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Abstract

By introducing the block estimate technique and directly using the Newton iteration method,
the author constructs Cantor families of time periodic solutions to a class of nonlinear wave
equations with periodic boundary conditions. The Lyapunov-Schmidt decomposition used by
J. Bourgain, W. Craig and C. E. Wayne is avoided. Thus this work simplifies their framework

for KAM theory for PDEs.
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§1. Introduction

Near an equilibrium state to a system of nonlinear ODEs, one can regard the nonlinear

system as a perturbation of its linearization. It is well known that if none of the characteristic

exponents of the linearized system has zero real part, then the phase portrait near the

equilibrium of the nonlinear system is topologically equivalent to that of its linearization

(cf. [18]). However, if characteristic exponents with zero real part appear, then the linearized

system alone does not contain complete topological information of the phase portrait of the

nonlinear system: in general, one cannot deduce the stability or the existence of periodic or

quasiperiodic solutions to the nonlinear system through linearization. Nevertheless, if the

nonlinear system has an energy conservation background, then it may still preserve classes

of periodic or quasiperiodic solutions to its linearization (cf. e.g., [22,1,23,24,34]). A typical

example is that the system is Hamiltonian and the equilibrium is elliptic. In this case, all the

characteristic exponents of the linearized system have zero real part, thus all the solutions

to the linearized system are periodic or quasiperiodic. If suitable nonresonant conditions are

satisfied, then the Lyapunov center theorem asserts that the nonlinear system can preserve
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matiques Appliquées (ISFMA).



298 CHIN. ANN. OF MATH. Vol.21 Ser.B

smooth families of periodic solutions to its linearization (cf. [22]), and the KAM theory

asserts that the nonlinear system can preserve Cantor families of quasiperiodic solutions to

its linearization (cf. [1,14,25]). The reason for Cantor set appearing in the latter result is

the small divisor phenomenon.

In recent years, the Lyapunov center theorem and the KAM theory for equilibriums have

been extended to some infinitely dimensional Hamiltonian systems described by nonlinear

PDEs such as periodic boundary value problems or homogeneous Dirichlet boundary value

problems for wave equations of the form

utt −△u+ f(x, u) = 0

or Schrödinger equations of the form

iut +△u = h(u, ū)

and the periodic boundary value problem for the KdV equation

ut + uxxx + uux = 0.

The main conclusion is that typical nonlinear Hamiltonian perturbations of a linear Hamil-

tonian PDE can preserve Cantor families of periodic or quasiperiodic solutions. The results

are now concentrated in the case where the space dimension is one.

In general, there are two approaches to investigate this problem. One approach is a direct

extention of the classical KAM method proposed independently by S. B. Kuksin[18] and C. E.

Wayne[32], namely, the coordinates transformation (in phase space) method. Through this

approach, extensive studies have been carried out for quasiperiodic solutions to the KdV

equation, the nonlinear Schördinger equations or the nonlinear wave equations (for KdV

equation, cf. [17,18,19]; for Schördinger equation, cf. [20]; for wave equation, cf. [2,3,27,

32]). Since a Melnikov nonresonant condition is required in this approach, it is difficult to

treat problems with multiple (or approximately multiple) eigenvalues such as problems in

multi-dimensional spaces for various equations with various boundary conditions and the

periodic boundary value problems for the wave equations or the Schrödinger equations in

one space dimension. Another approach is the Fourier transformation method proposed

by W. Craig and C. E. Wayne in [11] and extensively developped by J. Bourgain to treat

problems in multi-dimensional spaces. By Fourier transformation of periodic or quasiperi-

odic solutions to be constructed, the problem is translated into a lattice problem whose

task is essentially to solve a nonlinear functional equation. This appoach does not require

the Melnikov nonresonant condition as in the previous approach, thus it is more suitable

for dealing with problems with multiple (or approximately multiple) eigenvalues. Via this

approach, W. Craig and C. E. Wayne constructed Cantor families of time periodic solu-

tions to the wave equations[10,11,12] or the Schördinger equations[13] with various boundary

conditions in one space dimension, and J. Bourgain constructed Cantor families of time pe-

riodic solutions to the wave equations in arbitrarily multi-dimensional spaces with periodic

boundary conditions[4] and quasiperiodic solutions to the Schördinger equations in two space

dimensions with the same boundary conditions[6].

In [11], W. Craig and C. E. Wayne investigated small amplitude time periodic solutions

to the nonlinear wave equations of the form

utt − uxx + g(x, u) = 0 (1.1)
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with periodic boundary condition

u(t, x+ 2π) = u(t, x) (1.2)

or homogeneous Dirichlet boundary condition, where the nonlinear term g(x, u) = g1(x)u+

g2(x)u
2+ · · · vanishes at u = 0. To describe their result, we consider the periodic boundary

condition (the result and the method for homogeneous Dirichlet boundary condition are

similar). Suppose that g(x, u) is periodic in the variable x with period 2π. Let {ψj(x)}∞j=0

be the complete set of eigenfunctions of the Sturm-Liouville operator −∂xx + g1(x) with

the periodic boundary condition (1.2), and ω2
0 ≤ ω2

1 ≤ ω2
2 ≤ · · · be the corresponding

eigenvalues. For any given j0 ∈ Z+, if the eigenvalue ω2
j0
> 0, the linearized equation

utt − uxx + g1(x)u = 0 (1.3)

of (1.1) has a family of time periodic solutions rψj0(x) cosωj0t (r ∈ R) satisfying the periodic

boundary condition (1.2). Craig and Wayne proved the following theorem.

Theorem 1.1. For any given integer j0 ≥ 0, there is a generic class of analytic nonlinear

terms g(x, u), and for each term in this class there exists a constant r∗ > 0 sufficiently

small and a Cantor set C ⊆ [0, r∗), such that for any given ϵ ∈ C, there exists Ω(ϵ) =

ωj0 +O(ϵ2) (ϵ→ 0) and a time periodic solution u(Ω(ϵ)t, x; ϵ) with (angular) frequency Ω(ϵ)

to the nonlinear wave equation (1.1) satisfying the periodic boundary condition (1.2), and

this solution is close to a solution ϵψj0(x) cosωj0t to the linearized equation (1.3) satisfying

the same boundary condition

|u(t, x; ϵ)− ϵψj0(x) cos t| ≤ cϵ2, ∀(t, x) ∈ R2,

where c > 0 is a constant independent of ϵ. Furthermore, if a fully nonresonant condition

is satisfied, then the Cantor set C has full density at zero.

This result has been extended by Bourgain to the arbitrarily finitely dimensional space

case. Consider the nonlinear wave equation in d (d ≥ 1) space dimensions

utt −△u+ ρu+ u3 = 0, (1.4)

where ρ is a real number. Bourgain[4] proved the following theorem.

Theorem 1.2. If ρ satisfies a Diophantine condition, then for any given m ∈ Zd \ {0}
with |m|2+ρ > 0, there exists r∗ > 0 and a Cantor subset C of [0, r∗), such that for any given

ϵ ∈ C, there is a time periodic solution u(t, x; δ) with (angular) frequency λ(ϵ) to Equation

(1.4) with periodic boundary conditions

u(t, x1, · · · , xi + 2π, · · · , xd) = u(t, x1, · · · , xi, · · · , xd), i = 1, · · · , d, (1.5)

this solution is close to the time periodic solution ϵ cos(⟨m,x⟩+λmt) to the linearized equation

utt −△u+ ρu = 0 with the same boundary condition, where λm =
√

|m|2 + ρ :

u(t, x; ϵ) = ϵ cos(⟨m,x⟩+ λ(ϵ)t) +O(ϵ3),

λ(ϵ) = λm +O(ϵ2) as ϵ −→ 0.

Concerning time periodic solutions, there is a difference between the results on ODEs and

those on PDEs. As mensioned above, in the case of ODEs, the Lyapunov center theorem as-

serts that a system of nonlinear equations may preserve smooth families of periodic solutions

to the linearized system. However, for a nonlinear PDE, which is an infinitly dimensional

dynamical system and has infinitely many degrees of freedom, the small divisor phenomenon

which is a character of the KAM theory appears in the study of periodic solutions. As a
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result, in general only Cantor families of periodic solutions can be preserved. However, Li

Tatsien, Qin Tiehu and the author of the present paper found that in some special cases,

for example, for the problem above studied by Bourgain, nonlinear perturbations to a linear

equation may preserve smooth families of periodic solutions as well. Through constructing

travelling wave solutions, we proved the following theorem[30].

Theorem 1.3. Suppose that g(u) ∈ C2, g(0) = 0, g′(0)
△
= ρ ̸= 0. Then for any given

m ∈ Zd \ {0} satisfying |m|2 + ρ > 0, there exists r∗ > 0, such that for any given ϵ ∈ [0, r∗),

there exists a periodic travelling wave solution

u(t, x; ϵ) = pϵ(⟨m,x⟩+ λ(ϵ)t)

with time (angular) frequency λ(ϵ) to the nonlinear wave equation

utt −△u+ g(u) = 0

with the periodic boundary conditions (1.5), this solution is close to a time periodic solution

ϵ cos(⟨m,x⟩ + λmt) to the linearized equation utt − △u + ρu = 0 with the same boundary

conditions, where λm =
√
|m|2 + ρ :

∥u(t, x; ϵ)− ϵ cos(⟨m,x⟩+ λ(ϵ)t)∥C1 ≤ cϵ2, |λ(ϵ)− λm| ≤ cϵ,

where c > 0 is a constant independent of ϵ. In particular, if g(u) = ρu+κu3 (κ = ±1), then

the above two estimates can be improved as

∥u(t, x; ϵ)− ϵ cos(⟨m,x⟩+ λ(ϵ)t)∥C1 ≤ cϵ3,
∣∣∣λ2(ϵ)− (

λ2m +
3

4
κϵ2

)∣∣∣ ≤ cϵ4.

This theorem improved the above result of Bourgain. As well, the travelling wave solu-

tion method is much simpler than the method of Newton iteration plus Lyapunov-Schmidt

decomposition used in [4].

