfies

λk(t) ≤ C1λk(0), (2.4)

where the constant C1 only depends on the Lipschitz norm of g(t) in t.

Remark 2.2. Although we defined the eigenfunction flow for generic g(t) in G, the

estimate in (2.4) only depends on the Lipschitz constants of g(t) in t. Therefore in application

we can approximate the Lipschitz g(t) by twice differentiable gϵ(t) and the estimate in(2.4)

is uniform in ϵ.

§3. Uniform Growth Estimates

In this section, we study the uniform growth estimates of L-harmonic function with

polynomial growth by using the generic eigenfunction flow and the three annuli lemma.

This technique was used before by several authors (see [2, 12, 13,19]).

In the following discussion we only prove our result in a simple case. That is, we as-

sume that g(t) is continuously differentiable and 2π-periodic in t, where t depends on the

subsequence of {rk}. Our proof still works when g(t) is only Lipschitz in t. We may as-

sume, after a generic perturbation, (Sn−1, gϵ(t)) has a continuous eigenfunction flow and

gϵ(t, θ) → g(t, θ) as ϵ → 0 in C1. Let λj,ϵ(t) denote its eigenvalue. Let Aa,b be the annulus

on Rn with inner radius a and outer radius b.

We consider L-harmonic functions defined on Rn with |u| ≤ C(1 + rd), which is called

at most d order growth L-harmonic function. Note the eigenvalue λj,ϵ(t) is a 2π periodic

function. Let ϕj0,ϵ(t), ϕj1,ϵ(t), · · · , ϕjm1,ϵ(t) be all those eigenfunctions whose eigenvalues

intersect a number λd2 which will be given later with some t ∈ [0, 2π]. We stress that there

are only finite number of such λjk,ϵ(t) and the number is independent of ϵ.

We assume that L also satisfies (S2) : For any δ > 0, there exist {rk,i}, {Bk,i} and

a division of [0, 2π] with Bk,irk,i = rk,r+1, Bk,Irk,I = rk+1,1, such that for any sequence

sk, sk ∈ [rk,i, Bk,irk,i], Lsk is G-convergent to ∆g(ti)
as k → ∞ where ti ≤ ti ≤ ti+1,

0 = t1 < · · · < ti < · · · < tI+1 = 2π, and for any t, s ∈ [ti, ti+1] we have |g(t)− g(s)| < δ.

Let Φk,i : (rk,i, Bk,irk,i) ×r (Sn−1, g(ti)) 7→ Ark,i,Ωk,irk,i
be the homeomorphic map.

For i fixed, let Ak
1,Bk,i

be the rescaled Ark,i,Bk,irk,i
under the metric 1

r2k,i
g.

Now we let

ϕj,ϵ(ti) = ϕj,ϵ(ti) ◦ Φ−1
k,i , (3.1)
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where ϕj,ϵ(ti) is an eigenfunction on (Sn−1, gϵ(ti)). We define a new function vj,ϵ by

vj,ϵ =
[
−
∫
∂Br

uϕj,ϵ(ti)
√
|gϵ|dθ

]
ϕj,ϵ(ti) (3.2)

for rk,i ≤ r ≤ Bk,irk,i, where −
∫
∂Br

= 1
volg(ti)(∂Br)

∫
∂Br

. It is easy to see that vj,ϵ ∈ L2
loc(R

n).

We note that ajr
pj(ti)ϕj(ti) is a harmonic function on (0,∞)×r (S

n−1, g(ti)), where λj(ti) =

pj(ti)(pj(ti) + n − 2), pj(ti) > 0. We shall show that for i fixed and ϵ small, vj,ϵ is near

ajr
pj(ti)ϕj(ti) in some sense.

Given B > 1 and a family of annuli {Aak,Bak
}, let Ak

1,B be the rescaled annulus under

the metric 1
a2
k
g. Then we know there exists a subsequence of {ak}, still denoted by ak,

and a metric g(t), such that Lak
is G-convergent to ∆g(t). For k large, let Φk : Ak

1,B 7→
(1, B) ×r (S

n−1, g(t)) be a homeomorphic map. Put uk = u ◦ Φ−1
k , where u is a given L-

harmonic function on Rn. From the property (iii) of G-convergence, we have the following

lemma.

Lemma 3.1. There exists a subsequence of
{

uk

|u|
L∞

(
Ak

1
2
,2B

) }, still denoted by itself, such

that
uk

|u|L∞(Ak
1
2
,2B

)

→ u0 in L2((1, B)×r (S
n−1, g(t))). (3.3)

Furthermore, u0 is a harmonic function.

Now, we let λ∗ = inf
t∈[0,2π)

λ1(t) > 0, d0 < 0 and d0(d0 + n − 2) < λ∗. Then we have the

following three annuli lemma.

