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ON THE CONVERGENCE OF GODUNOV SCHEME
FOR NONLINEAR HYPERBOLIC SYSTEMS
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Abstract

The authors consider systems of the form

ut +A(u)ux = 0, u ∈ Rn,

where the matrix A(u) is assumed to be strictly hyperbolic and with the property that the
integral curves of the eigenvector fields are straight lines. For this class of systems one can
define a natural Riemann solver, and hence a Godunov scheme, which generalize the standard

Riemann solver and Godunov scheme for conservative systems. This paper shows convergence
and L1 stability for this scheme when applied to data with small total variation. The main step
in the proof is to estimate the increase in the total variation produced by the scheme due to
quadratic coupling terms. Using Duhamel’s principle, the problem is reduced to the estimate of

the product of two Green kernels, representing probability densities of discrete random walks.
The total amount of coupling is then determined by the expected number of crossings between
two random walks with strictly different average speeds. This provides a discrete analogue of

the arguments developed in [3,9] in connection with continuous random processes.
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§1. Introduction

We consider the one dimensional Cauchy problem for an n× n system of the form

ut +A(u)ux = 0, u(x, 0) = ū(x). (1.1)

Here A(u) is a smooth matrix valued map from a domain U ⊂ Rn into Rn×n, and (x, t) ∈
R × R+. The system is assumed to be strictly hyperbolic, i.e. the matrix A(u) has n real

and strictly different eigenvalues at each point u ∈ U .
We note that even for smooth data a classical solution is only defined locally in time.

In general the solution will develop discontinuities in finite time and it is not clear how

to prolong the solution beyond this point. However, in the conservative case, i.e. A(u) is

the Jacobian of some map f : U → Rn, Glimm[13] proved global existence of weak entropy

solutions of (1.1) when the data has small total variation and each characteristic field is

genuinely nonlinear or linearly degenerate. Under the same assumptions, recent work has
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established the uniqueness and L1 stability of solutions obtained as limits of the Glimm

scheme or by wavefront tracking[5−8].

A major open question is whether other natural methods of approximation yield the same

BV solutions. In particular one has considered the methods of vanishing viscosity, relaxation

and finite difference schemes.

For scalar equations it is known that all of these methods work in the sense that the

approximate solutions converge strongly in L1 to the unique entropy solution of the conser-

vation law. In addition some results are also available for 2 × 2 systems[12] and for n × n

Temple class systems[16] using compensated compactness methods. For general conservative

n×n systems, convergence results for vanishing viscosity approximations are known only in

the case where the limit solution is piecewise smooth[14,18].

A basic method for proving the convergence of a sequence of approximate solutions is the

use of a compactness argument in the space BV. If one can show an a priori estimate on the

total variation of the approximate solutions, then Helly’s theorem guarantees convergence

(of a subsequence) toward a BV function. Using recent uniqueness results (see [10]) one can

then show that this limit is the appropriate entropy weak solution.

Recently such a priori BV estimates have been established for systems of the form (1.1)

under the assumption that the integral curves of the eigenvector fields of A(u) are straight

lines in state space. For these straight-line systems one can define a Riemann solver which

extends the usual Riemann solver when the system is in conservative form. Bianchini and

Bressan[4] showed that the approximate solutions obtained by vanishing viscosity converge

and yield an L1 Lipschitz continuous semigroup which is consistent with the natural Riemann

solver for piecewise constant data. Similar results have been obtained by Bressan and Shen[9]

and Bianchini[3] in connection with relaxation.

The aim of the present paper is to show that, under the same straight-line assumption, the

approximate solutions constructed by the Godunov scheme converge to the same solution

as obtained by vanishing viscosity[4].

The reason for treating this class of systems separately is that in this case the oscillation

generated in one component of the solution is only due to the interaction of waves from

different families. The straight-line assumption is a transversality condition which makes it

possible to control the creation of new oscillations in the solution. The influence of other

terms in the general case seems to require other methods.

We observe that the same class of systems has been singled out by Arora and Roe as

particularly well behaved in connection with numerical computation of slowly moving shocks.

Indeed, in [2] they conjectured that if the straight-line assumption is not satisfied, then any

numerical scheme using a Godunov or a Roe flux will create spurious oscillations.

Although the results we prove apply to general (nonconservative) straight-line systems,

we will throughout the paper indicate the corresponding results for the conservative case.

The rest of the paper is organized as follows. In the next section we define the Riemann

solver and the corresponding Godunov scheme and state the main results. We then define

strengths and speeds of waves and show that the increase in total variation is due only to

transversal coupling (see Lemma 3.1 below). In Section 4 we establish a priori BV bounds
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on the approximate solutions generated by the scheme. The proof is based on Duhamel’s

principle and a basic estimate on the product of Green kernels (Lemma 4.1) proved by

probabilistic methods in Section 5. Finally, we consider the L1 stability of the approximate

solutions and prove the main theorems.

§2. The Godunov Scheme and Main Results

We assume that the matrix A(u) has n real and distinct eigenvalues λk(u), k = 1, · · · , n,
u ∈ U . By performing the linear change of independent coordinates

t′ = 2λ̄t, x′ = x+ λ̄t, where λ̄ > max
u∈U,1≤k≤n

|λk(u)|, (2.1)

we can assume that

0 < λ1(u) < · · · < λn(u) < 1. (2.2)

By possibly restricting to a smaller domain we can also assume that there are constants

λ̄0 = 0 < λ̄1 < · · · < λ̄n−1 < λ̄n = 1 such that

λk(u) ∈ (λ̄k−1, λ̄k), u ∈ U , k = 1, · · · , n.