As mentioned above, the Fourier transformation approach translates problems of con-

structing periodic (or quasiperiodic) solutions of nonlinear PDEs to a corresponding lattice

problem which requires essentially to solve a nonlinear functional equation. To solve this

functional equation, one usually applies the Lyapunov-Schmidt decomposition to split it into

two equations. One equation, called Q equation, is strongly resonant and finitely dimen-

sional; while the other one, called P equation, has resonance weaker than the Q equation,

but meets a small divisor difficulty (even in the case of periodic solutions) since it is in-

finitely dimensional. First, fixing the frequency Ω and the amplitude ϵ of the solution to

be constructed as parameters, applying the Newton iteration method whose fast convergent

property allows one to overcome the small divisor difficulty, one solves the P equation which

has solution u(ϵ,Ω) for a Cantor set of parameters (ϵ,Ω). Then, substituting this families

of solutions in the Q equation, it turns out to be an equation of the frequency Ω and the

amplitude ϵ. Applying the implicit function theorem, one solves the functional relation be-

tween the frequency and the amplitude, and obtains a family of solutions to the original

problem parameterized by the frequency (or the amplitude).

Applying the Lyapunov-Schmidt decomposition to solve the strong resonance of the Q

equation causes some new difficulties. In the course of solving the P equation by Newton

iteration, in order to control the smallness of the small divisors, some values of the frequency

and the amplitude parameters must be elliminated, so that the P equation is only solved

for the frequency and amplitude parameters (Ω, ϵ) in a Cantor subset of a neighbourhood

of (ωj0 , 0). To solve the Q equation by the implicit function theorem so as to determine the
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functional relation between the frequency and the amplitude, one has to extend the Cantor

family of solutions u(ϵ,Ω) to the P equation as a smooth function of (Ω, ϵ) in a neighbourhood

of (ωj0 , 0), and estimate its derivatives with respect to Ω and ϵ. This procedure is technically

complicated; in the meantime it increases difficulty in the estimate of the measure of the

Cantor parameter set corresponding to the family of obtained solutions.

In this paper, instead of the Lyapunov-Schmidt decomposition, we introduce the block

estimate technique, and directly using the Newton iteration method, we construct Cantor

families of periodic solutions to a class of nonlinear wave equations. Thus we simplify the

framework in [11] (see Section 3 for details). Our method is generally applicable for similar

problems; in this paper we only consider the following case: discuss time periodic solutions

to the perturbed Klein-Gordon equations of the form

utt − uxx + au− u3 + f(x, u) = 0 (1.6)

with the periodic boundary condition (1.2), where f(x, u) =
∞∑

m=4
fm(x)um is an analytical

function of (x, u), and is periodic in x with period 2π. For each j = 0, 1, · · · , let ωj =√
j2 + a, which is a squareroot of an eigenvalues of the Sturm-Liouville operator −uxx+ au

with the periodic boundary condition (1.2). We will prove the following theorem.

Theorem 1.4. Suppose that a > 0 satisfies the Diophantine condition |ka − j| >
dk−γ , ∀j, k ∈ N for some constants d > 0 and γ > 0. Then for any given positive

integer j0, there exists r∗ > 0 and a Cantor subset C of the interval (ωj0 − r∗, ωj0 ] which has

full density at ωj0 , such that for any given Ω ∈ C, the perturbed Klein-Gordon equation (1.6)

admits a time periodic solution u(Ωt, x; Ω) with (angular) frequency Ω satisfying the periodic

boundary condition (1.2), and this solution is close to a periodic solution ϵ(Ω) cosΩt cos j0x

to the linearized equation utt − uxx + au = 0 with the same boundary condition, where

ϵ(Ω) = 4
3

√
2ωj0(ωj0 − Ω),

|u(t, x; Ω)− ϵ(Ω) cosΩt cos j0x| ≤ cϵ(Ω)2, ∀(t, x) ∈ R2.

As mensioned above, it is difficult to study problems with multiple or approximately mul-

tiple eigenvalues via the classical KAM approach, because a Melnikov nonresonant condition

is required. After the completion of this work, the author learned that the Melnikov non-

resonant condition has been weakened quite recently by L. Chierchia and J. You, this allows

them to construct Cantor families of quasiperiodic solutions via the classical KAM approach

to periodic boundary problems for a class of one dimensional nonlinear wave equations of

the form[8] utt − uxx + V (x)u = f(u), f(u) = O(u2), which correspond to approximately

double eigenvalues. The problems with infinitely many multiple eigenvalues, as the equation

(1.6) discussed in this paper, is still excluded by their method.

§2. Preliminaries

In this section, we introduce a family of Banach spaces of periodic functions {Hσ}σ>0, and

discuss linear operators on this family of Banach spaces. Some function norms and operator

norms similar to those introduced in this section have appeared in other articles[13,26].

2.1. Periodic Function Space H
Suppose that u(s, x) is a complex valued function defined on R2, which is periodic in

both variables s and x with the common period 2π. If u is suitably smooth, then we can
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expand it in Fourier series

u(s, x) =
∑
j,k∈Z

ujke
i(jx+ks). (2.1)

Denote ez = ei(jx+ks) and |z| = |j| + |k| for all double indices z = (j, k) ∈ Z2. Then (2.1)

can be rewritten as u =
∑

z∈Z2

u(z)ez.

We now define a family of function spaces {Hσ}σ>0 of such periodic functions. For any

given σ > 0, the norm ∥·∥σ of u is defined by ∥u∥σ =
∑

z∈Z2

|u(z)|eσ|z|. The function space Hσ

is definded as the set of such periodic functions u with ∥u∥σ < ∞. It is easy to check that

Hσ is a Banach space associated to the norm ∥ · ∥σ. Moreover, equipped with the ordinary

product of functions as the multiplying operation, Hσ becomes a Banach algebra. In fact,

∥uv∥σ =
∑
z∈Z2

|(uv)(z)|eσ|z| =
∑
z∈Z2

∣∣∣ ∑
p∈Z2

u(p)v(z − p)
∣∣∣eσ|z|

≤
∑
p∈Z2

|u(p)|eσ|p|
∑
z∈Z2

|v(z − p)|eσ|z−p| ≤ ∥u∥σ∥v∥σ.

Define the function space H =
∪
σ>0

Hσ.

For any given subset X of Z2, we can define a projection operator on H, still denoted by

X, by

u =
∑
z∈Z2

u(z)ez 7→ Xu =
∑
z∈X

u(z)ez.

The function spaces Hσ,X and HX are defined as the images of Hσ and H under the pro-

jection operator X, respectively.

Suppose that f(x, u) =
∞∑

m=4
fm(x)um is a periodic function of x with period 2π, which

is analytic on the domain {(x, u) ∈ C2| |ℜx| ≤ σ̄, |u| ≤ δ}, where σ̄ > 0 and δ > 0 are

constants. Thanks to the Cauchy integral formula, we have ∥fm(x)∥σ̄ ≤ cδ−m. Therefore,

for any given 0 < σ < σ̄ and 0 < δ′ < δ, for any given u ∈ Hσ with ∥u∥σ ≤ δ′, we have

∥f(x, u)∥σ ≤ c1∥u∥4σ, ∥f ′(x, u)∥σ ≤ c2∥u∥3σ, ∥f ′′(x, u)∥σ ≤ c3∥u∥2σ,

where c1, c2 and c3 are positive constants depending on δ′, and

f ′(x, u) =
∂f

∂u
(x, u) =

∞∑
m=3

(m+ 1)fm+1(x)u
m,

f ′′(x, u) =
∂2f

∂u2
(x, u) =

∞∑
m=2

(m+ 1)(m+ 2)fm+2(x)u
m.

2.2. Linear Operators on H
Suppose that T : H −→ H is a linear operator. If for any given σ > 0, there exists

τ ∈ (0, σ] such that ∥Tu∥τ ≤ cσ,τ∥u∥σ, ∀u ∈ Hσ, then we call T continuous.

It is clear that the composition of two linear continuous operators is also a linear contin-

uous operator. Therefore, since

∥∂tu∥σ−τ ≤ cτ−1∥u∥σ, ∥∂xu∥σ−τ ≤ cτ−1∥u∥σ, ∀σ > τ > 0, ∀u ∈ Hσ,

the differential operators ∂αt ∂
β
x ((α, β) ∈ Z2, α, β ≥ 0) are continuous.
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Denote

T (z1, z2) = (2π)−2

∫
[0,2π]2

(Tez2) · ēz1 , ∀z1, z2 ∈ Z2.

Then

Tez =
∑
p∈Z2

T (p, z)ep, ∀z ∈ Z2.

One can check that if T : H −→ H is a linear continuous operator, then

(Tu)(z) =
∑
p∈Z2

T (z, p)u(p), ∀z ∈ Z2.

If T1, T2 : H −→ H are linear continuous operators, then

T2T1(z1, z2) =
∑
p∈Z2

T2(z1, p)T1(p, z2), ∀z1, z2 ∈ Z2.

For a linear continuous operator T : H −→ H, we define its σ-norm by

∥T∥σ = sup
z2∈Z2

∑
z1∈Z2

|T (z1, z2)|eσ|z1−z2|.

Define Lσ as the set of such linear continuous operators T with ∥T∥σ <∞. If T ∈ Lσ, then

∥Tu∥τ ≤ ∥T∥σ∥u∥τ , ∀τ ∈ (0, σ], ∀u ∈ Hτ .

In fact,

∥Tu∥τ =
∑
z∈Z2

|(Tu)(z)|eτ |z| =
∑
z∈Z2

∣∣∣ ∑
p∈Z2

T (z, p)u(p)
∣∣∣eτ |z|

≤
∑
p∈Z2

|u(p)|eτ |p|
∑
z∈Z2

|T (z, p)|eσ|z−p| ≤ ∥T∥σ∥u∥τ .

