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Abstract

The paper studies the zeros of 2mIp, /I—1—(m~+1)11 /1o, where I, are the Bessel functions.
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§1. The Main Results

In this paper we establish the following result concerning the Bessel functions I, (z):
Theorem 1.1. (i) For any m > 2 there exists a unique positive solution x = x,, of the

equation
I, (2) m+1 B
A — 5 G(z) =0, (1.1)
where
- Il({E)
G(z) = o) (1.2)
(ii) If 2 <1 < m, then

z; < T (1.3)

This theorem is used in the study of free boundary problemsl!!.

The following result will be used in the proof of (1.3):

Theorem 1.2. The function G(x) is concave for 0 < x < co; more precisely, G"(x) < 0
for 0 < x < o0.
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§2. Proof of Theorem 1.1 (i)

We recall (see, for instance, [3]) that I,,(z) satisfies the differential equation
2

" Lo\ m” _
I (@) + -1, (@) (1 +55 )Im(w) =0 (2.1)
and is given by
2 m+2k
_ (/T (2.2)
<K (m +k+ 1)
Furthermore
Iy (@) + %Im@c) = Lyoa(0), m>1, (2:3)
m
I;n(x) - ;Im(x) = Im+1 ($)7 (24)
2\1/2 1 .
I, (z) = (%) e [1 + O(;)} if ¢ — oo, (2.5)
Z D(m +n+ 2k + 1)(z/2)mn+2k (2.6)
k'Fm+k+1) m+k+1)I(m+n+k+1) '
Consider the function
o(x)fm(x)
m (T m > 2 2.7
Theorem 2.1. If m > 2, then
d
%fm(x) >0 forall x>0. (2.8)
To prove the theorem we first study the functions
S () = log I, (). (2.9)
Lemma 2.1. For any m > 1,
Sl () =S, _1(x) >0 forallz >0, (2.10)
and, consequently,
S/ (x) — Sy(z) >0 for all x > 0. (2.11)
Proof. From (2.1) we have
1 m?
SI 4+ (SI)+ =S, =1+ —. 2.12
L (S S =1+ (212)
Similarly
1 (m—1)2
2 _
Sp1+ (Sp_1)? + ES;n—l =1+ Y
so that
1 2 _ -1 2
(S = ) (Sl Sy S Sty) (8, St = 2= 0 (o)
Asz—0
Sm =mlogz +O(1), S,—1=(m—1)logz+ O(1),
so that

S — Sm—1 =logz+0(1), S, —S, 1= ,4_0()
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Thus (2.10) holds if « is small.
If (2.10) does not hold for all « > 0, then there is a smallest value = 29 > 0 for which
(2.10) is not satisfied. Clearly

Spn(x0) = 83 _1(z0) = 0, (2.14)
S;’I”L("TO) - S'::L—l(xO) <0.
On the other hand, from (2.13) and (2.14) we infer that

m2 — (m —1)2

S;;L(JUO) - S’:;L—l(xo) = 2 >0,
Lo
which is a contradiction.
Lemma 2.2. For any m > 1,
Sl (z) — Sy(z) < n for all x > 0. (2.15)
T

Proof. In view of (2.9), (2.15) is equivalent to 1= — Lo

< 2 or, by (2.4), to

I7n(x) IU(Q:)
m () Ta) _m
x I, (x) In(x) =
which is the same as
Im+1 Il
— fi 0. 2.16
I, < To or © > (2.16)
Using the product formula (2.6) it was proved in [2] that each term in the power series of
Imi1(2)1,,_1(x) is smaller than each term in the power series of (I,,(z))?, so that % <
ﬁ and (2.16) then follows by iterating this inequality.
Proof of Theorem 2.1. Introduce the function
¢(x) = (Sm(z) = Sm-1(2)) = (S1(x) = So()). (2.17)
Then the assertion (2.8) is equivalent to the inequality
¢ (x) >0 if x> 0. (2.18)
Writing (2.13) for m = 1 and subtracting from (2.13), we obtain
1 2(m —1
(S S ) (S ) (ST (S -5 2o = X S g it > 0 (219)
x T
For x small,
I Io _ )"l + 8’ rmm) 1+ (5)? [1+0(z?)]
Inihi (5)" Mgy + () rem) 511+ 3(5)7)
1 1 + mj—l ]. + z 2
TS 106 o=@
1 1 1
- L+ G ) vt
m[ * 2 m(m—l—l))z +0(=)
and, since m > 2, (2.18) holds for x small.
If (2.18) does not hold for all z > 0, then there is a smallest z = x( such that
¢'(x0) =0 (2.20)
and, clearly, ¢’ (z¢) <0, so that, by (2.19),
2(m —