The corresponding right and left eigenvectors are denoted by rk(u), lk(u), respectively, and

normalized such that

|rk(u)| ≡ 1, ri(u) · lj(u) ≡
{
1 if i = j,
0 if i ̸= j.

The basic assumption throughout the paper is that the integral curves of the eigenvector

fields are straight lines. This can be expressed by the relation

(Drk(u))rk(u) = 0, u ∈ U , k = 1, · · · , n, (2.3)

where Drk denotes the Jacobian matrix of rk. In the conservative case when A(u) is a

Jacobian matrix this condition implies that the shock curves and rarefaction curves coincide

and are straight lines in U (see [17]).

2.1. Riemann Solver and Godunov Scheme

We now describe a natural way of solving the Riemann problem for (1.1), that is, when

the initial data consists of two nearby constant states separated by a jump discontinuity,

ū(x) =

{
u− for x < 0,
u+ for x > 0.

(2.4)

For u ∈ U , k = 1, · · · , n, let Rk(·)(u) denote the integral curve of rk through u, parametrized

by arc length,

Rk(σ)(u) = u+ σrk(u).

Given u−, u+ ∈ U , by strict hyperbolicity and the Implicit Function Theorem (if necessary

we restrict U further) there exist unique intermediate states ω0 = u−, ω1, · · · , ωn = u+ and

wave strengths σk such that

ωk = Rk(σk)(ωk−1), k = 1, · · · , n.

For each k, define the scalar function

F k(σ) =

∫ σ

0

λk
(
Rk(s)(ωk−1)

)
ds,
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and let zk(x, t) be the unique (self similar) entropy solution to the scalar Riemann problem

zt + F k(z)x = 0, z(x, 0) =

{
0 for x < 0,
σk for x > 0

(2.5)

We can now define a self similar solution of the original Riemann problem by using the

solution of these scalar Riemann problems to move along the integral curves. More precisely,

we first define the map R(u−, u+) : [0, 1] → U by

R(u−, u+)(ξ) = Rk(zk(ξ, 1))(ωk−1) for ξ ∈ [λ̄k−1, λ̄k], k = 1, · · · , n. (2.6)

This map is well defined since

zk(x, t) =

{
0 for x/t < λ̄k−1,
σk for x/t > λ̄k.

We define the solution of the Riemann problem (1.1),(2.4) to be the function u(x, t) given

by

u(x, t) =

u− for x/t < 0,
R(u−, u+)(x/t) for x/t ∈ [0, 1],
u+ for x/t > 1.

(2.7)

It is easily verified that this solution coincides with the usual Riemann solution when the

system can be written in conservative form. For general, nonconservative systems of the

form (1.1), there is no natural definition of weak solutions. Still, in the case where (2.3) is

satisfied, the definition above is the appropriate one in the sense that it coincides with the

limit of vanishing viscosity approximations (see [4]).

Having defined a Riemann solver we can now define the corresponding Godunov scheme.

By the assumption (2.2) the Courant-Friedrichs-Lewy condition (see [15]) is satisfied with

equal time and space step ∆x = ∆t. The constant value of the approximate solution in the

i-th cell at time j∆t is denoted by ui,j . The Godunov scheme is now defined inductively as

follows: At time t = 0 we let ui,0 denote the cell average over the i-th cell of the initial data

ū,

ui,0 =
1

∆x

∫ (i+1)∆x

i∆x

ū(ξ) dξ.

Given the values ui−1,j and ui,j in the (i − 1)-th and i-th cells, respectively, at time j∆t,

j ≥ 0, we define the value ui,j+1 as the x-average at time ∆t over the interval [0,∆x] of the

Riemann solution with left state ui−1,j and right state ui,j . Using the notation above the

scheme can be written as

ui,j+1 =
1

∆x

∫ ∆x

0

R(ui−1,j , ui,j)(x/∆t) dx =

∫ 1

0

R(ui−1,j , ui,j)(ξ) dξ. (2.8)

The scheme is well defined as long as the values ui,j remain in the domain of definition of

the matrix A. In the conservative case when A(u) = Df(u) this is the standard Godunov

scheme which may be rewritten in finite difference form

ui,j+1 = ui,j − [f(ui,j)− f(ui−1,j)], i ∈ Z, j ∈ Z+. (2.9)

For each ∆x the scheme gives an approximate solution u∆x of (1.1) defined for all (x, t) ∈
R × R+ in the following way. At each time step j∆t we define u∆x to be equal to the cell

average ui,j on each cell [i∆x, (i+1)∆x]×{j∆t}. For intermediate times t ∈ (j∆t, (j+1)∆t),
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we let u∆x be the function obtained by patching together the solutions of the Riemann

problems given by the cell averages at time j∆t.

2.2. Main Results

Our main results are the uniform BV bounds, the L1 stability, and the convergence of

the approximate solutions to (1.1) produced by the Godunov scheme (2.8). We assume that

the normalization (2.2) is satisfied and that ∆x = ∆t. For a fixed time step j∆t we let u(j)

denote the discrete function i 7→ ui,j . The total variation of u(j) is then given by

T.V.[u(j)] =
∑
i∈Z

|ui,j − ui−1,j |.

