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Abstract

The paper studies the zeros of 2mIm/Im−1−(m+1)I1/I0, where Im are the Bessel functions.
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§1. The Main Results

In this paper we establish the following result concerning the Bessel functions Im(x):

Theorem 1.1. (i) For any m ≥ 2 there exists a unique positive solution x = xm of the

equation

Im(x)

Im−1(x)
− m+ 1

2m
G(x) = 0, (1.1)

where

G(x) =
I1(x)

I0(x)
. (1.2)

(ii) If 2 ≤ l < m, then

xl < xm. (1.3)

This theorem is used in the study of free boundary problems[1].

The following result will be used in the proof of (1.3):

Theorem 1.2. The function G(x) is concave for 0 < x <∞; more precisely, G′′(x) < 0

for 0 < x <∞.
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§2. Proof of Theorem 1.1 (i)

We recall (see, for instance, [3]) that Im(x) satisfies the differential equation

I ′′m(x) +
1

r
I ′m(x)−

(
1 +

m2

x2

)
Im(x) = 0 (2.1)

and is given by

Im(x) =
∞∑
k=0

(x/2)m+2k

k!Γ(m+ k + 1)
. (2.2)

Furthermore

I ′m(x) +
m

x
Im(x) = Im−1(x), m ≥ 1, (2.3)

I ′m(x)− m

x
Im(x) = Im+1(x), (2.4)

Im(x) =
( 2

πx

)1/2

ex
[
1 +O

( 1

x

)]
if x→ ∞, (2.5)

Im(x)In(x) =

∞∑
k=0

Γ(m+ n+ 2k + 1)(x/2)m+n+2k

k!Γ(m+ k + 1)Γ(n+ k + 1)Γ(m+ n+ k + 1)
. (2.6)

Consider the function

fm(x) =
I0(x)Im(x)

I1(x)Im−1(x)
, m ≥ 2. (2.7)

Theorem 2.1. If m ≥ 2, then

d

dx
fm(x) > 0 for all x > 0. (2.8)

To prove the theorem we first study the functions

Sm(x) = log Im(x). (2.9)

Lemma 2.1. For any m ≥ 1,

S′
m(x)− S′

m−1(x) > 0 for all x > 0, (2.10)

and, consequently,

S′
m(x)− S′

0(x) > 0 for all x > 0. (2.11)

Proof. From (2.1) we have

S′′
m + (S′

m)2 +
1

x
S′
m = 1 +

m2

x2
. (2.12)

Similarly

S′′
m−1 + (S′

m−1)
2 +

1

x
S′
m−1 = 1 +

(m− 1)2

x2
,

so that

(Sm −Sm−1)
′′ +(S′

m +S′
m−1)(S

′
m −S′

m−1)+
1

x
(S′

m −S′
m−1) =

m2 − (m− 1)2

x2
> 0. (2.13)

As x→ 0

Sm = m log x+O(1), Sm−1 = (m− 1) log x+O(1),

so that

Sm − Sm−1 = log x+O(1), S′
m − S′

m−1 =
1

x
+O(1).
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Thus (2.10) holds if x is small.

If (2.10) does not hold for all x > 0, then there is a smallest value x = x0 > 0 for which

(2.10) is not satisfied. Clearly

S′
m(x0)− S′

m−1(x0) = 0, (2.14)

S′′
m(x0)− S′′

m−1(x0) ≤ 0.

On the other hand, from (2.13) and (2.14) we infer that

S′′
m(x0)− S′′

m−1(x0) =
m2 − (m− 1)2

x20
> 0,

which is a contradiction.

Lemma 2.2. For any m ≥ 1,

S′
m(x)− S′

0(x) <
m

x
for all x > 0. (2.15)

Proof. In view of (2.9), (2.15) is equivalent to
I′
m(x)

Im(x) −
I′
0(x)

I0(x)
< m

x or, by (2.4), to

m

x
+
Im+1(x)

Im(x)
− I ′0(x)

I0(x)
<
m

x

which is the same as
Im+1

Im
<
I1
I0

for x > 0. (2.16)

Using the product formula (2.6) it was proved in [2] that each term in the power series of

Im+1(x)Im−1(x) is smaller than each term in the power series of (Im(x))2, so that Im+1

Im
<

Im
Im−1

and (2.16) then follows by iterating this inequality.