D) (S 4 S (S — S 1) — (44 S(SL— S} atw—zo.  (2:21)
X
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Writing (2.20) in the form
S, =S =8-S at =,
we see that the right-hand side of (2.21) is equal to
[(Sh + Sr—1) = (S1+ Sp)(S1 = So)
= [(Sh—1 + (51 = 50) + Spm1) — (81 + S0)I(S1 — Sp)
= (2871 = 250) (1 — S)

(2.22)

which, by Lemmas 2.2 and 2.3, is smaller than 271 1. this is a contradiction to (2.21).

x x’

From (2.2) and (2.5) we see that
fm(x) =1 ifz — oo,

1
fm(x) > — ifx—0,
m

so that, if m > 2, f.(z) — m—:;l is negative for small x and positive for large x. Hence we

2
have

Corollary 2.1. For any m > 2 there exists a unique positive solution x = x,, of the

equation

In(zm) Im(xm) _ m-+1
Li(zm) Tm—1(m) 2m

1
This is precisely the assertion (i) of Theorem 1.1.

§3. Proof of Theorem 1.1 (ii)

By (2.4)
Ioy@ m-1 L@

Ly1(x) x Lna(z)’
so that the equation
Io(z) Ip(z)  m+1

Il(l‘) Im_l(SC) 2m

can be written also in the form
I, _1(x) m—-1 m+1IL(x)

In () z 2m  Iog(x)’
By Corollary 2.1 this equation has unique positive solution z,, and, setting
L1 (2)
zm(T) = /=,
( ) Imfl (I)
we have
-1 1
zm(x) < m +%G(x) if v <z,
-1 1
Zm(x) > m —i—%G(w) itz > a,

for any m > 1.
We shall prove
Theorem 3.1. For any m > 1,

m m 4+ 2
Zmy1(w) < . +—G(x) atx =z,

(2.23)

(3.2)

(3.3)
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so that Tym41 > Ty
Combining this with (3.5) we conclude that 2,11 > #,,, and this completes the proof of
Theorem 1.1 (ii).
In order to prove Theorem 3.1 we shall need several facts about the function G.
Lemma 3.1. The function G(x) satisfies:

0<G(z) <1l ifz>0. (3.7)
Proof. By (2.10) (with m = 1),
G'(z) >0 for all x > 0. (3.8)
It is also easily seen that
G(z) = g +0(2?) asz — 0. (3.9)
Since further, by (2.5),
G(z) —»1 ifz— oo, (3.10)

the lemma follows.
Using the relation I} = —Iy/x + Iy we find that G satisfies the differential equation
1
G’+G2+EG: 1. (3.11)
This equation will be needed later on.
We shall also need Theorem 1.2, i.e.,
G"(z) <0 for all z > 0. (3.12)

The proof, which is somewhat lengthy, will be given in Section 5.
Proof of Theorem 3.1. From (3.1) and (3.4) we have

m—1 _ In(x)

_ — . .1
It will actually be more convenient to work with the function
m—1 I, (x)
By (2.3), (2.4) and (2.2), V;,,(2) satisfies
2m — 1
Vo (2) + VE(@) + oV (2) = 1, (3.15)
Vi (2) = % L O@2), 7 0. (3.16)
Similarly
2m +1
1 () + Vi () + Vi1(z) =1, (3.17)
z 2
m = — , . 1
Vinna (@) = gy +00a?), 250 (3.18)
Theorem 3.1 can be restated as follows: If
1 1
‘/;rL(x7rL) - 5 %G(J%n)v (319)
then
1 m+2
Vm—i—l(zm,) < 5 mG(Im), (320)
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W (zp) < % mTHG(xm), (3.21)
where
_ (m+1)?
W(z) = meH(I). (3.22)

The reason for introducing the function W is to make the right-hand side of (3.21) the same
as for (3.19). We intend to compare V,(x) with W(z) for 0 < & < x,,.
By (3.17), W satisfies the differential equation