It is clear that Lσ equipped with the norm ∥·∥σ is a Banach space. Moreover, equipped with

the composition of operators as the multiplying operation, it becomes a Banach algebra. In

fact,

∥T2T1∥σ = sup
z2∈Z2

∑
z1∈Z2

|T2T1(z1, z2)|eσ|z1−z2|

= sup
z2∈Z2

∑
z1∈Z2

∣∣∣ ∑
p∈Z2

T2(z1, p)T1(p, z2)
∣∣∣eσ|z1−z2|

≤ sup
z2∈Z2

∑
p∈Z2

|T1(p, z2)|eσ|p−z2|
∑

z1∈Z2

|T2(z1, p)|eσ|z1−p|

≤ ∥T1∥σ∥T2∥σ, ∀T1, T2 ∈ Lσ.

Every function u ∈ H generates a linear operator ⟨u⟩ : H −→ H in the following way

⟨u⟩v = uv, ∀v ∈ H.

Since

⟨u⟩(z1, z2) = (2π)−2

∫
[0,2π]2

(⟨u⟩ez2)ēz1 = (2π)−2

∫
[0,2π]2

uez2 ēz1

= (2π)−2

∫
[0,2π]2

uēz1−z2 = u(z1 − z2), ∀z1, z2 ∈ Z2
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for any given σ > 0, the function u belongs to Hσ if and only if the operator ⟨u⟩ belongs to
Lσ; moreover, ∥u∥σ = ∥⟨u⟩∥σ.

Suppose that X ⊆ Z2. For any given linear operator T : HX −→ HX , for any given

Y ⊆ X, we denote T |Y or simply TY : HY −→ HY the restriction of T on HY , i.e.,

(T |Y )u = Y Tu, ∀u ∈ HY .

Suppose that X1, X2 ⊆ Z2 and that T : HX1 −→ HX2 is a linear operator. If for any

given σ > 0, there exists τ ∈ (0, σ] such that

∥Tu∥τ ≤ cσ,τ∥u∥σ, ∀u ∈ Hσ,X1 ,

then we call T continuous, and denote

∥T∥σ = sup
z2∈X1

∑
z1∈X2

|T (z1, z2)|eσ|z1−z2|,

where

T (z1, z2) = (2π)−2

∫
[0,2π]2

(Tez2) · ēz1 , ∀z1 ∈ X2, ∀z2 ∈ X1.

One can check that if T : HX1 −→ HX2 is a linear continuous operator, then

(Tu)(z) =
∑
p∈X1

T (z, p)u(p), ∀z ∈ X2.

If T1 : HX1 −→ HX2 and T2 : HX2 −→ HX3 are linear continuous operators, then

T2T1(z1, z2) =
∑
p∈Z2

T2(z1, p)T1(p, z2), ∀z1 ∈ X3, ∀z2 ∈ X1.

Moreovere, if the right-hand side of the following inequality makes sense, then

∥T2T1∥σ ≤ ∥T2∥σ∥T1∥σ.

2.3. Block Decomposition for Linear Operators

Suppose that X,Y ⊆ Z2, where X = X1∪X2, X1∩X2 = ∅, and Y = Y1∪Y2, Y1∩Y2 = ∅.
For any given linear operators T1 : HX1 −→ HY1 , T2 : HX2 −→ HY1 , T3 : HX1 −→ HY2 and

T4 : HX2 −→ HY2 , the notation

(
T1 T2
T3 T4

)
denotes the linear operator T : HX −→ HY ,

given by T = T1X1 + T2X2 + T3X1 + T4X2. It is easy to check that

∥T∥σ = max{∥T1∥σ + ∥T3∥σ, ∥T2∥σ + ∥T4∥σ}, ∀σ > 0.

Consequently, ∥Tl∥σ ≤ ∥T∥σ, ∀σ > 0, l = 1, 2, 3, 4.

§3. A Framework for Constructing
Periodic Solutions to Nonlinear PDEs

3.1. Translate the Problem in an Equivalent Functional Equation by Fourier

Transformation

To construct time periodic solutions to the periodic boundary value problem of a per-

turbed Klein-Gordon equation

utt − uxx + au− u3 + f(x, u) = 0, (3.1)

u(t, x+ 2π) = u(t, x), (3.2)
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as usual, we first make scaling in the time variable. Given a frequency Ω ∈ R, a linear

continuous operator JΩ : H −→ H is defined by

u =
∑
z∈Z2

u(z)ez 7→ JΩu =
∑

z=(j,k)∈Z2

(−k2Ω2 + j2 + a)u(z)ez.

And, a nonlinear operator FΩ : H −→ H is defined by FΩ(u) = JΩ(u) − u3 + f(x, u). If

u(s, x) ∈ H is a solution to the functional equation FΩ(u) = 0, then w(t, x) = u(Ωt, x) is a

time periodic solution with frequency Ω to the perturbed Klein-Gordon equation (3.1) with

the periodic boundary condition (3.2). One can check that if a real number a satisfies a

Diophantine condition |ka−j| > dk−γ , ∀j, k ∈ Z, k ̸= 0 for some constants d > 0 and γ > 0,

then there exist constants d′ > 0 and γ′ > 0, such that the real number ωj0 =
√
j20 + a

satisfies the Diophantine condition |kωj0 − j| > d′k−γ′
, ∀j, k ∈ N. Therefore, Theorem 1.4

is a direct consequence of the following theorem.

Theorem 3.1. Let j0 be a given positive integer. Suppose that there exist d > 0, γ > 0,

such that ωj0 =
√
j20 + a satisfies the Diophantine condition

|kωj0 − j| > dk−γ , ∀j, k ∈ N. (3.3)

For any given f(x, u) =
∞∑

m=4
fm(x)um, which is a periodic function in x with period 2π, and

is analytic on the domain {(x, u) ∈ C2| |ℜx| ≤ σ̄, |u| ≤ δ}, where σ̄ > 0 and δ > 0 are positive

constants, for any given constant µ > 1, there exists r∗ > 0 and a Cantor subset C of the

interval (ωj0 −r∗, ωj0) with full density at ωj0 : meas (ωj0 −r, ωj0)\C ≤ c1r
µ, ∀0 < r < r∗,

such that for any given frequency parameter Ω ∈ C, there exists a solution uΩ ∈ Hσ̄/2 to

the equation FΩ(u) = 0, which is close to a solution ϵ(Ω) cos s cos j0x of the linear equation

JΩ(u) = 0 :

∥uΩ − ϵ(Ω) cos s cos j0x∥σ̄/2 ≤ c2ϵ(Ω)
2,

where ϵ(Ω) = 4
3

√
2ωj0(ωj0 − Ω), c1 > 0 is a constant independent of r, and c2 > 0 is a

constant independent of Ω.

3.2. Direct Construct of an Approximate Solution Sequence by Newton Iter-

ation Method

To solve the functional equation FΩ(u) = 0, Craig, Wayne and Bourgain used Lyapunov-

Schmidt and Newton iteration in their works. In this paper, we shall avoid the use of

the Lyapunov-Schmidt decomposition and directly use the Newton iteration method to

solve this functional equation. The iteration begins with the first approximate solution

u0 = ϵ cos s cos j0x, where ϵ = ϵ(Ω)
△
= 4

3

√
2ωj0(ωj0 − Ω). For any given Ω ∈ R and u ∈ H,

let F ′
Ω(u) be the derivative JΩ−3⟨u2+f ′(x, u)⟩ of FΩ at u. The iteration procedure is given

by vn+1 = −
(
F ′
n+1

)−1
F (un), un+1 = un + vn+1, where F

′
n+1 = F ′

Ω(un) is the linearized

operator of FΩ(u) at u.

3.3. Block Decomposition and Frölich-Spencer Estimate, Main Techniques for

Estimating the Inverse Operators of the Linearized Operator

To estimate the correction term vn+1 of the nth iteration step, we need to estimate

the inverse operator of the linearized operator F ′
n+1, which is the summation of two lin-

ear operators JΩ and ⟨−3u2n + f ′(x, un)⟩. The former one, the diagonal operator JΩ, is

the principle term, while the latter one, ⟨−3u2n + f ′(x, un)⟩, is a perturbation term since

||⟨−3u2n + f ′(x, un)⟩||σ ≤ c||u||2σ, and un keeps “small” in the iteration procedure. For those
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frequecy values Ω close to ωj0 , zero is a cluster point of the infinitely many diagonal elements

JΩ(z, z) = k2Ω2 − ω2
j (z = (j, k) ∈ Z2) of JΩ. Therefore, a small divisor difficulty arises

when estimating the inverse operators.

First, we distinguish the lattice set of strong resonanceQ = {(j, k) ∈ Z2| j = ±j0, k = ±1}
and weak resonance P = Z2\Q. When the frequency Ω is taken near ωj0 , for lattice points z

in Q, the diagonal elements JΩ(z, z) = Ω2−ω2
j0

tends to zero when the frequency parameter

Ω tends to ωj0 . Therefore, the linearized operator F ′ has a strong resonance on the lattice

set Q. To treat with this problem, we introduce the block decomposition technique.

The following lemma, appeared in [6] and independently used by the author in his Ph.D

thesis, is important to our block decomposition technique.

Lemma 3.1. Suppose that X ⊆ Z2 is a lattice set, L : HX −→ HX is a linear operator,

L =

(
L1 L2

L3 L4

)
. If L4 and (L1 − L2L

−1
4 L3) are invertible, then

L−1 =

(
A −AL2L

−1
4

−L−1
4 L3A L−1

4 L3AL2L
−1
4 + L−1

4

)
is the inverse operator of L, where A = (L1 − L2L

−1
4 L3)

−1.

Make block decomposition F ′
n+1 =

(
L1 L2

L3 L4

)
, where L1 = QF ′

n+1Q, L2 = QF ′
n+1P ,

L3 = PF ′
n+1Q, L4 = PF ′

n+1P . Having obtained an estimate of the inverse operator of L4,

we can apply Lemma 3.1 to estimate the inverse operator of the linearized operator F ′
n+1.

The estimation of the inverse operator of L4 meets the small divisor difficulty. We essen-

tially follow the line of Craig and Wayne[11]. The key point is a Fröhlich-Spencer estimate

given in Lemma 3.2 below due to Craig, Wayne[11] and Pöschel[26], which is stated here in

an explicit form convenient for our use and also gives an explicit expression of the inverse

operator (see (3.5)).