Proof of Theorem 2.1. Introduce the function

ϕ(x) = (Sm(x)− Sm−1(x))− (S1(x)− S0(x)). (2.17)

Then the assertion (2.8) is equivalent to the inequality

ϕ′(x) > 0 if x > 0. (2.18)

Writing (2.13) for m = 1 and subtracting from (2.13), we obtain

ϕ′′+{(S′
m+S′

m−1)(S
′
m−S′

m−1)−(S′
1+S

′
0)(S

′
1−S′

0)}+
1

x
ϕ′ =

2(m− 1)

x2
> 0 if m ≥ 2. (2.19)

For x small,

Im
Im−1

I0
I1

=
(x2 )

m[ 1
Γ(m+1) + (x2 )

2 1
Γ(m+2) ]

(x2 )
m−1[ 1

Γ(m) + (x2 )
2 1
Γ(m+1) ]

1 + (x2 )
2

x
2 [1 +

1
2 (

x
2 )

2]
[1 +O(x2)]

=
1

m

1 + z
m+1

1 + z
m

1 + z

1 + z
2

(1 +O(z)) (z = (x/2)2)

=
1

m

[
1 +

(1
2
− 1

m(m+ 1)

)
z
]
+O(z2)

and, since m ≥ 2, (2.18) holds for x small.

If (2.18) does not hold for all x > 0, then there is a smallest x = x0 such that

φ′(x0) = 0 (2.20)

and, clearly, φ′′(x0) ≤ 0, so that, by (2.19),

2(m− 1)

x2
≤ {(S′

m + S′
m−1)(S

′
m − S′

m−1)− (S′
1 + S′

0)(S
′
1 − S′

0)} at x = x0. (2.21)



288 CHIN. ANN. OF MATH. Vol.21 Ser.B

Writing (2.20) in the form

S′
m − S′

m−1 = S′
1 − S′

0 at x = x0, (2.22)

we see that the right-hand side of (2.21) is equal to

[(S′
m + S′

m−1)− (S′
1 + S′

0)](S
′
1 − S′

0)

= [(S′
m−1 + (S′

1 − S′
0) + S′

m−1)− (S′
1 + S′

0)](S
′
1 − S′

0)

= (2S′
m−1 − 2S′

0)(S
′
1 − S′

0)

which, by Lemmas 2.2 and 2.3, is smaller than 2m−1
x

1
x ; this is a contradiction to (2.21).

From (2.2) and (2.5) we see that

fm(x) → 1 if x→ ∞,

fm(x) → 1

m
if x→ 0,

so that, if m ≥ 2, fm(x) − m+1
2m is negative for small x and positive for large x. Hence we

have

Corollary 2.1. For any m ≥ 2 there exists a unique positive solution x = xm of the

equation

I0(xm)

I1(xm)

Im(xm)

Im−1(xm)
=
m+ 1

2m
. (2.23)

This is precisely the assertion (i) of Theorem 1.1.

§3. Proof of Theorem 1.1 (ii)

By (2.4)

I ′m−1(x)

Im−1(x)
− m− 1

x
=

Im(x)

Im−1(x)
, (3.1)

so that the equation

I0(x)

I1(x)

Im(x)

Im−1(x)
=
m+ 1

2m
(3.2)

can be written also in the form
I ′m−1(x)

Im−1(x)
=
m− 1

x
+
m+ 1

2m

I1(x)

I0(x)
. (3.3)

By Corollary 2.1 this equation has unique positive solution xm and, setting

zm(x) =
I ′m−1(x)

Im−1(x)
, (3.4)

we have

zm(x) <
m− 1

x
+
m+ 1

2m
G(x) if x < xm,

zm(x) >
m− 1

x
+
m+ 1

2m
G(x) if x > xm

(3.5)

for any m ≥ 1.

We shall prove

Theorem 3.1. For any m ≥ 1,

zm+1(x) <
m

x
+

m+ 2

2(m+ 1)
G(x) at x = xm, (3.6)
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so that xm+1 > xm.

Combining this with (3.5) we conclude that xm+1 > xm, and this completes the proof of

Theorem 1.1 (ii).

In order to prove Theorem 3.1 we shall need several facts about the function G.

Lemma 3.1. The function G(x) satisfies:

0 < G(x) < 1 if x > 0. (3.7)

Proof. By (2.10) (with m = 1),

G′(x) > 0 for all x > 0. (3.8)

It is also easily seen that

G(x) =
x

2
+O(x2) as x→ 0. (3.9)

Since further, by (2.5),

G(x) → 1 if x→ ∞, (3.10)

the lemma follows.