, o mm+2) 5, 2m+1 (m+1)2
—W W = 0 3.23
+(m+1)2 T m(m +2)’ r=0 (3:23)
and, by (3.18),
 om+1 9
W(z) = 2m(m+2)x+0(x ), ©—0.
In view of (3.16),
W(x) < Vp(x) for x near 0. (3.24)

If we can show that

(m+1)% mm+2) o, 2m+1

mim+2) (m+1)2 a
then, by comparison, we deduce that W(x) < Vp,(z) for all 0 < z < x,,, and (3.21)
follows. Indeed, otherwise there is a smallest & such that 0 < z < x,,, and (W — V,;,) = 0,
(W — V)" > 0 at Z; however, in view of (3.25) at x = T and (3.15),(3.23), we also have
W'(z) < V,).(Z), which is a contradiction.

We have thus reduced the proof of Theorem 3.1 to establishing the inequality (3.25), or

1 1
+
m(m+2)  (m+1)2

The above analysis shows that as long as (3.26) holds for 0 < z < &, W(x) < Vi, (x) for
0 < x < Z. Hence, in proving (3.26) it suffices to consider functions W (x) satisfying

Wwelowe_ 2ot

W for 0 <z <, (3.25)

w? < %W for 0 <z < app,. (3.26)

W(z) < Vi (z). (3.27)
Since
1 1
Vinl) < 5 %G(x) if 2 < @,
we may replace (3.27) by the simpler inequality
1 1
W(z) < 5 %G(x), 0<z< T, (3.28)
Lemma 3.2. There holds
ML ) < W) forallz>0 (3.29)
——G(x x) forall x . .
m(m 4+ 2) -

Proof. We shall construct a subsolution W(x) = AG(z), A > 0, to the function W. By
(3.23), this means that A has to be such that

2
)\G,+)\2m(m+2)G2+(2m+1)/\G (m+1)

(m+1)2 x m(m +2)’
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or, in view of (3.11),

2
G2[A2m(m+2) ) +2m)\G< (m+1)

(m+1)2 x m(m + 2)
But for A < (m 4+ 1)/[m(m + 2)], this inequality is a consequence of
2mA\ (m+1)?* N
x m(m + 2) ’

or
2 . x
EG <1, ie, I(z) < 510(:6),

which is indeed true for all x > 0 (by comparing the two series term-wise).
Asxz—0

Az m+1
N~ —, W ———
2’ 2m(m + 2) “
so that the inequality AG(z) < W(z) holds for x near zero if A < #ﬂlz) But then, by

comparison, AG(x) < W(z) for all z > 0. This yields the assertion (3.29).

We summarize: In order to complete the proof of Theorem 3.1 or Theorem 1.1 (ii) it
suffices to prove that (3.26) holds for W (z) satistying (3.28) and (3.29). We shall state this
in a different way:

If we introduce the function

1 22
+
m(m+2)  (m+1)>2
then, in view of (3.28) and (3.29), what we have to prove is the following
Lemma 3.3. There holds

O(z,z) = G*(z) — %zG(x), (3.30)

1 1
m+ m—+ ) (3.31)

(m+2) 2m

Since the function z — ®(z,z) is a parabola, it is

O(z,2) <0 for0<z <z, =€ (m

— _m+l mtl
Proof. Set z; = m(m+2)’ 2m

sufficient to prove (3.31) just at the extreme points z; and zo. But
G? 2(m+1)
<
m(m + 2) x

G? 1
- < KG7
T

zo =

®(z1,2) <0 reduces to 1+ G,

1
®(z9,2) < 0 reduces to ———
(22,2) reduces to —3 +4m

and since (by Lemma 3.2) 0 < G < 1, it suffices to prove that
1 2m+1 1 1 m+1
mtlg 11 _mit

m(m + 2) x m+2  4dm
Noting that the second inequality is a consequence of the first one, it remains to prove that

the function

1+ G.

F(z) =2(m+ 1)G(x) — Oz (3.32)
is positive for 0 < z < x,,, where

(m+1)
= —. 3.33
m(m + 2) (3.33)

Observe that for x near 0,
1 2
F(x)w(m—kl)x—mx:wj, a>0,

m(m + 2)
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so that F(0) = 0, F’(0) > 0. By (3.12), F(x) is a concave function. Hence, in order to
prove that F(x) > 0 for all 0 < x < z,, it suffices to show that F'(z,,) > 0, i.e., that

2(m 4+ 1)G(xm) — Omxm > 0. (3.34)

Since the proof of this inequality is quite lengthy, it is given in the next section.