Theorem 2.1. Suppose that A(u) is strictly hyperbolic for each u ∈ U and that the

normalized eigenvectors satisfy (2.3). Then there exist constants δ0, δ1 > 0 such that the

following holds. For each initial data ū with

T.V.[ū] < δ0, (2.10)

the corresponding solution ui,j of the Godunov scheme (2.8) is well defined for all time steps

j ∈ Z+ and satisfies

T.V.[u(j)] < δ1 for all j ∈ Z+. (2.11)

Furthermore, there exists a constant L such that for all pairs of initial data ū, v̄ satisfying

(2.10), the corresponding solutions satisfy

∥u(j)− v(j′)∥L1 ≤ L · (|j − j′| ·∆t+ ∥ū− v̄∥L1). (2.12)

This stability result implies the convergence of the Godunov scheme to the same solution

as given by the method of vanishing viscosity[4]. Let δ0 and L be as in Theorem 2.1 and

let D denote the set of L1
loc-functions with total variation bounded by δ0. We then have the

following theorem.

Theorem 2.2. As the discretization parameter ∆x = ∆t tends to zero, the approximate

solutions given by the Godunov scheme (2.8) converge to the same limit as given by the

method of vanishing viscosity. This limit can be characterized as the trajectory of a semigroup

S : D × R+ → D with the properties

(i) For every ū, v̄ ∈ D and every t, s ≥ 0,

∥Stū− Ssv̄∥L1 ≤ L · (|t− s|+ ∥ū− v̄∥L1) . (2.13)

(ii) For every piecewise constant initial data ū ∈ D, there exists a positive time τ > 0 such

that the semigroup trajectory Stū on [0, τ ] coincides with the function obtained by patching

together the solutions of the Riemann problems given by ū and solved according to (2.7).

In particular, for conservative systems the Godunov scheme yields the trajectories of the

Standard Riemann Semigroup.

§3. Wave Strengths and Wave Speeds

In order to study the increase in the total variation of the approximate solutions con-

structed by the scheme, we consider the equations for the strengths of waves. We obtain

these from (2.8) by projecting along the characteristic curves. A basic observation is that,
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up to higher order terms, these equations can be interpreted as equations for discrete ran-

dom walks on the underlying grid. For each characteristic family we have a random walk

for which the characteristic speed gives the probability for a particle to have a unit forward

jump. The idea is to use this probabilistic interpretation to simplify the analysis of the

equations for the wave strengths.

We measure the strengths of waves in terms of arc length along the integral curves Rk.

Given a left state u− and a right state u+ connected by a single k-wave of strength σk, the

speed of the wave is

λk(u−, u+) =

∫ 1

0

λk(u− + ξσkrk(u−)) dξ. (3.1)

The increase in total variation introduced by the scheme can now be studied as follows.

Given three consecutive states u−, u0, and u+, let ū− and ū+ be the two resulting states

given by the scheme (2.8). That is, let

ū− =

∫ 1

0

R(u−, u0)(ξ) dξ, ū+ =

∫ 1

0

R(u0, u+)(ξ) dξ. (3.2)

The strengths of the k-waves, k = 1, · · · , n, in the three Riemann problems (u−, u0), (u0, u+),

and (ū−, ū+) are denoted by σk
−, σ

k
+, and σ̄k, respectively. The intermediate states in the two

Riemann problems (u−, u0) and (u0, u+) are denoted by u1
−, · · · , un−1

− and u1
+, · · · , un−1

+ ,

respectively. Now define the map

Ψk(u0;σ−;σ+) = σ̄k − (λk(uk−1
− , uk

−)σ
k
− + [1− λk(uk−1

+ , uk
+)]σ

k
+), (3.3)

where σ± = (σ1
±, · · · , σn

±). The map Ψk measures the change in the amount of waves in

the k-th family produced by the Godunov scheme. Note that in the scalar case Ψk vanishes

identically. In general Ψk is nonzero because of the nonlinear coupling among the wave

families. However, for straight-line systems we have the following representation.

Lemma 3.1. Suppose that the straight-line assumption (2.3) holds and let Ψk be defined

by (3.3). Then there exist smooth functions Ak
p,q, B

k
p,q, and Ck

p,q depending on u0, σ−, σ+

such that

Ψk(u0;σ−;σ+) =
∑

1≤p ̸=q≤n

(Ak
p,qσ

p
+σ

q
+ +Bk

p,qσ
p
+σ

q
− + Ck

p,qσ
p
−σ

q
−) (3.4)

for all u0 ∈ U and for all sufficiently weak strengths σ1
±, · · · , σn

±.

Proof. We first show that Ψk has the property that

Ψk(u0; 0, · · · , 0, σk
−, 0, · · · , 0; 0, · · · , 0, σk

+, 0, · · · , 0) ≡ 0.

Using the same notation as above, these values of the strengths correspond to

u0 = u− + σk
−r

k
0 , u+ = u0 + σk

+r
k
0 ,

where rk0 = rk(u0) = rk(u−) = rk(u+). From the definition of the Riemann solver it follows

that

ū− = u0 − λk(u−, u0)σ
k
−r

k
0 , ū+ = u+ − λk(u0, u+)σ

k
+r

k
0 . (3.5)

Hence

ū+ − ū− = (λk(u−, u0)σ
k
− + [1− λk(u0, u+)]σ

k
+)r

k
0 ,
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such that the Riemann problem (ū−, ū+) is solved by a single wave of family k and with

strength (λk(u−, u0)σ
k
− + [1− λk(u0, u+)]σ

k
+). This shows that

σ̄k = λk(u−, u0)σ
k
− + [1− λk(u0, u+)]σ

k
+,

that is,

Ψk(u0; 0, · · · , 0, σk
−, 0, · · · , 0; 0, · · · , 0, σk

+, 0, · · · , 0) = 0.

From the straight-line assumption (2.3) it also follows that

Ψk(u0; 0, · · · , 0, σi
−, 0, · · · , 0; 0, · · · , 0, σi

+, 0, · · · , 0) = 0 for i ̸= k.