Using the relation I ′1 = −I0/x+ I0 we find that G satisfies the differential equation

G′ +G2 +
1

x
G = 1. (3.11)

This equation will be needed later on.

We shall also need Theorem 1.2, i.e.,

G′′(x) < 0 for all x > 0. (3.12)

The proof, which is somewhat lengthy, will be given in Section 5.

Proof of Theorem 3.1. From (3.1) and (3.4) we have

zm(x)− m− 1

m
=

Im(x)

Im−1(x)
. (3.13)

It will actually be more convenient to work with the function

Vm(x) = zm(x)− m− 1

x

(
=

Im(x)

Im−1(x)

)
. (3.14)

By (2.3), (2.4) and (2.2), Vm(x) satisfies

V ′
m(x) + V 2

m(x) +
2m− 1

x
Vm(x) = 1, (3.15)

Vm(x) =
x

2m
+O(x2), x→ 0. (3.16)

Similarly

V ′
m+1(x) + V 2

m+1(x) +
2m+ 1

x
Vm+1(x) = 1, (3.17)

Vm+1(x) =
x

2(m+ 1)
+O(x2), x→ 0. (3.18)

Theorem 3.1 can be restated as follows: If

Vm(xm) =
1

2

m+ 1

m
G(xm), (3.19)

then

Vm+1(xm) <
1

2

m+ 2

m+ 1
G(xm), (3.20)
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or

W (xm) <
1

2

m+ 1

m
G(xm), (3.21)

where

W (x) =
(m+ 1)2

m(m+ 2)
Vm+1(x). (3.22)

The reason for introducing the function W is to make the right-hand side of (3.21) the same

as for (3.19). We intend to compare Vm(x) with W (x) for 0 < x ≤ xm.

By (3.17), W satisfies the differential equation

W ′ +
m(m+ 2)

(m+ 1)2
W 2 +

2m+ 1

x
W =

(m+ 1)2

m(m+ 2)
, x > 0, (3.23)

and, by (3.18),

W (x) =
m+ 1

2m(m+ 2)
x+O(x2), x→ 0.

In view of (3.16),

W (x) < Vm(x) for x near 0. (3.24)

If we can show that

(m+ 1)2

m(m+ 2)
− m(m+ 2)

(m+ 1)2
W 2 − 2m+ 1

x
W < 1−W 2 − 2m− 1

x
W for 0 < x ≤ xm, (3.25)

then, by comparison, we deduce that W (x) < Vm(x) for all 0 < x ≤ xm, and (3.21)

follows. Indeed, otherwise there is a smallest x̄ such that 0 < x̄ ≤ xm and (W − Vm) = 0,

(W − Vm)′ ≥ 0 at x̄; however, in view of (3.25) at x = x̄ and (3.15),(3.23), we also have

W ′(x̄) < V ′
m(x̄), which is a contradiction.

We have thus reduced the proof of Theorem 3.1 to establishing the inequality (3.25), or

1

m(m+ 2)
+

1

(m+ 1)2
W 2 <

2

x
W for 0 < x ≤ xm. (3.26)

The above analysis shows that as long as (3.26) holds for 0 < x < x̃, W (x) < Vm(x) for

0 < x < x̃. Hence, in proving (3.26) it suffices to consider functions W (x) satisfying

W (x) < Vm(x). (3.27)

Since

Vm(x) <
1

2

m+ 1

m
G(x) if x < xm,

we may replace (3.27) by the simpler inequality

W (x) <
1

2

m+ 1

m
G(x), 0 < x < xm. (3.28)

Lemma 3.2. There holds
m+ 1

m(m+ 2)
G(x) ≤W (x) for all x > 0. (3.29)

Proof. We shall construct a subsolution W̃ (x) = λG(x), λ > 0, to the function W . By

(3.23), this means that λ has to be such that

λG′ + λ2
m(m+ 2)

(m+ 1)2
G2 +

(2m+ 1)λ

x
G <

(m+ 1)2

m(m+ 2)
,
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or, in view of (3.11),

G2
[
λ2
m(m+ 2)

(m+ 1)2
− λ

]
+

2mλ

x
G <

(m+ 1)2

m(m+ 2)
− λ.