Lemma 3.2. Given B > 1, there exists a k0, such that for k > k0,

−
∫
A

Bk,Bk+1

u2 <
1

2

(
B2d0 −

∫
A

Bk−1,Bk

u2 +B−2d0 −
∫
A

Bk+1,Bk+2

u2
)
, (3.4)

where −
∫
A

Bk,Bk+1
u2 = 1

volg(t)(ABk,Bk+1 )
−
∫
A

Bk,Bk+1
u2dVg(t). So if

−
∫
A

Bk,Bk+1

u2 > B2d0 −
∫
A

Bk−1,Bk

u2,

then

−
∫
A

Bk+1,Bk+2

u2 > B2d0 −
∫
A

Bk,Bk+1

u2.

Proof. We first prove (3.4) on the cone (0,∞) ×r (S
n−1, g(t)). A harmonic function in

a cone has the following expansions

u =
∑

ajr
pjϕj +

∑
bjr

−(n−2)−pjϕj ,

where pj ≥ 0 and pj(pj + n − 2) = λj , λj and ϕj are respectively the eigenvalue and the

eigenfunction in (Sn−1, g(t)). Then we only need to show that

r2pj+n|Bk+1

Bk

rn|Bk+1

Bk

<
1

2

(
B2d0

r2pj+n|Bk

Bk−1

rn|Bk

Bk−1

+B−2d0
r2pj+n|Bk+2

Bk+1

rn|Bk+2

Bk+1

)
(3.5)

or

r2qj+n|Bk

Bk+1

rn|Bk+1

Bk

<
1

2

(
B2d0

r2qj+n|Bk−1

Bk

rn|Bk

Bk−1

+B−2d0
r2qj+n|Bk+1

Bk+2

rn|Bk+2

Bk+1

)
(3.6)
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for qj = −(n− 2)− pj <
n
2 , or for some pj with 2(n− 2) + 2pj = n,

ln r|Bk+1

Bk

rn|Bk+1

Bk

<
1

2

(
B2d0

ln r|Bk

Bk−1

rn|Bk

Bk−1

+B−2d0
ln r|Bk+2

Bk+1

rn|Bk+2

Bk+1

)
. (3.7)

(3.5)–(3.7) can be reduced to

1 <
1

2
(B2d0−2pj +B−2d0+2pj ) (3.8)

or

1 <
1

2
(B2d0−2qj +B−2d0+2qj ). (3.9)

From our assumption we know d0 ̸= qj , d0 ̸= pj , and then (3.8) and (3.9) are true.

Now we prove Lemma 3.2 by contradictions. Suppose there exists a subsequence {lk}
such that on annuli ABlk−1,Blk , ABlk ,Blk+1 and ABlk+1,Blk+2 inequality (3.4) is not true.

Then we apply Lemma 3.1 on ABlk−1,Blk+2 , and deduce a contradiction by taking limit.

Lemma 3.3. The limit u0 in Lemma 3.2 has the following expansion in the cone (1, B)×r

(Sn−1, g(t)) :

u0 =
∑

ajr
pj(t)ϕj(t), (3.10)

where pj(t) ≥ 0 and pj(t)(pj(t) + n− 2) = λj(t).

Proof. From Lemma 3.2, we deduce that there exists a k1 such that for k > k1,

−
∫
A

Bk,Bk+1

u2 > B2d0 −
∫
A

Bk−1,Bk

u2. (3.11)

Otherwise we have for all k > k0,

−
∫
A

Bk,Bk+1

u2 < B2d0 −
∫
A

Bk−1,Bk

u2. (3.12)

We note that the convergence in (3.3) is true in L2((δ, δ−1)×r (S
n−1, g(t)), where δ is any

small positive constant. Then (3.12) is also true for u0 on any two annuli in (δ, δ−1) ×r

(Sn−1, g(t)). It follows that

u0 =
∑

bjr
−(n−2)−pjϕj . (3.13)

Therefore there exists a ball BBk in Rn where u achieves its maximum in the interior of BBk .

This contradicts the maximum principle. Then we apply (3.11) to its limit and Lemma 3.3

follows easily.

Now we go back to the function vj . We have the following growth estimate.