§4. Proof of (3.34)

Introduce the positive solution V;,, of

— 2m — 1 -
V() + V() = 1, (4.1)
ie.,
_ 2m —1 2m — 1\ 2 1/2
V) = =5 +[( 5 ) 1] (4.2)
Note that, by (4.1),
= 3
m . 4.
Tn(€) < 5o (13)
Differentiating (4.1) we obtain
[ 2m —1 - 2m —1 -
D A (4.4)
3 3
and hence, upon using (4.3),
2m—17y;, 1
A e S SN (45)
m 2Vm + 2m£71 2m£71 2m —1 : :
Lemma 4.1. There holds
2m — 1\ 1/2 _ 2m — 1\ 1/2
> .
Vnla) 2 (Z5) " Wn((557) T 2) (4.
for all x > 0.
Proof. Consider the function
2(x) = AV (Ax), A >0 (4.7)
and set £ = Ax. Then
, 9  2m—1 9 [ =9 2m —1 - 9
2425+ z=1=X|V, () + V(& + Vin(§) = 1| +A* =1

=MV + A" =1 (by (4.1))

)\2
A’ —1 (by (45
<S4R (by (45))
= N 2m -—1<0
m —
if A2 < %, so that z is a subsolution of (3.15). Since also, for x near 0,
2m—11 26 \2
~ A 5 ( ) by (a2
) AT S (G ) oy (42)
_\2_ 7 x
Aot < am @

we conclude, by comparison, that z(x) < V,,,(z) for all z > 0, and (4.6) follows.
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Lemma 4.2. The function V,, (&) satisfies V! (&) > 0, V'(£) < 0.
Proof. The first inequality follows from (4.4). To prove the second inequality we set
V =V, and differentiate (4.4). We get
2m —1 2(2m —1 2(m —1
2VV//+2(V/)2+ m v — ( m )V/+ (m )

¢ & & V=0

Since V' > 0, we see that

2(2m —1 2(2m —1
SgnVHZSgH{—?(VI)Q—I— (2m )V/_ (2m )V}

&2 &
< sgn{2(2n;21) (v' - %)} - sgn{g(ﬂvv’)} by (4.4),

which is negative since V’ > 0.
The lower bound for V;, (derived in Lemma 4.1) will henceforth be used to deduce that
Xy, in (3.5) is sufficiently large, which is an important step in the proof of (3.34).

Set
2m  2m —1\1/2_ 2m — 1\1/2
Qm(m) - m+1( 2m ) Vm(( 2m ) x),
2m .
P (z) = mvm(x) (Vin, was defined in (3.14)),
1 m+1
Lm(aj) = meml' = mfﬁ
By (3.19)
Pp(zm) = G(zn), (4.8)
and (3.34) is equivalent to
Ly (xm) < G(Tm)- (4.9)

For z near 0, G(z) ~ 5, so that
G(0) = Lm(0) =0, G'(0) > Ly, (0),

whereas, for z large, G(x) < 1 < L,,(x). Since G is concave, it follows that there exists a
unique point Z,, such that

Ly(x) < G(z) ifx < Zp,

Lon(z) > G(z) itz > G, (4.10)
To prove (4.9), let & be the point where
- . . 2m(m+2
L,(Z)=1, ie, 2= 727_%1) (4.11)
Since G(z) < 1, (4.10) implies that
B < 7. (4.12)
Suppose
Qum(#) > 1 = Ly (). (4.13)

Then from the concavity of @,, (Lemma 4.2) and the fact that @,,(0) = L,,(0) = 0, it
follows that

Qm(z) > Ly(z) ifx<i. (4.14)
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By monotonicity of @, (which follows from Lemma 4.1)
Qm(z) > Qun(@)>1 ifx >z,
whereas by (4.14), (4.10),
Qm(z) > Ly (x) > G(z) if &, <z < Z.

Thus, altogether, Q. (x) > G(z) if &, < z < oo and, since P, (z) > Qu,(z) for all z > 0
(Lemma 4.1), we conclude that

P (z) > G(x) if 2y <z < o0.

Hence, by (4.8), x,, < &, and, recalling (4.10), the assertion (4.9) follows, and this completes
the proof of (3.34).