We now apply a standard representation result for functions of several variables: a smooth

function F : R2n → R can be represented in the form

F (x1, · · · , xn; y1, · · · , yn) = F (0; 0) +
n∑

i=1

xpGp(xp, xp+1, · · · , xn; y1, · · · , yn)

+
n∑

i=1

ypHp(yp, yp+1, · · · , yn),

where the functions Gp, Hp, p = 1, · · · , n, are smooth (see [11, p.193]). Suppose that the

function F has the property that it vanishes along pairs of coordinate axes in the sense that

F (0, · · · , 0, xp, 0, · · · , 0; 0, · · · , 0, yp, 0, · · · , 0) ≡ 0.

From the representation it immediately follows that

Gp(xp, 0, · · · , 0; 0, · · · , 0, yp, 0, · · · , 0) ≡ 0,

Hp(yp, 0, · · · , 0) ≡ 0.

A first order Taylor expansion of the functions Gp, Hp then yields the representation

F (x1, · · · , xn; y1, · · · , yn) =
∑

1≤p̸=q≤n

(Ap,qxpxq +Bp,qxpyq + Cp,qypyq),

where Ap,q, Bp,q, Cp,q are smooth functions of x1, · · · , xn, y1, · · · , yn. Applying this to the

function Ψk(u0; ·; ·) gives the representation (3.4).

This lemma shows that the increase in total variation is due only to transversal coupling

terms, i.e. terms involving two different characteristic families.

Returning to the scheme (2.8), we let σk
i,j denote the strength of the k-wave in the solution

of the Riemann problem (ui−1,j , ui,j), and we let λk
i,j be the corresponding speed given by

(3.1). By Lemma 3.1 the strengths satisfy the following system of equations,

σk
i,j+1 = λk

i−1,jσ
k
i−1,j +

(
1− λk

i,j

)
σk
i,j +Qk

i,j (3.6)

for k = 1, · · · , n, where the quadratic coupling terms are given by

Qk
i,j =

∑
1≤p ̸=q≤n

(
Ak

p,qσ
p
i,jσ

q
i,j +Bk

p,qσ
p
i,jσ

q
i−1,j + Ck

p,qσ
p
i−1,jσ

q
i−1,j

)
. (3.7)

Observe that, if the coupling termQk
i,j vanishes identically, then (3.6) describes the dynamics

of a discrete random walk whose particle at (i, j) jumps with probability λk
i,j to (i+1, j+1),

and with probability (1− λk
i,j) to (i, j + 1).
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§4. A Priori Bounds on the Total Variation

We seek an a priori bound on the total variation of the approximate solution. We do

this by bounding the total amount of waves in each family uniformly in time. That is, we

establish estimates on the sums

Vk(j) :=
∞∑

i=−∞
|σk

i,j |, k = 1, · · · , n, (4.1)

that are independent of the time step j. We will derive a functional relation (see (4.14))

which implies that if the initial amount of waves is sufficiently small, then it remains small

for all times. This result implies that the scheme is well defined for all times, and that

the sequence of approximate solutions converges to a function of bounded variation. The

functional relation is deduced by applying Duhamel’s principle, a comparison lemma, and a

basic estimate on the product of two Green kernels (see Lemma 4.1).

We start by assuming that the scheme is well defined up to time step j and we let C0

be a constant that dominates the absolute values of all Ak
p,q, B

k
p,q, and Ck

p,q. From (3.6) it

follows that

Vk(j + 1) ≤ Vk(j) +
+∞∑

i=−∞
|Qk

i,j | ≤ Vk(0) +

j∑
m=0

+∞∑
i=−∞

|Qk
i,m|. (4.2)

Defining the magnitude Qk(j) by

Qk(j) :=

j∑
m=0

+∞∑
i=−∞

|Qk
i,m|, (4.3)

and using (2.7), we obtain the following bound

Qk(j) ≤ C0 ·
∑
p ̸=q

j∑
m=0

+∞∑
i=−∞

(|σp
i,m||σq

i,m|+ |σp
i−1,m||σq

i,m|+ |σp
i−1,m||σq

i−1,m|)

≤ 2C0 ·
∑
p̸=q

j∑
m=0

+∞∑
i=−∞

(|σp
i,m||σq

i,m|+ |σp
i−1,m||σq

i,m|) =: E1 + E2, (4.4)

where E1 denotes the first part of the sum (including the terms |σp
i,m||σq

i,m|), and E2 denotes

the second part.

For a given set of k-speeds λk
i,j ∈ (λ̄k−1, λ̄k), k = 1, · · · , n, (i, j) ∈ Z × Z+, consider the

linear homogeneous difference equation

ρi,j+1 = λk
i−1,jρi−1,j +

(
1− λk

i,j

)
ρi,j . (4.5)

Denote by Γk(i, j; i′, j′) the corresponding Green kernel. In other words, for j ≥ j′,

Γk(i, j; i′, j′) = ρi,j is the value of the solution of (4.5) at the node (i, j), with initial data

ρi′,j′ = δ(i′,j′). Here, δ(i′,j′) is given by

δ(i′,j′)(i, j) =

{
1 if (i, j) = (i′, j′),
0 otherwise.

(4.6)

Note that the Green function is non-negative. By Duhamel’s principle we can write the
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solution of the linear, non-homogeneous system (3.6) in the form

σk
i,j =

+∞∑
l=−∞

Γk(i, j; l, 0)σk
l,0 +

j−1∑
r=0

+∞∑
l=−∞

Γk(i, j; l, r)Qk
l,r =: αk

i,j + βk
i,j . (4.7)

We thus have

E1 ≤ 2C0 ·
∑
p ̸=q

j∑
m=0

+∞∑
i=−∞

(|αp
i,m||αq

i,m|+ |αp
i,m||βq

i,m|+ |βp
i,m||αq

i,m|+ |βp
i,m||βq

i,m|)

= 2C0 · (S1 + S2 + S3 + S4).