Lemma 3.4. Given B > 1, δ > 0 and m1 > 0, letting

pm∗ = inf
t∈[0,2π]

pj(t),ϵ, pM = sup
t∈[0,2π]

pj(t),ϵ,

we see that there exist R, ϵ0 and a division I0 such that for ϵ < ϵ0, a > R, if

−
∫
Aa,Ba

v2j ≥ 1

3m1
−
∫
Aa,Ba

u2, (3.14)

then

−
∫
ABa,B2a

v2j ≥ B2pm∗−δ −
∫
Aa,Ba

v2j , (3.15)

−
∫
ABa,B2a

v2j ≤ B2pM+δ −
∫
Aa,Ba

v2j . (3.16)
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Proof. We prove the lemma again by contradictions. Suppose there exist δ > 0, B > 1

and {ak}, ak → ∞ and ϵ sufficiently small, such that for any fixed division I, we have

−
∫
ABak,B2ak

v2j ≤ B2pm∗−δ −
∫
Aak,Bak

v2j , (3.17)

−
∫
ABak,B2ak

v2j ≥ 1

3m1
−
∫
Aak,Bak

u. (3.18)

Furthermore, we may assume that there exists a t, ti−1 < t ≤ ti, such that Lak
is G-

convergent to ∆g(t). We choose ϵ small so that

|volg(t)(Sn−1)− volgϵ(t)(S
n−1)| < ϵ1, |pj,ϵ(t)− pj(t) < ϵ1.

By Lemma 3.1, we may assume u
|u|

B∞(Ak
1,B

)
→ u0 and u0 satisfies (3.10). If the division I is

large enough so that

|ϕj,ϵ(tl)− ϕj,ϵ(t)|L∞(Sn−1) ≤
ϵ1

vol(Sn−1)
, l = i− 1, i,

then ∣∣∣−∫
(Sn−1,g(t))

ϕj,ϵ(tl)ϕj,ϵ(t)− 1
∣∣∣ < ϵ1, l = i− 1, i,∣∣∣−∫

(Sn−1,g(t))

ϕj,ϵ(tl)ϕα,ϵ(t)
∣∣∣ < ϵ1, l = i− 1, i, α ̸= j.

Then from (3.17) we deduce

1

volgϵ(t)(AB,B2)

∫ B2

B

a2jr
2pj,ϵ(t)+n−1dr − 2ϵ1 −

∫
AB,B2

u2
0

≤ B2pm∗−δ
[ 1

volgϵ(t)(A1,B)

∫ B

1

a2jr
2pj,ϵ(t)+n−1dr + 2ϵ1 −

∫
A1,B

u2
0

]
.

(3.19)

And from (3.18) we deduce

1

volgϵ(t)(A1,B)

∫ B

1

a2jr
2pj,ϵ(t)+n−1dr ≥

( 1

3m1
− ϵ1

)
−
∫
A1,B

u2
0. (3.20)

Since pj,ϵ(t) ≥ pm∗ for ϵ1 sufficiently small, (3.19) and (3.20) give a contradiction. Similarly

we can prove (3.16).

Now let λd = d(d+ n− 2) and jm0,ϵ be the first integer satisfying

min
j>jm0,ϵ,0≤t≤2π

λj,ϵ(t) > λd +
δ

2
, (3.21)

where λj,ϵ(t) are eigenvalues on (Sn−1, gϵ(t)).

Let λd1 = max
j≤jm0,ϵ,0≤t≤2π

λjm0,ϵ(t), λd1 = d1(d1+n−2) with d1 > 0. Choose λd2 = λd1 +δ

and d2 satisfying

λd2 = d2(d2 + n− 2), d2 > 0. (3.22)

As we mentioned before, let λj0,ϵ(t), λj1,ϵ(t), · · ·λjm1,ϵ(t) be all the eigenvalues which inter-

sect λd2
for some t ∈ [0, 2π]. Obviously j0,ϵ > jm0,ϵ and then

min
0≤l≤m1,0≤t≤2π

λjl,ϵ(t) > λd.
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Put v =
∑

j0≤j≤jm

vj,ϵ. It is easy to check that for any ϵ1 > 0 there exists an R0 such that for

a > R and ϵ sufficiently small∣∣∣−∫
Aa,Ba

u2 −−
∫
Aa,Ba

(u− v)
2 −−

∫
Aa,Ba

v2
∣∣∣ ≤ ϵ1 −

∫
Aa,Ba

u2. (3.23)

Since u is at most order d growth, from Lemma 3.4 and (3.23) we deduce that there exists

an R1 such that for a > R1,

−
∫
Aa,Ba

(u− v)
2
> −

∫
Aa,Ba

u2. (3.24)

For u−v we have the following growth estimate which is also called the three annulus lemma.

Lemma 3.5. Let B > 1 and d2 be given as before. Then there exist a k0 and a division

I0 such that for k > k0 and ϵ small,

−
∫
A

Bk,Bk+1

(u− v)
2
<

1

2

[
B2d2 −

∫
A

Bk−1,Bk

(u− v)
2
+B−2d2 −

∫
A

Bk+1,Bk+2

(u− v)
2
]
. (3.25)

Therefore if

−
∫
A

Bk,Bk+1

(u− v)
2
> B2d2 −

∫
A

Bk−1,Bk

(u− v)
2
,

then

−
∫
A

Bk+1,Bk+2

(u− v)
2
> B2d2 −

∫
A

Bk,Bk+1

(u− v)
2
.