Let d0 = 1
2 min

j∈Z
|j− a|. Define S(Ω) =

{
z ∈ Z2| |JΩ(z, z)| ≤ d0

}
∩P as the singular point

set of JΩ. It is easy to verify that if ωj0 satisfies the Diophantine condition (3.3), then for

any given µ > 1, the set D of those frequencies Ω satisfying the Diophantine condition

|kΩ− j| > 1

2
dk−

1
α , ∀j, k ∈ N,

where α = 1
µ(γ+1)+1 , has full density at ωj0 =

√
j20 + a: there exists r∗ > 0 and c0 > 0, such

that

meas(ωj0 − r, ωj0 + r) \ D ≤ c0r
µ, ∀0 < r < r∗. (3.4)

If the frequency parameter Ω is taken in the Diophantine set D, then the singular point

set S(Ω) of JΩ is sparse. In fact, we have the following proposition.

Proposition 3.1. If Ω ∈ D, then there exists d1 > 0, such that for any given z1 = (j1, k1)

and z2 = (j2, k2) in S(Ω) with |z1| ≤ |z2| and z1 ̸= z2, we have |z1 − z2| ≥ 2d1|z2|α.
We will prove Proposition 3.1 in Section 5.

In the iteration procedure, to control the “smallness” of the “small divisors ”, we will

eliminate some “bad” values of the frequency parameter Ω, so as to obtain a sequence of

“good” frequency parameter sets C0 = D ∩ (ωj0 − r∗, ωj0) and

Cn = {Ω ∈ Cn−1| |F ′
n(z, z)|−1 ≤ 2n|z|−β , ∥(F ′

n|B(z))
−1∥σn−1 ≤ 2n|z|−β , ∀z ∈ S(Ω)},

n = 1, 2 · · · ,
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where r∗ > 0 is to be determined later, B(z) denotes the spherical neighbourhood {p ∈
P | |p − z| ≤ d1|z|α} of z in P , β = µ(γ + 1) + 1, and d1 is given by Proposition 3.1. The

limit set C =
∞∩

n=0
Cn of the sequence of closed sets C0 ⊇ C1 ⊇ C2 ⊇ · · · is a Cantor set.

Lemma 3.2. Suppose that X ⊆ Z2, L : HX −→ HX is a linear operator. Suppose that

S is a subset of X, and there exist constants d1 > 0 and 0 < α < 1, such that

|z1 − z2| > 2d1 ((1 + |z1|)α + (1 + |z2|)α) , ∀z1, z2 ∈ S, z1 ̸= z2.

For any given z ∈ S, let B(z) be the spherical neighbourhood {p ∈ X| |p− z| ≤ d1(1+ |z|)α}
of z in X. Denote R = X \ S, R̃ = X \

( ∪
z∈S

B(z)
)
,

A = LR ⊕
(⊕

z∈S

Lz

)
, B = L−A, Ã = LR̃ ⊕

(⊕
z∈S

LB(z)

)
, B̃ = L− Ã,

where “⊕” means direct sum. Suppose furthermore that there exists σ > 0, such that

• Both the restrictions of the operator L on R and R̃ are invertible, with ∥LR∥σ < ∞,

∥LR̃∥σ <∞;

• For any given z ∈ S, both the restrictions of the operator L on z and B(z) are invertible;

moreover, there exist constants d2 > 0 and β > 0, such that

∥L−1
z ∥σ =

1

|L(z, z)|
≤ d2|z|β , ∥L−1

B(z)∥σ ≤ d2|z|β .

Then there exits a constant c0 > 0 independent of d1, d2, α, β and σ, such that for any given

0 < τ < σ, we have

∥A−1BÃ−1B̃∥σ−τ ≤ c0d2(d2 + ∥L−1
R ∥σ + ∥L−1

R̃
∥σ)(d1τ)−

2β+3
α e−

d1τ
2 mα

∥B∥σ∥B̃∥σ,

∥B̃Ã−1BA−1∥σ−τ ≤ c0d2(d2 + ∥L−1
R ∥σ + ∥L−1

R̃
∥σ)(d1τ)−

2β+3
α e−

d1τ
2 mα

∥B∥σ∥B̃∥σ,

where m = 1 +min
z∈S

|z|. If furthermore,

c0d2(d2 + ∥L−1
R ∥σ + ∥L−1

R̃
∥σ)(d1τ)−

2β+3
α e−

d1τ
2 mα

∥B∥σ∥B̃∥σ < 1,

then the operators L, (Id− B̃Ã−1BA−1) and (Id−A−1BÃ−1B̃) are invertible with

L−1 = (A−1 − Ã−1BA−1)(Id− B̃Ã−1BA−1)−1

= (Id−A−1BÃ−1B̃)−1(A−1 −A−1BÃ−1). (3.5)

We point out that in the case of ODEs, the Lyapunov center theory can be extended

to some non-Hamiltonian systems (see [24]). Lemma 3.2 applies not only to selfadjoint

operators, but also to non-selfadjoint operator; thus it is possible to extend the result in this

paper to non-Hamiltonian PDEs.

3.4. Estimate of the Inverse Operators of the Linearized Operators by the

Block Decomposition Technique and the Frölich-Spencer Estimate, Convergence

of the Approximate Solution Sequence via Nash-Moser Technique

Let σ∗ = σ̄/2. Let σ0 = σ̄+σ∗
2 ,

τn = 2−(n+2)(σ̄ − σ∗), σn = σn−1 − 2τn, ∀n = 1, 2, · · · .

Let B1 = ∅ and Bn = {z ∈ P | |z| ≤ 2n}, n = 2, 3, · · · . Denote by F ′
n the linearization of



308 CHIN. ANN. OF MATH. Vol.21 Ser.B

the nonlinear operator FΩ at un−1(Ω). Make block decomposition

F ′
n =

(
F ′
n,QQ F ′

n,QP

F ′
n,PQ F ′

n,PP

)
,

where the linear operators F ′
n,QQ = QF ′

nQ maps HQ in HQ, F
′
n,QP = QF ′

nP maps HP in

HQ, F
′
n,PQ = PF ′

nQ maps HQ in HP , and F
′
n,PP = PF ′

nP maps HP in HP .

In Section 5, applying the block decomposition technique and the Frölich-Spencer esti-

mate, combined with the Nash-Moser technique, we will prove that if r∗ > 0 is sufficiently

small, then for any given Ω ∈ Cn, the following induction hypotheses (F’1.an)–(F.an)

(n = 1, 2, · · · ) hold:
(F’1.an) For any given lattice set Y ⊆ P satisfying Y ⊇

∪
z∈S∩Bn

B(z) and Y ∩(S\Bn) = ∅,

we have

∥(F ′
n|Y )−1∥σn+τn ≤ c12

βn2

;

(F’2.an) the restriction F ′
n|P of the linearized operator F ′

n on HP is invertible with

∥(F ′
n,P )

−1w∥σ ≤ c22
βn2

∥w∥σ+τn , ∀σ ≤ σn + τn, ∀w ∈ QHσ+τn ;

(F’3.an) ∥Q(F ′
n)

−1w∥σn ≤ c3(ϵ
−2∥Qw∥σn + 2βn

2∥Pw∥σn+τn),

∥P (F ′
n)

−1w∥σn
≤ c4(2

βn2∥Qw∥σn+τn + 22βn
2∥Pw∥σn−1

);

(v.an) ∥v1∥σ1
≤ c5ϵ

2, ∥vn∥σn
≤ ϵ2e−( 3

2 )
n

, n = 2, 3, · · · ;
(u.an) ∥un − u0∥σn ≤ c6ϵ

2;

(F.an) ∥F (un)∥σn−τn+1 ≤ ϵ
9
2 e−2( 3

2 )
n

,

where ϵ(Ω) = 4
3

√
2ωj0(ωj0 − Ω), and ci are positive constants independent of the frequency

parameter Ω and the iteration step number n.

The induction hypotheses (F.an) and (u.an) (n = 1, 2, · · · ) imply that for any given

frequency Ω taken in the Cantor set C, the functional equation FΩ(u) = 0 admits a solution

u(Ω) =
∞∑

n=0
un(Ω) ∈ Hσ∗ , which satisfies ∥u(Ω)− ϵ(Ω) cos s cos j0x∥σ∗ ≤ c2ϵ(Ω)

2.

3.5. Estimate of the Density of the Cantor Parameter Set via Lipschitz Esti-

mates

To prove Theorem 3.1, it remains to estimate the density of the Cantor parameter set C
at the frequency ωj0 of the linearized problem, namely, to prove that

meas(ωj0 − r, ωj0) \ C ≤ c1r
µ, ∀0 < r < r∗.

According to (3.4), it suffices to prove the following estimates

(Cn) meas (ωj0 − r, ωj0) \ Cn ≤ c2−nrµ, ∀0 < r < r∗, n = 1, 2, · · · .
To prove estimates (Cn), we need only to prove the following proposition.

Proposition 3.2. For any given Ω+,Ω− ∈ Cn−1, we have

∥un−1(Ω
+)2 − un−1(Ω

−)2∥σn−τn ≤ c|Ω+ − Ω−|,
|hΩ+(z)− hΩ−(z)| ≤ r2∗k

2|Ω+ − Ω−|, ∀z = (j, k) ∈ S(Ω+) ∩ S(Ω−).

According to the construction of Cn (n = 1, 2, · · · ), (ωj0 −r, ωj0)\Cn =
∪

z∈Z2

(E
(1)
n,z ∪E(2)

n,z),

where

E(1)
n,z = {Ω ∈ Cn−1 ∩ (ωj0 − r, ωj0)| z ∈ S(Ω), |F ′

Ω,n(z, z)|−1 > 2n|z|−β},

E(2)
n,z = {Ω ∈ Cn−1 ∩ (ωj0 − r, ωj0)| z ∈ S(Ω), ∥(F ′

Ω,n|B(z))
−1∥σn−1 > 2n|z|−β}.
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By Lemma 3.1, we can prove that for any given Ω ∈ Cn−1 and z ∈ S(Ω), it holds that

∥(F ′
n|B(z))

−1∥σn−1 ≤ 2
( 1

R
+ 1

)
, (3.6)

where R
△
= F ′

n(z, z)− h(z), and

h(z) = hΩ(z) =
∑

p,q∈Bo(z)

F ′
n(z, p)

(
F ′
n|Bo(z)

)−1
(p, q)F ′

n(q, z).