But for λ ≤ (m+ 1)/[m(m+ 2)], this inequality is a consequence of

2mλ

x
G <

(m+ 1)2

m(m+ 2)
− λ,

or
2

x
G < 1, i.e., I1(x) <

x

2
I0(x),

which is indeed true for all x > 0 (by comparing the two series term-wise).

As x→ 0

λG ∼ λx

2
, W ∼ m+ 1

2m(m+ 2)
x,

so that the inequality λG(x) < W (x) holds for x near zero if λ < m+1
m(m+2) . But then, by

comparison, λG(x) < W (x) for all x > 0. This yields the assertion (3.29).

We summarize: In order to complete the proof of Theorem 3.1 or Theorem 1.1 (ii) it

suffices to prove that (3.26) holds for W (x) satisfying (3.28) and (3.29). We shall state this

in a different way:

If we introduce the function

Φ(z, x) =
1

m(m+ 2)
+

z2

(m+ 1)2
G2(x)− 2

x
zG(x), (3.30)

then, in view of (3.28) and (3.29), what we have to prove is the following

Lemma 3.3. There holds

Φ(z, x) < 0 for 0 < x < xm, z ∈
( m+ 1

m(m+ 2)
,
m+ 1

2m

)
. (3.31)

Proof. Set z1 = m+1
m(m+2) , z2 = m+1

2m . Since the function z → Φ(z, x) is a parabola, it is

sufficient to prove (3.31) just at the extreme points z1 and z2. But

Φ(z1, x) < 0 reduces to 1 +
G2

m(m+ 2)
<

2(m+ 1)

x
G,

Φ(z2, x) < 0 reduces to
1

m+ 2
+
G2

4m
<
m+ 1

x
G,

and since (by Lemma 3.2) 0 < G < 1, it suffices to prove that

1 +
1

m(m+ 2)
<

2(m+ 1)

x
G,

1

m+ 2
+

1

4m
<
m+ 1

x
G.

Noting that the second inequality is a consequence of the first one, it remains to prove that

the function

F (x) = 2(m+ 1)G(x)− θmx (3.32)

is positive for 0 < x ≤ xm, where

θm =
(m+ 1)2

m(m+ 2)
. (3.33)

Observe that for x near 0,

F (x) ∼ (m+ 1)x− (m+ 1)2

m(m+ 2)
x = ax, a > 0,
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so that F (0) = 0, F ′(0) > 0. By (3.12), F (x) is a concave function. Hence, in order to

prove that F (x) > 0 for all 0 < x ≤ xm it suffices to show that F (xm) > 0, i.e., that

2(m+ 1)G(xm)− θmxm > 0. (3.34)

Since the proof of this inequality is quite lengthy, it is given in the next section.

§4. Proof of (3.34)

Introduce the positive solution V̄m of

V̄ 2
m(ξ) +

2m− 1

ξ
V̄m(ξ) = 1, (4.1)

i.e.,

V̄m(ξ) = −2m− 1

2ξ
+
[(2m− 1

2ξ

)2

+ 1
]1/2

. (4.2)

Note that, by (4.1),

V̄m(ξ) <
ξ

2m− 1
. (4.3)

Differentiating (4.1) we obtain

2V̄mV̄
′
m +

2m− 1

ξ
V̄ ′
m =

2m− 1

ξ2
V̄m (4.4)

and hence, upon using (4.3),

V̄ ′
m =

2m−1
ξ2 V̄m

2V̄m + 2m−1
ξ

<

1
ξ

2m−1
ξ

=
1

2m− 1
. (4.5)

Lemma 4.1. There holds

Vm(x) ≥
(2m− 1

2m

)1/2

V̄m

((2m− 1

2m

)1/2

x
)

(4.6)

for all x > 0.

Proof. Consider the function

z(x) = λV̄m(λx), λ > 0 (4.7)

and set ξ = λx. Then

z′ + z2 +
2m− 1

x
z − 1 = λ2

[
V̄ ′
m(ξ) + V̄ 2

m(ξ) +
2m− 1

ξ
V̄m(ξ)− 1

]
+ λ2 − 1

= λ2V̄ ′
m(ξ) + λ2 − 1 (by (4.1))

<
λ2

2m− 1
+ λ2 − 1 (by (4.5))

= λ2
2m

2m− 1
− 1 < 0

if λ2 < 2m−1
2m , so that z is a subsolution of (3.15). Since also, for x near 0,

z(x) ∼ λ
2m− 1

2ξ

1

2

( 2ξ

2m− 1

)2

(by (4.2))

= λ2
x

2m− 1
<

x

2m
∼ Vm(x),

we conclude, by comparison, that z(x) < Vm(x) for all x > 0, and (4.6) follows.
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Lemma 4.2. The function V̄m(ξ) satisfies V̄ ′
m(ξ) > 0, V̄ ′′

m(ξ) < 0.