(4.8)

To proceed, we need an estimate on the total interaction between solutions of two systems

of the form (4.5) with strictly different speeds. We postpone the proof of the following key

estimate to the next section.

Lemma 4.1 (Total Interaction). Assume that p < q and that 0 < λp
i,j < λ < λ̃ <

λq
i′,j′ < 1 for all (i, j), (i′, j′) ∈ Z × Z+. Let ρpi,j and ρqi,j denote the solutions of (4.5) with

k = p, k = q and with initial data ρp0 and ρq0, respectively. Then we have the estimate

j∑
m=0

+∞∑
i=−∞

|ρpi,m||ρqi,m| ≤ C(p, q) ·
( +∞∑

i=−∞
|ρp0(i)|

)
·
( +∞∑

i=−∞
|ρq0(i)|

)
, (4.9)

where the constant C(p, q) satisfies

C(p, q) ≤ 1

λ̃− λ
. (4.10)

Thanks to Lemma 4.1, we can now estimate each term on the right hand side of (4.8).

Consider first S1. Recalling (4.7) and using (4.9) we obtain

S1 =
∑
p ̸=q

j∑
m=0

+∞∑
i=−∞

|αp
i,m||αq

i,m|

≤
∑
p ̸=q

j∑
m=0

+∞∑
i=−∞

( +∞∑
l=−∞

|Γp(i,m; l, 0)||σp
l,0|

)( +∞∑
h=−∞

|Γq(i,m;h, 0)||σq
h,0|

)

=
∑
p ̸=q

+∞∑
l=−∞

+∞∑
h=−∞

|σp
l,0||σ

q
h,0|

( j∑
m=0

+∞∑
i=−∞

|Γp(i,m; l, 0)||Γq(i,m;h, 0)|
)

≤
∑
p ̸=q

+∞∑
l=−∞

+∞∑
h=−∞

C(p, q)|σp
l,0||σ

q
h,0| ≤ C1 ·

∑
p ̸=q

Vp(0) ·Vq(0),

where C1 := max
p̸=q

C(p, q). Concerning the sum S2, we have

S2 =
∑
p̸=q

j∑
m=0

+∞∑
i=−∞

|αp
i,m||βq

i,m|

≤
∑
p̸=q

j∑
m=0

+∞∑
i=−∞

(∣∣∣ +∞∑
l=−∞

Γp(i,m; l, 0)σp
l,0

∣∣∣)( j−1∑
r=0

+∞∑
h=−∞

|Γq(i,m;h, r)||Qq
h,r|

)

=
∑
p̸=q

j−1∑
r=0

+∞∑
h=−∞

|Qq
h,r| ·

[ j∑
m=0

+∞∑
i=−∞

(∣∣∣ +∞∑
l=−∞

Γp(i,m; l, 0)σp
l,0

∣∣∣)|Γq(i,m;h, r)|
]
.
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Here we have used the convention that the Green functions are zero for negative times. We

now observe that the term
+∞∑

l=−∞
Γp(i,m; l, 0)σp

l,0 is the solution of (4.5) (with k = p) at time

step m and with data
+∞∑

l=−∞
Γp(i, r; l, 0)σp

l,0 given at time step r. Similarly, Γq(i,m;h, r) is

the solution of (4.5) (with k = q) at time step m and with data δ(h,r) given at time step

r. An application of Lemma 4.1, and the fact that the L1 norm of a solution of (4.5) is

non-increasing, thus give

S2 ≤
∑
p ̸=q

j−1∑
r=0

+∞∑
h=−∞

|Qq
h,r| · C(p, q) ·Vp(r) ≤ C1 ·

∑
p ̸=q

Qq(j − 1) ·Vp(0),

where Qq was defined at (4.3). Using the same arguments to estimate S3 and S4, we obtain

E1 ≤ C1 ·
∑
p ̸=q

(Vp(0) + Qp(j − 1))(Vq(0) + Qq(j − 1)). (4.11)

The quantity E2 in (4.4) can be estimated in an entirely similar way. From (4.4) we thus

obtain

Qk(j) ≤ 2C1 ·
∑
p ̸=q

(Vp(0) + Qp(j − 1))(Vq(0) + Qq(j − 1)). (4.12)

We define

V(j) =
n∑

k=1

Vk(j), Q(j) =
n∑

k=1

Qk(j). (4.13)

From (4.2) and (4.12)–(4.13) we thus have

V(j) ≤ V(0) +Q(j − 1), Q(j) ≤ C2 · (V(0) +Q(j − 1))2, (4.14)

where C2 = 2n · C1. It follows that, if the total amount of waves V(0) in the initial data is

sufficiently small, then Q(j), and hence also the total amount of waves V(j), remains small

for all time steps. Relying on the key estimate, this completes the proof of the first part of

Theorem 2.1.

§5. Bounds on the Total Interaction

In this section we provide a proof of Lemma 4.1. By linearity it suffices to prove (4.9) in

the case where the initial data have the Dirac form

ρp0 = δ(l,0), ρq0 = δ(h,0).

In this case the lemma states that

El,h :=

j∑
m=0

+∞∑
i=−∞

Γp(i,m; l, 0)Γq(i,m;h, 0) ≤ C(p, q). (5.1)

To prove (5.1), we first consider the case where the jump probabilities λk
i,j do not depend

on i, j. We will then extend to the case of variable coefficients by a comparison argument.