In virtue of Proposition 3.2, we obtain

|F ′
n,Ω+(z, z)− F ′

n,Ω−(z, z)| ≥ ck2|Ω+ − Ω−|,
|RΩ+ −RΩ− | ≥ ck2|Ω+ − Ω−|, ∀Ω+,Ω− ∈ Cn−1.

Therefore, for any given z = (j, k) ∈ Z2, we have measE
(1)
n,z ≤ c|k|−(β+2) and measE

(2)
n,z ≤

c|k|−(β+2). Then, note that for any given k ∈ Z, there are no more than [kr+ 1] number of

j ∈ Z such that there exists Ω ∈ (ωj0 − r, ωj0), and z = (j, k) ∈ S(Ω). Moreover, since ωj0

satisfies the Diophantine condition (3.3), for any given z = (j, k) ∈ Z2, if |k| < δr−(γ+1),

then Ek = ∅. Consequently, we have∑
z∈Z2

meas E(1)
n,z ∪ E(2)

n,z ≤
∑

k∈Z,|k|>δr−(γ+1)

c(|k|r + 1)k−(β+2) ≤ crµ,

which proves (Cn).

To prove Proposition 1.2, it is sufficient to prove that for any given Ω+,Ω− ∈ Cn, n =

1, 2, · · · , the following Lipschitz estimates are valid.

(F’.bn)

∥(F ′
n,Ω+)−1w − (F ′

n,Ω−)−1w∥σ ≤ cτ−2−8β
n (ϵ+ϵ−)−2|Ω+ − Ω−|∥w∥σ+3τn ,

∀σ ≤ σn − τn, ∀w ∈ Hσ+3τn ,

(v.bn) ∥vn(Ω+)− vn(Ω
−)∥σn−τn ≤ ce−( 3

2 )
n |Ω+ − Ω−|,

(F.bn) ∥FΩ+(un(Ω
+))− FΩ−(un(Ω

−))∥σn−τn
≤ c (ϵ+ + ϵ−)

3
e−2( 3

2 )
n |Ω+ − Ω−|,

(u.bn) ∥un(Ω+)− un(Ω
−)∥σn−τn ≤ c|ϵ+ − ϵ−|,

where ϵ+ = ϵ(Ω+), ϵ− = ϵ(Ω−).

We will prove in the last section the estimate (3.6) and the Lipschitz estimates (F’.bn)

–(u.bn), with which we will prove Proposition 3.2.

§4. Linear Estimates

Our task in this section is to prove Lemma 3.1 and Lemma 3.2.

Proof of Lemma 3.1. Noting that X1X2 = X2X1 = 0, we have(
L1 L2

L3 L4

)(
A −AL2L

−1
4

−L−1
4 L3A L−1

4 L3AL2L
−1
4 + L−1

4

)
= (L1A− L2L

−1
4 L3A)X1 + (L3A− L4L

−1
4 L3A)X1

+ [−L1AL2L
−1
4 + L2(L

−1
4 L3AL2L

−1
4 + L−1

4 )]X2

+ [−L3AL2L
−1
4 + L4(L

−1
4 L3AL2L

−1
4 + L−1

4 )]X2.

Then, noting that

(L1A− L2L
−1
4 L3A)X1 = (L1 − L2L

−1
4 L3)AX1 = X1,

(L3A− L4L
−1
4 L3A)X1 = 0,
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[−L1AL2L
−1
4 + L2(L

−1
4 L3AL2L

−1
4 + L−1

4 )]X2

= [(−L1 + L2L
−1
4 L3)AL2L

−1
4 + L2L

−1
4 ]X2 = (−L2L

−1
4 + L2L

−1
4 )X2 = 0,

[−L3AL2L
−1
4 + L4(L

−1
4 L3AL2L

−1
4 + L−1

4 )]X2

= (−L3AL2L
−1
4 + L4L

−1
4 L3AL2L

−1
4 + L4L

−1
4 )X2 = X2,

we have (
L1 L2

L3 L4

)(
A −AL2L

−1
4

−L−1
4 L3A L−1

4 L3AL2L
−1
4 + L−1

4

)
= IdX .

Similarly, we have(
A −AL2L

−1
4

−L−1
4 L3A L−1

4 L3AL2L
−1
4 + L−1

4

)(
L1 L2

L3 L4

)
= IdX .

This completes the proof of Lemma 3.1.

To prove Lemma 3.2, we need the following preliminary lemma, a straightforward exten-

sion of a similar lemma well known in the standard Banach space theory, whose proof is

then omitted.

Lemma 4.1. Suppose that X ⊆ Z2, and that T : HX −→ HX is a linear operator.

Suppose furthermore that there exists σ > 0, such that ∥T∥σ < 1. Then

(1) the operator series
∞∑

n=0
Tn is convergent in Lσ, with

∥∥∥ ∞∑
n=0

Tn
∥∥∥
σ
≤ 1

1− ∥T∥σ
;

(2) the limit operator
∞∑

n=0
Tn is the inverse operator of (IdX − T ).

Proof of Lemma 3.2. First, we have

L(A−1 − Ã−1BA−1) = (A+B)A−1 − (Ã+ B̃)Ã−1BA−1 = Id− B̃Ã−1BA−1,

(A−1 −A−1BÃ−1)L = A−1(A+B)−A−1BÃ−1(Ã+ B̃) = Id−A−1BÃ−1B̃.

By Lemma 4.1, if ∥B̃Ã−1BA−1∥σ−τ < 1 and ∥A−1BÃ−1B̃∥σ−τ < 1, then both (Id −
B̃Ã−1BA−1) and (Id−A−1BÃ−1B̃) are invertible, which implies that L is invertible, with

its inverse operator given by

L−1 = (A−1 − Ã−1BA−1)(Id− B̃Ã−1BA−1)−1 = (Id−A−1BÃ−1B̃)−1(A−1 −A−1BÃ−1).

It is sufficient to show that there exists a constant c0 > 0 independent of d1, d2, α, β and

σ, such that for any given 0 < τ < σ, we have

∥A−1BÃ−1B̃∥σ−τ ≤ c0d2(d2 + ∥L−1
R ∥σ + ∥L−1

R̃
∥σ)(d1τ)−

2β+3
α e−

d1τ
2 mα

∥B∥σ∥B̃∥σ,

∥B̃Ã−1BA−1∥σ−τ ≤ c0d2(d2 + ∥L−1
R ∥σ + ∥L−1

R̃
∥σ)(d1τ)−

2β+3
α e−

d1τ
2 mα

∥B∥σ∥B̃∥σ.

In what follows, the length |z1− z2|+ · · ·+ |zn−1− zn| of an arbitary path (z1, z2, · · · , zn)
in Z2 will be denoted by |(z1, z2, · · · , zn)|.
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According to the definition of the norms of the linear operators, we have

∥A−1BÃ−1B̃∥σ−τ = sup
z2∈X

∑
z1∈X

|A−1BÃ−1B̃(z1, z2)|e(σ−τ)|z1−z2|

= sup
z2∈X

∑
z1∈X

∣∣∣ ∑
p∈X

∑
q∈X

∑
r∈X

A−1(z1, p)B(p, q)Ã−1(q, r)B̃(r, z2)
∣∣∣e(σ−τ)|z1−z2|

≤ sup
z2∈X

{I(z2) + II(z2)},

where

I(z2) =
∑
z1∈R

∑
p∈X

∑
q∈X

∑
r∈X

|A−1(z1, p)B(p, q)Ã−1(q, r)B̃(r, z2)|e(σ−τ)|(z1,p,q,r,z2)|,

II(z2) =
∑
z1∈S

∑
p∈X

∑
q∈X

∑
r∈X

|A−1(z1, p)B(p, q)Ã−1(q, r)B̃(r, z2)|e(σ−τ)|(z1,p,q,r,z2)|.

Because the linear operators A = LR ⊕
( ⊕

z∈S

(Lz)
)
and Ã = LR̃ ⊕

( ⊕
z∈S

LB(z)

)
are block

diagonal, and, the linear operators B = L − A and B̃ = L − Ã are off-block diagonal, we

have

I(z2) =
∑
z1∈R

∑
p∈R

∑
q∈X

∑
r∈X

|L−1
R (z1, p)B(p, q)Ã−1(q, r)B̃(r, z2)|e(σ−τ)|(z1,p,q,r,z2)|

=
∑
z1∈R

∑
p∈R

∑
q∈S

∑
r∈X

|L−1
R (z1, p)B(p, q)Ã−1(q, r)B̃(r, z2)|e(σ−τ)|(z1,p,q,r,z2)|

=
∑
z1∈R

∑
p∈R

∑
q∈S

∑
r∈B(q)

|L−1
R (z1, p)B(p, q)L−1

B(q)(q, r)B̃(r, z2)|e(σ−τ)|(z1,p,q,r,z2)|,

II(z2) =
∑
z1∈S

∑
q∈X

∑
r∈X

|(L(z1, z1))−1B(z1, q)Ã
−1(q, r)B̃(r, z2)|e(σ−τ)|(z1,q,r,z2)|

= II1(z2) + II2(z2),

where

II1(z2) =
∑
z1∈S

∑
q∈R̃

∑
r∈X

|(L(z1, z1))−1B(z1, q)Ã
−1(q, r)B̃(r, z2)|e(σ−τ)|(z1,q,r,z2)|

=
∑
z1∈S

∑
q∈R̃

∑
r∈R̃

|(L(z1, z1))−1B(z1, q)L
−1

R̃
(q, r)B̃(r, z2)|e(σ−τ)|(z1,q,r,z2)|,

II2(z2) =
∑
z1∈S

∑
z∈S

∑
q∈B(z)

∑
r∈X

|(L(z1, z1))−1B(z1, q)Ã
−1(q, r)B̃(r, z2)|e(σ−τ)|(z1,q,r,z2)|

=
∑
z1∈S

∑
z∈S

∑
q∈B(z)

∑
r∈B(z)

|(L(z1, z1))−1B(z1, q)L
−1
B(z)(q, r)B̃(r, z2)|e(σ−τ)|(z1,q,r,z2)|.