Proof. We prove this lemma again by contradictions. Suppose that there exists a

sequence {kl}, kl → ∞, such that (3.25) is not true for any given I0 and small ϵ. As in the

proof of Lemma 3.4, we may assume LBkl is G-convergent to ∆g(t) with ti−1 < t ≤ ti, and
u

|u|
L∞

(
A

kl
1,B3

) → u0, u0 satisfying (3.10). We choose ϵ small enough so that

|volg(t)(Sn−1)− volgϵ(t)(S
n−1)| < ϵ1

and for j = j0, · · · , jm1 ,

|pj(t)− pj,ϵ(t)| < ϵ1, |ϕj,ϵ(t)− ϕj(t)|L2(Sn−1) < ϵ1.

If I is large enough so that

|ϕj,ϵ(tl)− ϕj,ϵ(t)|L∞(Sn−1) ≤
ϵ1

m1vol(Sn−1)
, l = i− 1, i, j = j0, j1, · · · jm1 ,

then we deduce∑
j ̸=j0,··· ,jm1

a2j −
∫
AB,B2

r2pj(t)+n−1ϕ2
j (t)− Cϵ1 −

∫
AB,B2

u2
0

≥ 1

2

[
B2d2

( ∑
j ̸=j0,··· ,jm1

a2j −
∫
A1,B

r2pj(t)+n−1ϕ2
j (t) + Cϵ1 −

∫
A1,B

u2
0

)
+B−2d2

( ∑
j ̸=j0,··· ,jm1

a2j −
∫
AB2,B3

r2pj(t)+n−1ϕ2
j (t) + Cϵ1 −

∫
AB2,B3

u2
0

)]
,

(3.26)

where A1,B = (1, B)×r (S
n−1, g(t)). Since d2 ̸= pj(t) for j ̸= j0, · · · jm1 , for ϵ1 small (3.26)

is impossible.
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From Lemma 3.4 and Lemma 3.5, we can have the growth estimate.

Lemma 3.6. If u is an L-harmonic function with growth order at most d, then for B > 1

fixed, there exists a k0 such that for k > k0,

−
∫
A

Bk,Bk+1

u2 ≤ B2d2 −
∫
A

Bk−1,Bk

u2. (3.27)

Proof. By Lemma 3.4, we only need to show that (3.27) is true for k > k0 and some

large I for u − v. From Lemma 3.5, if (3.27) is not true for u − v, then for k > k0 and ϵ

small

−
∫
A

Bk,Bk+1

(u− v)
2
> B2d2 −

∫
A

Bk−1,Bk

(u− v)
2
. (3.28)

By induction, we have

−
∫
A

Bk,Bk+1

(u− v)
2 ≥ B2d2(k−k0−2) −

∫
A

Bk0+1,Bk0+2

(u− v)
2
. (3.29)

We note d2 > d, (3.23) and (3.24), then (3.29) is impossible.

We actually proved the following growth estimates for L-harmonic functions.

Theorem 3.1. Under the assumption of (S2), for given B > 1, then there exist C =

C(L), k0 = k0(L) such that for any at most order d growth L-harmonic function u, we have

−
∫
A

Bk,Bk+1

u2 ≤ B2Cd(k−k0−2) −
∫
A

Bk0+1,Bk0+2

u2

for k > k0.

Now we have the following corollary.

Theorem 3.2. Under the assumption of (S2), then the dimension of at most order d

growth L-harmonic functions is not more than the dimension of at most order Cd growth

harmonic functions on its tangent cone at infinity. Here C = C(L).

Proof. Let u,w be two linear independent L-harmonic functions on Rn−1 with growth

order at most d.

Put wk = γkw, uk = αku− βkw such that

−
∫
A

Bk−1,Bk+2

wk
2 = 1,

−
∫
A

Bk−1,Bk+2

uk
2 = 1,

−
∫
A

Bk−1,Bk+2

wkuk = 0.

We may assume, as before, there exists a subsequence {kl} so that

LBkl → ∆g(t),

where the convergence is L-convergent. And ukl
and wkl

have limit u and w respectively.

By Lemma 3.3 and Lemma 3.6, we can deduce as before

u =
∑

0≤pj≤d2

ajr
pjϕj , (3.30)

w =
∑

0≤pj≤d2

cjr
pjϕj . (3.31)



268 CHIN. ANN. OF MATH. Vol.21 Ser.B

Moreover

−
∫
A∞

L−1,L2

uw = 0. (3.32)

Then our theorem follows easily from (3.30)–(3.32).
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