In these proofs we use the probabilistic interpretation of (4.5) as an equation for random

walks on the grid Z× Z+.

5.1. Case 1. The Coefficients Satisfy 0<λp
i,j ≡ λ<λ̃ ≡ λq

i,j<1.

The following lemma yields the result in the case of constant coefficients in (4.5).
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Lemma 5.1. Assume that 0 < λ < λ̃ < 1, and let Gi,j, G̃i,j be the solutions of the two

(decoupled) difference equations

Gi,j+1 = λGi−1,j + (1− λ)Gi,j , (5.2)

G̃i,j+1 = λ̃G̃i−1,j + (1− λ̃)G̃i,j , (5.3)

with initial data G0 = δ(l,0), G̃0 = δ(h,0), respectively. We then have the following estimate

El,h :=
+∞∑
j=0

+∞∑
i=−∞

Gi,jG̃i,j ≤
1

λ̃− λ
. (5.4)

Proof. The solutions of (5.2),(5.3) with the prescribed initial data are given explicitly

by the binomial distributions,

Gi,j =

(
j

i− l

)
λi−l(1− λ)j−i+l, G̃i,j =

(
j

i− h

)
λ̃i−h(1− λ̃)j−i+h. (5.5)

First consider the case where l = h = 0, i.e. the case where both particles start at the origin.

In this case the sum can be evaluated by using properties of the Legendre polynomials LN .

These are given by Rodrigues’ formula (see [1]),

LN (y) =
1

2NN !

dN

dyN
[(y2 − 1)N ],

and a straightforward calculation shows that

(z − 1)jLj

(
z + 1

z − 1

)
=

+∞∑
i=−∞

(
j
i

)2

zi.

Using the fact that the generating function of the Legendre polynomials is
+∞∑
j=0

αjLj(y) =
1√

1− 2αy + α2
,

we calculate the sum E0,0 as follows. Let

z =
λλ̃

(1− λ)(1− λ̃)
, α = (1− λ)(1− λ̃)(1− z), y =

z + 1

z − 1
.

Then,

E0,0 =
+∞∑
j=0

αjLj(y) =
1

λ̃− λ
. (5.6)

Next let the particles start at (l, 0), (h, 0) ∈ Z × Z+, respectively. We observe that El,h

represents the expected number of collisions between a λ-path given by (5.2) and a λ̃-path

given by (5.3). Let Pl,h denote the probability that the two paths never collide. Also, let F

be the expected number of future collisions of two paths starting from the same point, that

is, F = E0,0−1. We then have the relation, El,h = (1−Pl,h)(1+F ) = (1−Pl,h)E0,0 ≤ E0,0.

5.2. Case 2. The Coefficients Satisfy 0<λp
i,j<λ<λ̃<λq

i,j<1.

To establish (5.1) in the general case where the jump probabilities λk
i,j vary with (i, j)

we use a comparison argument, showing that the double sum in (5.1) is majorized by the

corresponding sum in (5.4). For this purpose we shall interpret the Green kernels Γp and G

as transition probabilities for two random walks πp and π defined on the same underlying



280 CHIN. ANN. OF MATH. Vol.21 Ser.B

probability space and with the property that, if the πp-path starts to the left of the π-

path, then it remains to the left for all later time steps. More precisely, let X1, X2, · · ·
be a sequence of random variables on some underlying probability space Ω. Assume that

they are independent and uniformly distributed with values in [0, 1]. For each ω ∈ Ω

and any starting point (i0, j0), we construct two paths j 7→ πp(j) = πp(j;ω, i0, j0) and

j 7→ π(j) = π(j;ω, i0, j0) by defining πp(j0) = π(j0) = i0, and

πp(j + 1) =

{
πp(j) if Xj(ω) ∈ [0, 1− λp

i,j ],

πp(j) + 1 if Xj(ω) ∈ (1− λp
i,j , 1],

π(j + 1) =

{
π(j) if Xj(ω) ∈ [0, 1− λ],
π(j) + 1 if Xj(ω) ∈ (1− λ, 1]

(5.7)

for j ≥ j0. By this construction we obtain

Γp(i, j; i0, j0) = Prob.[ ω ∈ Ω : πp(j;ω, i0, j0) = i ],

G(i− i0, j − j0) = Prob.[ ω ∈ Ω : π(j;ω, i0, j0) = i ].

Since λk
i,j < λ for every (i, j), it follows that

πp(j;ω, i′0, j
′
0) ≤ π(j;ω, i0, j0) for each ω ∈ Ω, provided i′0 ≤ i0. (5.8)

Similarly, for ω ∈ Ω and any starting point (i0, j0) we define a π̃-path j 7→ π̃(j) =

π̃(j;ω, i0, j0) obeying the λ̃-statistics given by (5.3), and a πq-path

j 7→ πq(j) = πq(j;ω, i0, j0)

obeying the λq
i,j-statistics given by (4.5) with k = q. These paths are such that

π̃(j;ω, i0, j0) ≤ πq(j;ω, i′0, j
′
0) provided i0 ≤ i′0. (5.9)

We now observe that El,h is the expected number of collisions between a πp-path and a

πq-path, given that they start at (l, 0), (h, 0) ∈ Z × Z+, respectively. For (i, j) ∈ Z × Z+,

let P(i,j)
l,h denote the probability that the paths collide for the first time at the point (i, j).