Suppose that q ∈ S, r ∈ B(q). If z ∈ B(q), then B̃(r, z2) = 0; otherwise

|(z1, p, q, r, z2)| ≥ |q − z2| ≥ d1(1 + |q|)α ≥ d1m
α,

e−
τ
2 |(z1,p,q,r,z2)| ≤ e−

τ
2 |q−z2| ≤ e−

d1τ
2 (1+|q|)α ≤ c (d1τ)

− 2β+3
α (1 + |q|)−(2β+3).
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Noting that ∥LB(q)∥σ ≤ d2|q|β , we have∑
r∈B(q)

|B̃(r, z2)|eσ|r−z2||L−1
B(q)(q, r)|e

σ|q−r|e−
τ
2 |(z1,p,q,r,z2)|

≤ c(d1τ)
− 2β+3

α (1 + |q|)−(2β+3)
∑

r∈B(q)

|B̃(r, z2)|eσ|r−z2|∥LB(q)∥σ

≤ cd2(d1τ)
− 2β+3

α (1 + |q|)−3∥B̃∥σ.

Then, noting that
∑

q∈Z2

(1 + |q|)−3 <∞, we have

I(z2) ≤ e−
d1τ
2 mα ∑

q∈S

∑
r∈B(q)

|B̃(r, z2)|eσ|r−z2||L−1
B(q)(q, r)|e

σ|q−r|e−
τ
2 |(z1,p,q,r,z2)|

×
∑
p∈R

|B(p, q)|eσ|p−q|
∑
z1∈R

|L−1
R (z1, p)|eσ|z1−p|

≤ cd2(d1τ)
− 2β+3

α e−
d1τ
2 mα

∥B∥σ∥B̃∥σ∥L−1
R ∥σ

∑
q∈S

(1 + |q|)−3

≤ cd2(d1τ)
− 2β+3

α e−
d1τ
2 mα

∥B∥σ∥B̃∥σ∥L−1
R ∥σ.

Suppose that z1 ∈ S, q ∈ R̃. Then we have

|(z1, q, r, z2)| ≥ |z1 − q| ≥ d1(1 + |z1|)α ≥ d1m
α,

e−
τ
2 |(z1,q,r,z2)| ≤ e−

τ
2 |z1−q| ≤ e−

d1τ
2 (1+|z1|)α ≤ c(d1τ)

− 2β+3
α (1 + |z1|)−(2β+3).

Consequently, for any given q ∈ X, we have∑
z1∈S

|L(z1, z1)|−1|B(z1, q)|eσ|z1−q|e−
τ
2 |(z1,q,r,z2)|

≤
∑
z1∈S

d2|z1|β |B(z1, q)|eσ|z1−q|c(d1τ)
− 2β+3

α (1 + |z1|)−(2β+3)

≤ cd2(d1τ)
− 2β+3

α

∑
z1∈S

|B(z1, q)|eσ|z1−q|

≤ cd2(d1τ)
− 2β+3

α ∥B∥σ.

Therefore

II1(z2) ≤ e−
d1τ
2 mα ∑

r∈R̃

|B̃(r, z2)|eσ|r−z2|
∑
q∈R̃

|L−1

R̃
(q, r)|eσ|q−r|

×
∑
z1∈S

|L(z1, z1)|−1|B(z1, q)|eσ|z1−q|e−
τ
2 |(z1,q,r,z2)|

≤ cd2(d1τ)
− 2β+3

α e−
d1τ
2 mα

∥B∥σ∥B̃∥σ∥L−1

R̃
∥σ.

Suppose that z1 ∈ S, and there exists z ∈ S, such that q, r ∈ B(z). If z ̸= z1, then we

have

|(z1, q, r, z2)| ≥ |z1 − q| ≥ |z1 − z| − |z − q| ≥ d1[(1 + |z1|)α + (1 + |z|)α] ≥ d1m
α.

If z = z1, and z2 /∈ B(z1), then we have

|(z1, q, r, z2)| ≥ |z1 − z2| ≥ d1(1 + |z1|)α = d1(1 + |z|)α ≥ d1m
α.
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If z = z1, and z2 ∈ B(z1), then B̃(r, z2) = 0. In conclusion, we always have

e−
τ
2 |(z1,q,r,z2)| ≤ e−

d1τ
4 (1+|z1|)αe−

d1τ
4 (1+|z|)α ≤ c(d1τ)

− 2β+3
α (1 + |z1|)−β(1 + |z|)−(β+3).

On the other hand, for any given q ∈ X, we have∑
z1∈S

|L(z1, z1)|−1|B(z1, q)|eσ|z1−q|(1 + |z1|)−β

≤
∑
z1∈S

d2|z1|β |B(z1, q)|eσ|z1−q|(1 + |z1|)−β ≤ cd2∥B∥σ,

and, for any given z2 ∈ X, we have∑
z∈S

∑
r∈B(z)

|B̃(r, z2)|eσ|r−z2|
∑

q∈B(z)

|L−1
B(z)(q, r)|e

σ|q−r|(1 + |z|)−(β+3)

≤
∑
z∈S

∥B̃∥σ∥L−1
B(z)∥σ(1 + |z|)−(β+3) ≤ d2∥B̃∥σ

∑
z∈S

(1 + |z|)−3 ≤ cd2∥B̃∥σ.

It follows that

II2(z2) ≤ c(d1τ)
− 2β+3

α e−
d1τ
2 mα ∑

z∈S

∑
r∈B(z)

|B̃(r, z2)|eσ|r−z2|
∑

q∈B(z)

|L−1
B(z)(q, r)|e

σ|q−r|

×
∑
z1∈S

|L(z1, z1)|−1|B(z1, q)|eσ|z1−q|e−
τ
2 |(z1,q,r,z2)|

≤ cd22(d1τ)
− 2β+3

α ∥B∥σ∥B̃∥σe−
d1τ
2 mα

.

To summarize, we have

∥A−1BÃ−1B̃∥σ−τ ≤ cd2(d2 + ∥L−1
R ∥σ + ∥L−1

R̃
∥σ)(d1τ)−

2β+3
α e−

d1τ
2 mα

∥B∥σ∥B̃∥σ.

Similarly, we can prove that

∥B̃Ã−1BA−1∥σ−τ ≤ cd2(d2 + ∥L−1
R ∥σ + ∥L−1

R̃
∥σ)(d1τ)−

2β+3
α e−

d1τ
2 mα

∥B∥σ∥B̃∥σ.

The proof of Lemma 3.2 is completed.

§5. Convergence of the Newton Iteration

First, let us prove Proposition 3.1.

Proof of Proposition 3.1. Without loss of generality, we may assume that |z2| ≤ 2|z1|.
We may assume furthermore that k1, k2 > 0, j1, j2 > 0, since (j, k) in S(Ω) implies that

(±j,±k) in S(Ω). Then we have

1

d
|k1 − k2|−

1
α ≤ |(k1 − k2)Ω− (j1 − j2)| ≤ |k1Ω− j1|+ |k2Ω− j2|

≤ |k21Ω2 − j21 |
k1Ω+ j1

+
|k22Ω2 − j22 |
k2Ω+ j2

≤ (d0 + a)
( 1

k1Ω+ j1
+

1

k2Ω+ j2

)
≤ c

( 1

|z1|
+

1

|z2|

)
≤ 3c

|z2|
.

Therefore there exists d1 > 0, such that |z1 − z2| ≥ |k1 − k2| ≥ 2d1|z2|α. This completes the

proof of Proposition 3.1.

Throughout this section, we denote by c the various positive constants independent of

the frequency parameter Ω and the iteration step number n.
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We need to prove that there exists r∗ > 0 sufficiently small, such that for the monotone

sequence of closed sets C0 ⊇ C1 ⊇ C2 ⊇ · · · defined by C0 = D ∩ (ωj0 − r∗, ωj0) and

Cn = {Ω ∈ Cn−1| |F ′
n(z, z)|−1 ≤ 2n|z|−β , ∥(F ′

n|B(z))
−1∥σn−1 ≤ 2n|z|−β , ∀z ∈ S(Ω)},

n = 1, 2 · · · ,

the following induction hypotheses (F’1.an)–(F.an) are valid for any given Ω ∈ Cn.
(F’1.an) For any given lattice set Y ⊆ P satisfying Y ⊇

∪
z∈S∩Bn

B(z) and Y ∩(S\Bn) = ∅,

we have ∥(F ′
n|Y )−1∥σn+τn ≤ c12

βn2

;

(F’2.an) the restriction F ′
n|P of the linearized operator F ′

n on HP is invertible with

∥(F ′
n,P )

−1w∥σ ≤ c22
βn2

∥w∥σ+τn , ∀σ ≤ σn + τn, ∀w ∈ QHσ+τn ;

(F’3.an) ∥Q(F ′
n)

−1w∥σn ≤ c3(ϵ
−2∥Qw∥σn + 2βn

2∥Pw∥σn+τn),

∥P (F ′
n)

−1w∥σn ≤ c4(2
βn2∥Qw∥σn+τn + 22βn

2∥Pw∥σn−1);

(v.an) ∥v1∥σ1 ≤ c5ϵ
2, ∥vn∥σn ≤ ϵ2e−( 3

2 )
n

, n = 2, 3, · · · ;
(u.an) ∥un − u0∥σn ≤ c6ϵ

2;

(F.an) ∥F (un)∥σn−τn+1 ≤ ϵ
9
2 e−2( 3

2 )
n

,

where ϵ(Ω) = 4
3

√
2ωj0(ωj0 − Ω), and ci are positive constants independent of the frequency

parameter Ω and the iteration step number n.

5.1. Estimates for the First Approximate Solutions

Let M = ∥ cos s cos j0x∥σ0 . We have

(u.a0) ∥u0∥σ0 =Mϵ.