Proof. The first inequality follows from (4.4). To prove the second inequality we set

V = V̄m and differentiate (4.4). We get

2V V ′′ + 2(V ′)2 +
2m− 1

ξ
V ′′ − 2(2m− 1)

ξ2
V ′ +

2(m− 1)

ξ3
V = 0.

Since V > 0, we see that

sgnV ′′ = sgn
{
− 2(V ′)2 +

2(2m− 1)

ξ2
V ′ − 2(2m− 1)

ξ3
V
}

≤ sgn
{2(2m− 1)

ξ2

(
V ′ − V

ξ

)}
= sgn

{2

ξ
(−2V V ′)

}
by (4.4),

which is negative since V ′ > 0.

The lower bound for Vm (derived in Lemma 4.1) will henceforth be used to deduce that

xm in (3.5) is sufficiently large, which is an important step in the proof of (3.34).

Set

Qm(x) =
2m

m+ 1

(2m− 1

2m

)1/2

V̄m

((2m− 1

2m

)1/2

x
)
,

Pm(x) =
2m

m+ 1
Vm(x) (Vm was defined in (3.14)),

Lm(x) =
1

2(m+ 1)
θmx =

m+ 1

2m(m+ 2)
x.

By (3.19)

Pm(xm) = G(xm), (4.8)

and (3.34) is equivalent to

Lm(xm) < G(xm). (4.9)

For x near 0, G(x) ∼ x
2 , so that

G(0) = Lm(0) = 0, G′(0) > L′
m(0),

whereas, for x large, G(x) < 1 < Lm(x). Since G is concave, it follows that there exists a

unique point x̃m such that

Lm(x) < G(x) if x < x̃m,

Lm(x) > G(x) if x > x̃m.
(4.10)

To prove (4.9), let x̃ be the point where

Lm(x̃) = 1, i.e., x̃ =
2m(m+ 2)

m+ 1
. (4.11)

Since G(x) < 1, (4.10) implies that

x̃m < x̃. (4.12)

Suppose

Qm(x̃) > 1 = Lm(x̃). (4.13)

Then from the concavity of Qm (Lemma 4.2) and the fact that Qm(0) = Lm(0) = 0, it

follows that

Qm(x) > Lm(x) if x < x̃. (4.14)
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By monotonicity of Qm (which follows from Lemma 4.1)

Qm(x) > Qm(x̃) > 1 if x > x̃,

whereas by (4.14), (4.10),

Qm(x) > Lm(x) > G(x) if x̃m < x < x̃.

Thus, altogether, Qm(x) > G(x) if x̃m < x < ∞ and, since Pm(x) > Qm(x) for all x > 0

(Lemma 4.1), we conclude that

Pm(x) > G(x) if x̃m < x <∞.

Hence, by (4.8), xm < x̃m and, recalling (4.10), the assertion (4.9) follows, and this completes

the proof of (3.34).

It remains to prove that (4.13) holds.

Set

Am =
m+ 1

2m

( 2m

2m− 1

)1/2

, σm =
(2m− 1

2m

)1/2

x̃.

Then (4.13) reduces to

V̄m(σm) > Am. (4.15)

Since

V̄ 2
m(σm) +

2m− 1

σm
V̄m(σm) = 1,

if

A2
m +

2m− 1

σm
Am < 1, (4.16)

then (4.15) follows by monotonicity. Substituting x̃ from (4.11) into σm, the inequality

(4.16) reduces to

(m+ 1)2(3m+ 1)

2m(2m− 1)(m+ 2)
< 1,

which is valid if m ≥ 4.