Also let F (i,j) be the expected number of future collisions between a πp-path and a πq-path

when they both start from the point (i, j). From (5.8),(5.9) it follows that F (i,j) ≤ F , for

all (i, j) ∈ Z× Z+, where F is as in the proof of Lemma 5.1. We thus have

El,h =
∑

(i,j)∈Z×Z+

P(i,j)
l,h · (1 + F (i,j))

≤ (1 + F ) ·
( ∑

(i,j)∈Z×Z+

P(i,j)
l,h

)
≤ (1 + F ) = E0,0.

This completes the proof of Lemma 4.1.

§6. L1 Stability

Following [4,6] we prove L1 stability by a linearization argument. Consider two initial

data ū, v̄ which we join by the path defined by

θ 7→ ūθ = θū+ (1− θ)v̄, θ ∈ [0, 1]. (6.1)

Let uθ
i,j denote the approximate solution computed with the Godunov scheme applied to

the initial data ūθ and let ui,j = u1
i,j , vi,j = u0

i,j . We then consider the equation for the

infinitesimal perturbation duθ
i,j/dθ. In analogy with the proof of the BV bounds we will
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project this tangent vector along eigenvectors and study how the components evolve from

one time-step to the next.

We first establish a result corresponding to Lemma 2.1. Given two states u−, u+ let ũ be

the resulting state given by the Godunov scheme, i.e.

ũ =

∫ 1

0

R(u−, u+)(ξ) dξ. (6.2)

Using the definition of the Riemann solver we can write this more explicitly as

ũ =
n∑

m=1

∫ λ̄m

λ̄m−1

R(zm(ξ, 1))(ωm−1) dξ

=
n∑

m=1

∫ λ̄m

λ̄m−1

[ωm−1 + zm(ξ, 1)rm(ωm)] dξ

=
n∑

m=1

{
(λ̄m − λ̄m−1)ωm−1 + σm[λ̄m − λm(ωm−1, ωm)]rm(ωm)

}
, (6.3)

where we have applied the same notation as in Section 2.1.

Assume now that the right and left states depend on a parameter θ, u− = uθ
−, u+ = uθ

+.

The resulting state ũ = ũθ is given by (6.3) where now also the strengths and intermediate

states will depend on θ, ωm = ωθ
m, σm = σθ,m. Differentiation with respect to the parameter

yields

dũθ

dθ
=

n∑
m=1

{
(λ̄m − λ̄m−1)

dωθ
m−1

dθ
+

d

dθ

[
σθ,m

(
λ̄m − λm(uθ

−, u
θ
+)

)
rm(ωθ

m)
]}

.

We decompose the tangent vectors
duθ

±
dθ and dũθ

dθ along the right eigenvectors at uθ
± and ũθ,

respectively,

duθ
±

dθ
=

n∑
m=1

νθ,m± rm(uθ
±),

dũθ

dθ
=

n∑
m=1

ν̃θ,mrm(ũθ).

For each fixed value of the parameter θ = θ∗ the tangent vector dũθ

dθ

∣∣∣
θ=θ∗

is uniquely given

by uθ∗
− , σθ∗ = (σθ∗,1, · · · , σθ∗,n) and νθ∗± = (νθ∗,1± , · · · , νθ∗,n± ). Hence there exists a (smooth)

map Ξ : R4n → Rn such that

dũθ

dθ

∣∣∣
θ=θ∗

= Ξ(uθ∗
− , σθ∗ , νθ∗− , νθ∗+ ).

With this notation we have ν̃θ,k = lk(ũθ) · Ξ(uθ
−, σ

θ, νθ−, ν
θ
+). Now consider the functions

Φk : R4n → R, k = 1, · · · , n, defined by

Φk(u−, σ, ν−, ν+) = lk(ũ) · Ξ(u−, σ, ν−, ν+)−
(
λk(u−)ν

k
− + [1− λk(u+)]ν

k
+

)
,

where u+ is obtained from u− by moving along integral curves according to σ = (σ1, · · · , σn),

and ũ is given by (6.2).

Clearly, if both u− and u+ are independent of θ, then so is ũ, whence

Φk(u−, σ, 0, 0) = 0 for all u−, σ.

We also have that Φk(u−, 0, ν−, ν+) = 0 for all u−, ν−, ν+. To obtain this we observe that
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if, for a particular value θ∗ of the parameter, we have σθ∗ = 0, then ũθ∗ = uθ∗
+ = uθ∗

− , and

dσθ,k

dθ

∣∣∣
θ=θ∗

= νθ∗,k+ − νθ∗,k− .

Furthermore, the rate of change of the intermediate states is given by
dωθ

m

dθ

∣∣∣
θ=θ∗

=

m∑
l=1

νθ∗,l+ rl(uθ∗
− ) +

n∑
l=m+1

νθ∗,l− rl(uθ∗
− ).

Substitution into (6.3) yields

ν̃θ∗,k = lk(uθ∗
− ) ·

(dũθ

dθ

∣∣∣
θ=θ∗

)
= [1− λk(uθ∗

− )]νθ∗,k+ + λk(u
θ∗
− )νθ∗,k− ,

that is, Φk(uθ∗
− , 0, νθ∗− , νθ∗+ ) = 0. It follows that the function Φk can be represented in the

form

Φk(u−, σ, ν−, ν+) =
∑

1≤p,q≤n

[
Ak

p,qσ
pνq− +Bk

p,qσ
pνq+

]
,

where Ak
p,q and Bk

p,q are smooth functions of u−, σ, ν−, ν+.