Noting that Q = {(j, k) ∈ Z2| j = ±j0, k = ±1}, P = Z2 \Q, we have cos s cos j0x ∈ HQ

and

QJΩ = JΩQ =
[ 9

16
ϵ2 +O(ϵ4)

]
Q. (5.1)

We need to prove

(F.a0) ∥PF (u0)∥σ0 ≤ cϵ3, ∥QF (u0)∥σ0 ≤ cϵ4.

By definition, F (u0) = JΩ(u0)− u30 + f(x, u0). It follows from (u.a0) that

∥u30∥σ0 ≤ cϵ3, ∥f(x, u0)∥σ0 ≤ cϵ4.

Noting that Pu0 = 0 and the projection operator P is commutative with the operator JΩ,

we have PJΩ(u0) = 0. Consequently, the first estimate in (F.a0) is valid. Because

u30 = ϵ3
(3
4
cos s+

1

4
cos 3s

)(3
4
cos j0x+

1

4
cos 3j0x

)
,

we have Q(u30) =
9
16ϵ

3 cos s cos j0x. On the other hand, it follows from (5.1) that QJΩ(u0) =[
9
16ϵ

2 +O(ϵ4)
]
ϵ cos s cos j0x. Therefore the second estimate in (F.a0) is valid.

5.2. Convergence of the Iteration Sequence

We are to prove the induction hyposeses (F’1.an)–(F.an).

(i) (v.a1)–(v.an) =⇒ (u.an) is obvious.

(ii) (u.a(n-1)) and (v.an) =⇒ (F.an).

In fact,

F (un) = F (un−1) + F ′
nvn −

(
3un−1 + vn +

∫ 1

0

(1− η)f ′′(x, un−1 + ηvn)dη
)
v2n.
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According to the construction of vn, F (un−1) + F ′
nvn = 0. Therefore

∥F (un)∥σn ≤
∥∥∥3un−1 + vn +

∫ 1

0

(1− η)f ′′(x, un−1 + ηvn)dη
∥∥∥
σn

∥vn∥2σn

≤ cϵ(ϵ2e−( 3
2 )

n

)2 ≤ ϵ
9
2 e−2( 3

2 )
n

.

(iii) Proof of (F’1.a1).

By definition, F ′
1 = JΩ + ⟨−3u20 + f ′(x, u0)⟩. Because

∥⟨−3u20 + f ′(x, u0)⟩∥σ0 ≤ ∥ − 3u20 + f ′(x, u0)∥σ0 ≤ c∥u0∥2σ0
,

it follows from (u.a0) that

∥⟨−3u20 + f ′(x, u0)⟩∥σ0 ≤ cϵ2.

For each z /∈ S, the absolute value of the diagonal element JΩ(z, z) is lager than d0. There-

fore, for any given Y ⊆ P with Y ∩ S = ∅, it holds that ∥JΩ|Y ∥σ0 ≤ 1/d0. In virtue of

Lemma 4.1, the restricted operator F ′
1|Y = JΩ(IdY + J−1

Ω ⟨−3u20 + f ′(x, u0)⟩) is invertible

with ∥F ′
1|Y ∥σ0 ≤ 2/d0, provided that cϵ2/d0 ≤ 1

2 .

(iv) (F’1.a(n-1)) =⇒ (F’1.an), n = 2, 3, · · · .
In what follows, for any given z ∈ P , let B(z) be the spherical neighbourhood {p ∈

X| |p − z| ≤ d1(1 + |z|)α} of z in P , where d1 > 0 is a constant independent of Ω given in

Proposition 3.1. Given any lattice set Y ⊆ P with Y ⊇
∪

z∈S∩Bn

B(z) and Y ∩ (S \Bn) = ∅,

let Sn = S ∩ (Bn \ Bn−1), R = Y \ Sn and R̃ = Y \
( ∪

z∈Sn

B(z)
)
. Let L be the restriction

F ′
n|Y of F ′

n on HY , and

A = LR ⊕
( ⊕

z∈(S∩Bn)

Lz

)
, B = L−A, Ã = LR̃ ⊕

( ⊕
z∈(S∩Bn)

LB(z)

)
, B̃ = L− Ã.

Then we have

∥B∥σn−1 ≤ ∥⟨−3u2n−1 + f ′(x, un−1)⟩∥σn−1 ≤ c∥u2n−1∥σn−1 ≤ cϵ2,

∥B̃∥σn−1 ≤ ∥⟨−3u2n−1 + f ′(x, un−1)⟩∥σn−1 ≤ c∥u2n−1∥σn−1 ≤ cϵ2.

According to the construction of Cn, if Ω ∈ Cn, then for any given z ∈ Sn, the restrictions

of the operator L on z and on B(z) are both invertible with

∥L−1
z ∥σn−1 = 1/|L(z, z)| ≤ 2n|z|β , ∥L−1

B(z)∥σn−1 ≤ 2n|z|β .

On the other hand it follows from (F’1.a(n-1)) that both F ′
n−1|R and F ′

n−1|R̃ are invertible

with ∥F ′
n−1|R∥σn−1 ≤ c22β(n−1) and ∥F ′

n−1|R̃∥σn−1 ≤ c22β(n−1). Let △ = F ′
n − F ′

n−1. Then

△ = ⟨−3u2n−1 + f ′(x, un−1)⟩ − ⟨−3u2n−2 + f ′(x, un−2)⟩

=
⟨(

− 6un−2 − 3vn−1 +

∫ 1

0

f ′′(x, un−2 + ηvn−1)dη
)
vn−1

⟩
.

Therefore, ∥△∥σn−1 ≤ cϵ∥vn−1∥σn−1 ≤ cϵ3e−( 3
2 )

n−1

. It follows then that both LR = F ′
n|R =

F ′
n−1|R + △|R = F ′

n−1|R(IdR + (F ′
n−1|R)−1△|R) and LR̃ = F ′

n|R̃ = F ′
n−1|R̃ + △|R̃ =

F ′
n−1|R̃(IdR̃ + (F ′

n−1|R̃)−1△|R̃) are invertible; moreover, if ϵ is sufficiently small, then

∥(LR)
−1∥σn−1 ≤ 2∥(F ′

n−1|R)−1∥σn−1 ≤ c2β(n−1)2+1,

∥(LR̃)
−1∥σn−1 ≤ 2∥(F ′

n−1|R̃)
−1∥σn−1 ≤ c2β(n−1)2+1.
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Consequently, by Lemma 3.2, if ϵ is small enough, then L and (Id − A−1BÃ−1B̃) are

invertible with

L−1 = (Id−A−1BÃ−1B̃)−1(A−1 −A−1BÃ−1), (5.2)

∥(Id−A−1BÃ−1B̃)−1∥σn ≤ 2. (5.3)

It follows from the definition of the σ-norm that

∥A−1∥σn−1 ≤ max
{∥∥L−1

R

∥∥
σn
,max
z∈Sn

∥∥L−1
z

∥∥
σn

}
≤ c2β(n−1)2+1. (5.4)

Similarly, one can prove that

∥Ã−1∥σn−1 ≤ c2β(n−1)2+1. (5.5)

On the other hand,

∥A−1BÃ−1∥σn−1 = sup
z2∈Y

∣∣∣ ∑
z1∈Y

∑
p∈Y

∑
q∈Y

A−1(z1, p)B(p, q)Ã−1(q, z2)
∣∣∣e|z1−z2|

≤ sup
z2∈Y

{I(z2) + II(z2)}, (5.6)

where

I(z2) =
∑

z1∈Sn

∑
p∈Y

∑
q∈Y

|A−1(z1, p)B(p, q)Ã−1(q, z2)|e|z1−z2|

=
∑

z1∈Sn

∑
q∈Y

|L(z1, z1)−1B(z1, q)Ã
−1(q, z2)|e|z1−z2|

≤ max
z1∈Sn

|L(z1, z1)−1|
∑
q∈Sn

|Ã−1(q, z2)|e|q−z2|
∑

z1∈Sn

|B(z1, q)|e|z1−q|

≤ ∥B∥σn−1∥Ã−1∥σn−1 max
z1∈Sn

|L(z1, z1)−1|

≤ cϵ22β(n−1)22(1+β)n ≤ cϵ22βn
2

,

II(z2) =
∑
z1∈R

∑
p∈Y

∑
q∈Y

|A−1(z1, p)B(p, q)Ã−1(q, z2)|e|z1−z2|

=
∑
z1∈R

∑
p∈R

∑
q∈Sn

|L−1
R (z1, p)B(p, q)L−1

B(q)(q, z2)|e
|z1−z2|

≤
∑
q∈Sn

|L−1
B(q)(q, z2)|e

|q−z2|
∑
p∈R

|B(p, q)|e|p−q|
∑
z1∈R

|L−1
R (z1, p)|e|z1−p|

≤ ∥L−1
R ∥σn−1∥B∥σn−1 max

q∈Sn

∥L−1
B(q)∥σn−1

≤ cϵ22β(n−1)22(1+β)n ≤ cϵ22βn
2

.

Consequently (F’1.an) follows from (5.2)–(5.6).

(v) (F’1.an) =⇒ (F’2.an), n = 1, 2, · · · .
Let R = P \ (S \ Bn), R̃ = P \

( ∪
z∈S\Bn

B(z)
)
. Let L be the restriction F ′

n|P of F ′
n on

HP ,

A = LR ⊕
( ⊕

z∈S\Bn

Lz

)
, B = L−A, Ã = LR̃ ⊕

( ⊕
z∈S\Bn

LB(z)

)
, B̃ = L− Ã.
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It follows from (F’1.an) that both LR and LR̃ are invertible with

∥(LR)
−1∥σn+τn ≤ c2βn

2

, ∥(LR̃)
−1∥σn+τn ≤ c2βn

2

.

Applying again Lemma 3.2, and repeating the discussions in the proof of (F’1.a(n-1)) =⇒
(F’1.an), we conclude that if ϵ is sufficiently small, then both L and (Id−A−1BÃ−1B̃) are

invertible with

L−1 = (Id−A−1BÃ−1B̃)−1(A−1 −A−1BÃ−1),

∥(Id−A−1BÃ−1B̃)−1∥σn+τn ≤ 2.