We have thus completed the proof of (3.34) (and therefore also of Theorem 1.1 (ii)) for

m ≥ 4. The proof for m ≤ 3 can be obtained by explicit calculations. Indeed, the solution

of

I2(x)

I1(x)
=

3

4

I1(x)

I0(x)

is x = a = 3.773474 and

I3(a)

I2(a)
− 2

3

I1(a)

I0(a)
= −0.0686071 < 0,

whereas the solution of

I3(x)

I2(x)
=

2

3

I1(x)

I0(x)

is x = b = 5.119174 and

I4(b)

I3(b)
− 5

8

I1(b)

I0(b)
= −0.058144 < 0.
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§5. Proof of Theorem 1.2

The function Ḡ(x) = 1+ε
2 x (ε > 0) is a supersolution of G, i.e., Ḡ′ > 1 − Ḡ2 − Ḡ

x . Since

also G(x) ∼ x
2 < Ḡ(x) for x near 0, it follows that

G(x) ≤ x

2
for all x > 0. (5.1)

Differentiating (3.11) we get

G′′ = −2GG′ − G′

x
+

1

x2
G

= −2G
(
1−G2 − G

x

)
− 1

x

(
1−G2 − G

x

)
+
G

x2
(5.2)

= −2G+ 2G3 +
3G2

x
+

2G

x2
− 1

x
≡ K(G, x).

If x ≤ 1, then by (5.1)

G′′ < −2G+ xG2 +
3

2
G+

1

x
− 1

x
= G

(
− 1

2
+ xG

)
< 0

and thus G is concave.

We next want to show that

K(G(x), x) < 0 if 1 < x < 2. (5.3)

To do that note that since G(x) > G(1) = 0.4464,

3G2(x)

ξ
+

2G(x)

ξ2
− 1

ξ

is monotone decreasing in ξ, 0 < ξ < 1, and

∂K

∂G
= −2 + 6G2 +

6G

x
+

2

x2
> 0 if G = G(ξ), ξ > 1, 1 < x < 2.

Hence, if

H(x, y) ≡ −2G(x) + 2G3(x) +
3G2(x)

y
+

2G(x)

y2
− 1

y
< 0 (5.4)

for a pair (x, y) with 1 ≤ y < x ≤ 2, then K(G(ξ), ξ) < 0 for y ≤ ξ ≤ x. We shall use this

remark with points

a1 = 1.0, a2 = 1.1, a3 = 1.2, a4 = 1.3, a5 = 1.5, a6 = 1.7, a7 = 1.9, a8 = 2.0.

By direct computation we find that H(aj+1, aj) < 0 for all j. Hence (5.3) holds and,

consequently, G(x) is concave for 1 ≤ x ≤ 2.

It remains to prove the concavity of G(x) for x > 2. To do that we shall first derive

rather sharp upper and lower bounds on G:

Lemma 5.1. The function G satisfies

G(x) < 1− 1

2x
− 1

8x2
− 1

8x3
if x ≥ 2. (5.5)

Proof. Writing

G = 1− 1

2x
+ φ,

(3.11) becomes

φ′ = −2φ− φ2 − 1

4x2
.
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By direct calculation one shows that the function

ψ(x) = − 1

8x2
− 1

8x3

satisfies

ψ′ > −2ψ − ψ2 − 1

4x2
,

and thus

Ḡ ≡ 1− 1

2x
− 1

8x2
− 1

8x3

is a supersolution to (3.11). Since

Ḡ(2) = 1− 1

4
− 1

32
− 1

64
≈ 0.703 > 0.697 ≈ G(2),

the assertion (5.5) follows.

We have

6G2(x) ≥ 6G2(2) ≈ 2.91 > 2 if x ≥ 2

and, therefore,

∂K

∂G
= −2 + 6G2 +

6G

x
+

2

x2
> 0 if x ≥ 2.

Consequently (recall (5.2)) in order to prove that G′′(x) < 0, or that K(G, x) < 0, it suffices

to prove that K(Ḡ, x) < 0 where Ḡ(x) is the supersolution given by the right-hand side of

(5.5). By direct computation,

K(Ḡ, x) =
Ḡ

x

{
1 +

1

2x
− 5

8x2
− 3

32x3
+

1

16x4
+

1

32x5

}
− 1

x
,

which can be expanded to

K(Ḡ, x) =
1

x3

(
− 1 +

1

32

1

x
+

1

8

1

x2
+

23

256

1

x3
− 3

256

1

x4
− 3

256

1

x5
− 1

256

1

x6

)
.

For x ≥ 1, the sum of the terms with positive sign is less than 1/32 + 1/8 + 23/256, which

is less than 1. Therefore, K(Ḡ, x) < 0 if x ≥ 1. This completes the proof of the concavity

of G.
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