It remains to prove that (4.13) holds.

Set

m+1( 2m )1/2 (277171)1/2~
, Om = Z.

A, = ——
m 2m \2m—1 2m

Then (4.13) reduces to

Vin(om) > Am. (4.15)
Since
V2(0m) + 22V (0m) = 1.
if "
a2 g2y o (4.16)
Om

then (4.15) follows by monotonicity. Substituting Z from (4.11) into o,,, the inequality
(4.16) reduces to
(m+1)2(3m +1)
2m(2m — 1)(m + 2)

<1,

which is valid if m > 4.

We have thus completed the proof of (3.34) (and therefore also of Theorem 1.1 (ii)) for
m > 4. The proof for m < 3 can be obtained by explicit calculations. Indeed, the solution
of

Iy(z)  3Ii(x)
4 Io(x)

isax =a=3.773474 and

= —0.0686071 < 0,

whereas the solution of
Liz) _20()
IL(z) 31

is x =b=>5.119174 and
= —0.058144 < 0.
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§5. Proof of Theorem 1.2

The function G(z) = H=x (¢ > 0) is a supersolution of G, i.e., G' >1— G* — g Since
also G(z) ~ % < G(z) for x near 0, it follows that

G(z) < g for all z > 0. (5.1)
Differentiating (3.11) we get
G 1
G"=-2GG" - — + G
r oz
G 1 G G
_ e A U = A
=-26(1-¢ x) x(l G x)+x2 (5.2)

22 1
=—2G+2G3+%+x—f—; = K(G,z).

If <1, then by (5.1)

G”<—2G+xG2+§G+1—1:G(—1+xG)<0
2 r x 2

and thus G is concave.
We next want to show that
K(G(z),z) <0 if 1<z <2. (5.3)
To do that note that since G(x) > G(1) = 0.4464,
3G%(x)  2G(x) 1

§ & £
is monotone decreasing in &, 0 < £ < 1, and
oK 6G 2
-9 2,24 = if G= 1,1 2.
pTe +6G+x+x2>0 it G=GE),E>1 1<a<

Hence, if
3G? 2G 1
H(z,y) = —2G(z) + 2G3(x) + y(x) + y(;c) ~y <0 (5.4)
for a pair (z,y) with 1 <y <z <2, then K(G(£),£) <0 for y < & < x. We shall use this
remark with points

a; = 10, as = 11, as = 12, a4 = 13, as = 15, ag = 17, a7 = 19, ag = 2.0.

By direct computation we find that H(aj41,a;) < 0 for all j. Hence (5.3) holds and,
consequently, G(z) is concave for 1 < z < 2.
It remains to prove the concavity of G(z) for x > 2. To do that we shall first derive
rather sharp upper and lower bounds on G:
Lemma 5.1. The function G satisfies
1 1

1
l1-————— f x>2. .
G(m) < o0 82 P zf (5 5)

Proof. Writing

1
G=1-—
on T

(3.11) becomes
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By direct calculation one shows that the function

1 1
YO = ge T
satisfies
1
/ —nh — 2 -
o> -2 -y -
and thus
_ 1 1 1
G=1—-— — — —

2¢ 82 823
is a supersolution to (3.11). Since
~ 1 1 1
G2)=1- 1° % 0.703 > 0.697 = G(2),
the assertion (5.5) follows.

We have
6G2(z) > 6G%(2) ~ 291 >2 ifz>2

and, therefore,

0K 6G 2

— =-2 Tt — 45 if x> 2.

BTe +6G+x+x2>0 if @ >
Consequently (recall (5.2)) in order to prove that G”(z) < 0, or that K (G, z) < 0, it suffices
to prove that K(G,x) < 0 where G(z) is the supersolution given by the right-hand side of
(5.5). By direct computation,

~ G 1 5 3 1 1 1
K@w=Cfis L 2 L
(G2 = U 2 "8 320 T 160t T 320 2
which can be expanded to
~ 1 11 11 23 1 3 1 3 1 1 1
K@o=t(casllyl L B 1 8 1 31 11
(G, 2) 3 +32 x+8 x2+256 3 256 %t 256 x5 256 6

For 2 > 1, the sum of the terms with positive sign is less than 1/32 4+ 1/8 + 23/256, which
is less than 1. Therefore, K(G,z) < 0 if # > 1. This completes the proof of the concavity
of G.
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