Returning to the scheme we thus have the following system of equations for the compo-

nents νθ,ki,j of the tangent vectors duθ
i,j/dθ,

νθ,ki,j+1 = λk(uθ
i−1,j)ν

θ,k
i−1,j + [1− λk(uθ

i,j)]ν
θ,k
i,j +Qθ,k

i,j , (6.4)

where the coupling terms are given by

Qθ,k
i,j =

∑
1≤p,q≤n

[
Aθ,k

p,q,i,jσ
θ,p
i,j ν

θ,q
i−1,j +Bθ,k

p,q,i,jσ
θ,p
i,j ν

θ,q
i,j

]
.

Here Aθ,k
p,q,i,j and Bθ,k

p,q,i,j denote A
k
p,q and Bk

p,q, respectively, evaluated at the point (uθ
i,j , σ

θ
i,j ,

νθi−1,j , ν
θ
i,j). The L

1 norm of the difference between ui,j = uθ
i,j

∣∣
θ=1

and vi,j = vθi,j
∣∣
θ=0

at time

step (j + 1) is now given by

∥u(j + 1)− v(j + 1)∥L1 =

+∞∑
i=−∞

|ui,j+1 − vi,j+1|∆x ≤ ∆x ·
( +∞∑

i=−∞

∫ 1

0

∣∣∣duθ
i,j+1

dθ

∣∣∣ dθ)
= ∆x ·

(∫ 1

0

+∞∑
i=−∞

n∑
k=1

|νθ,ki,j+1| dθ
)
=: ∆x · N (j + 1). (6.5)

Using (6.4) we have the following estimate for N (j + 1),

N (j + 1) ≤
∫ 1

0

+∞∑
i=−∞

n∑
k=1

{
λk(uθ

i−1,j)|ν
θ,k
i−1,j |+ [1− λk(uθ

i,j)]|ν
θ,k
i,j |+ |Qθ,k

i,j |
}
dθ

= N (j) +

∫ 1

0

{ +∞∑
i=−∞

n∑
k=1

|Qθ,k
i,j |

}
dθ. (6.6)

We thus have that

N (j + 1) ≤ N (0) +

∫ 1

0

+∞∑
i=−∞

n∑
k=1

j∑
s=0

|Qθ,k
i,s | dθ. (6.7)

A simple estimate now shows that for a suitable constant C3,∫ 1

0

+∞∑
i=−∞

n∑
k=1

j∑
s=0

|Qθ,k
i,s | dθ ≤ C3 ·

(
max
0≤s≤j

max
0≤θ≤1

Vθ(s) · N (s)
)
,
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where Vθ(s), the total strength of waves in uθ(s), is defined by (3.13). From the result in

Section 4 it follows that, if the total amount of waves in the two initial data ū and v̄ are

sufficiently small, then Vθ(s) is uniformly bounded and small (with respect to both the time

s and the parameter θ). Thus, for data with sufficiently small total variation we have

C4 := C3 ·
(
max
0≤s≤j

max
0≤θ≤1

Vθ(s)
)
< 1,

such that N (j + 1) ≤ N (0) +C4 · max
0≤s≤j

N (s). Substituting this back into (6.5) we conclude

that there exists a Lipschitz constant L such that

∥u(j)− v(j)∥L1 ≤ L · ∥u(0)− v(0)∥L1 .

The L1 Lipschitz continuity of an approximate solution with respect to time is easily checked.

Up to a change in the Lipschitz constant L, this concludes the proof of Theorem 2.1.

§7. Convergence of the Godunov Scheme

To establish the convergence of the scheme we argue as in [4]. We first define a semigroup

by using the approximate solutions u∆x defined in Section 2.1. Given ū ∈ D, choose a

sequence of grid lengths ∆xµ with the property that lim
µ→∞

∆xµ → 0, and a sequence of

initial data ūµ such that ūµ → ū in L1
loc. Here ūµ is assumed to be piecewise constant with

points of discontinuity lying in the set ∆xµ · Z. For each µ we know by the first part of

Theorem 2.1 that the scheme gives a global approximate solution uµ corresponding to the

initial data ūµ. These approximate solutions have uniformly bounded total variation such

that Helly’s compactness theorem[10] implies the existence of a sub-sequence (still denoted

by uµ) which converges in L1
loc to a function u for all times t ≥ 0. By a diagonalization

argument we may assume that this convergence holds for all initial data in a countable dense

subset D′ of D. Now given a general element v̄ ∈ D we approximate it by functions v̄µ ∈ D′

with corresponding approximate solutions vµ converging to a function v. By the second part

of Theorem 2.1 the limit is unique and independent of the particular sequence used in the

approximation. We can thus define

Stv̄ := v(·, t) = L1
loc − lim

µ→∞
vµ(·, t).

It remains to show that this semigroup is compatible with the Riemann solver given in

Section 2.1. By the same argument as in Corollary 9.2 in [10], it suffices to show that this is

the case when each jump in ū is solved by one single wave. By finite speed of propagation,

it is enough to consider one of these jumps. Assume therefore that the left and right states

u−, u+ are connected by a single wave of the k-th family, say, with strength σk. According

to the definitions in Section 2.1 the solution of the Riemann problem (u−, u+) is then given

by

u(x, t) = u− + z(x, t)rk(u−), (7.1)

where z(x, t) solves the scalar Riemann problem (2.5). For a given ∆x the approximate

Godunov-solution is given as

u∆x(x, t) = u− + z∆x(x, t)r
k(u−),

where z∆x is the approximate solution of (2.5) computed by the scalar Godunov scheme.

For
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the scalar case it is well-known that, as the discretization parameter ∆x approaches zero,

the approximate solution given by the Godunov scheme converges to the unique entropic

solution z(x, t) of (2.5) (see [15]). Since all states lie on the k-th integral curve through u−,

this demonstrates the convergence in this case. This completes the proof of Theorem 2.2.
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