Then, because

∥A−1w∥σ =
∑
z1∈P

∣∣∣ ∑
z2∈P

A−1(z1, z2)w(z2)
∣∣∣eσ|z1|

≤
∑
z1∈P

∑
z2∈P

|A−1(z1, z2)w(z2)|eσ(|z1−z2|+|z2|)

=
∑
z1∈R

∑
z2∈R

|L−1
R (z1, z2)w(z2)|eσ(|z1−z2|+|z2|) +

∑
z∈S

|L−1
z w(z)|eσ|z|

≤ ∥L−1
R ∥σ∥w∥σ +

∑
z∈S

2n|z|βe−
τn
2 |z||w(z)|eσ+ τ

2 |z|

≤ ∥L−1
R ∥σ∥w∥σ + cτ−β

n ∥w∥σ+ τn
2

≤ c2βn
2

∥w∥σ+ τn
2
, ∀σ ≤ σn + 2τn, ∀w ∈ PHσ+ τn

2
,

and similarly

∥Ã−1w∥σ ≤ c2βn
2

∥w∥σ+ τn
2
, ∀σ ≤ σn + 2τn, ∀w ∈ PHσ+ τn

2
,

we conclude that

∥(A−1 −A−1BÃ−1)w∥σ ≤ c2βn
2

∥w∥σ+τn , ∀σ ≤ σn + τn, ∀w ∈ PHσ+τn .

This proves (F’2.an).

(vi) (F’2.an) =⇒ (F’3.an).

Make the block decomposition F ′
n =

(
L1 L2

L3 L4

)
, where L1 = QF ′

nQ, L2 = QF ′
nP ,

L3 = PF ′
nQ, L4 = PF ′

nP . It follows from Lemma 3.1 that

(F ′
n)

−1 =

(
A −AL2L

−1
4

−L−1
4 L3A L−1

4 L3AL2L
−1
4 + L−1

4

)
,

where A = (L1 − L2L
−1
4 L3)

−1. Since QJΩP = PJΩQ = 0, we have

∥L2∥σn−1 ≤ 3∥(un−1)
2 + f ′(x, un−1)∥σn−1 ≤ cϵ2,

∥L3∥σn−1 ≤ 3∥(un−1)
2 + f ′(x, un−1)∥σn−1 ≤ cϵ2.

Therefore, noting that L−1
4 is a bounded linear operator which maps Hσ∗,P in Hσ∗

2 ,P , and

that HQ is a finite dimensional linear space on which all the norms are equivalent, we have

∥L2L
−1
4 L3∥σn

≤ cϵ4. On the other hand,

L1 = Q[JΩ + ⟨−3(un−1)
2 + f ′(x, un−1)⟩]Q = QJΩQ− 3Q⟨u20⟩Q+R,
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where ∥R∥σ ≤ cϵ3. And, since Q⟨cos 2s+ cos 2j0x+ cos 2s cos 2j0x⟩Q = 0, we have

QJΩQ− 3Q⟨u20⟩Q =
[ 9

16
ϵ2 +O(ϵ4)

]
Q− 3

4
ϵ2Q⟨1 + cos 2s+ cos 2j0x+ cos 2s cos 2j0x⟩Q

=
[
− 3

16
ϵ2 +O(ϵ4)

]
Q.

Therefore, it follows from Lemma 4.1 that ∥A∥σn ≤ cϵ−2. Consequently, for any given

w ∈ Hσn−1 ,

∥Q(F ′
n)

−1w∥σn = ∥AQw −AL2L
−1
4 Pw∥σn ≤ ∥AQw∥σn + ∥AL2L

−1
4 Pw∥σn

≤ c(ϵ−2∥Qw∥σn + 2βn
2

∥Pw∥σn+τn),

∥P (F ′
n)

−1w∥σn = ∥ − L−1
4 L3AQw + (L−1

4 L3AL2L
−1
4 + L−1

4 )Pw∥σn

≤ ∥L−1
4 L3AQw∥σn + ∥(L−1

4 L3AL2L
−1
4 + L−1

4 )Pw∥σn

≤ c(2βn
2

∥Qw∥σn+τn + 22βn
2

∥Pw∥σn+2τn).

(vii) (F’3.an) and (F.a(n-1)) =⇒ (v.an).

When n = 1, we have

∥Qv1∥σ1 ≤ cϵ−2∥QF (u0)∥σ0 + c∥PF (u0)∥σ0 ≤ cϵ2,

∥Pv1∥σ1 ≤ c∥F (u0)∥σ0 ≤ cϵ2.

When n ≥ 2, if ϵ is small enough, then we have

∥vn∥σn ≤ cϵ−222βn
2

∥F (un−1)∥σn−1 ≤ cϵ
5
2 2βn

2

e−2( 3
2 )

n−1

≤ ϵ2e−( 3
2 )

n

.

§6. Density Estimate for the Cantor Parameter Set C

First, we prove (3.6). We need the following lemma.

Lemma 6.1. Suppose that X ⊆ Z2, L : HX −→ HX is a linear continuous operator with

the off-diagonal part K satisfying ∥K∥σ ≤ 1
2 , where σ > 0. Suppose furthermore that there

exists z ∈ X, such that

|L(p, p)| ≥ 1, ∀p ∈ X, p ̸= z,

R
△
= L(z, z)−

∑
p,q∈X\{z}

L(z, p)(LBo(z))
−1(p, q)L(q, z) ̸= 0.

Then L is invertible with ∥L−1∥σ ≤ 2
(
1
R + 1

)
.

Proof. It follows from Lemma 3.1 that

L−1 =

(
1
R − 1

RL2L
−1
4

−L−1
4 L3

1
R L−1

4 L3
1
RL2L

−1
4 + L−1

4

)
,

where L2 = X1LX2, L3 = X2LX1, L4 = X2LX2, and X1 = z, X2 = X \ {z}. Clearly,

∥L2∥σ ≤ ∥K∥σ ≤ 1
2 , ∥L3∥σ ≤ ∥K∥σ ≤ 1

2 . Therefore, thanks to Lemma 4.1 we have

∥L−1
4 ∥σ ≤ 2. Consequently,∥∥∥ 1

R
L2L

−1
4

∥∥∥
σ
≤ 1

R
,

∥∥∥− L−1
4 L3

1

R

∥∥∥
σ
≤ 1

R
,

∥∥∥L−1
4 L3

1

R
L2L

−1
4 + L−1

4

∥∥∥
σ
≤ 1

R
+ 2,

which implies

∥L−1∥σ ≤ 1

R
+

( 1

R
+ 2

)
= 2

( 1

R
+ 1

)
.

The proof of this lemma is completed.
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Noting that M = ∥ cos s cos j0x∥σ0 , we have

(u.b0) ∥u0(Ω+)− u0(Ω
−)∥σ0 =M |ϵ+ − ϵ−|.

Because

FΩ+(u0(Ω
+))− FΩ−(u0(Ω

−))

= [JΩ+u0(Ω
+)− JΩ−u0(Ω

−)]− [u0(Ω
+)3 − u0(Ω

−)3]

= [JΩ+ − JΩ− ]u0(Ω
+) + JΩ− [u0(Ω

+)− u0(Ω
−)]− [u0(Ω

+)3 − u0(Ω
−)3],

∥[JΩ+ − JΩ− ]u0(Ω
+)∥σ0 = ∥[−(Ω+)2 + (Ω−)2]ϵ+ cos s cos j0x∥σ0

≤ c|Ω+ − Ω−| ≤ c|ϵ+ − ϵ−|,
∥JΩ− [u0(Ω

+)− u0(Ω
−)]∥σ0 = ∥(−(Ω−)2 + j20 + a)(ϵ+ − ϵ−) cos s cos j0x∥σ0

≤ c|ϵ+ − ϵ−|,
∥u0(Ω+)3 − u0(Ω

−)3∥σ0 = ∥u0(Ω+)− u0(Ω
−)∥σ0∥u0(Ω+)2 + u0(Ω

+)u0(Ω
−)

+ u0(Ω
−)2]∥σ0 ≤ c|ϵ+ − ϵ−|,

we have

(F.b0) FΩ+(u0(Ω
+))− FΩ−(u0(Ω

−)) ≤ c0|ϵ+ − ϵ−|.
In the following, we prove by induction the following Lipschitz estimates.

(F’.bn)

∥(F ′
n,Ω+)−1w − (F ′

n,Ω−)−1w∥σ ≤ cτ−2−8β
n (ϵ+ϵ−)−2|Ω+ − Ω−|∥w∥σ+3τn ,

∀σ ≤ σn − τn, ∀w ∈ Hσ+3τn ,

(v.bn) ∥vn(Ω+)− vn(Ω
−)∥σn−τn ≤ ce−( 3

2 )
n |Ω+ − Ω−|,

(F.bn) ∥FΩ+(un(Ω
+))− FΩ−(un(Ω

−))∥σn−τn ≤ c(ϵ+ + ϵ−)3e−2( 3
2 )

n |Ω+ − Ω−|,
(u.bn) ∥un(Ω+)− un(Ω

−)∥σn−τn ≤ c|ϵ+ − ϵ−|,
where ϵ+ = ϵ(Ω+), ϵ− = ϵ(Ω−). Here, to simplify the statement, we treat only the case

where f(x, u) ≡ 0. The proof for the general case f(x, u) ̸≡ 0 is similar.

Proof. (i) (u.b0) and (v.b1)–(v.bn)=⇒(u.bn).

Because |Ω+ − Ω−| = c|(ϵ+)2 − (ϵ−)2| ≤ c|ϵ+ − ϵ−|.
(ii) (v.bn)=⇒(F.bn).

Because

FΩ+(un(Ω
+))− FΩ−(un(Ω

−))

= −(3un−1(Ω
+) + vn(Ω

+))vn(Ω
+)2 + (3un−1(Ω

−) + vn(Ω
−))vn(Ω

−)2

= [3(un−1(Ω
−)− un−1(Ω

+)) + vn(Ω
−)− vn(Ω

+)]vn(Ω
−)2

+ (3un−1(Ω
+) + vn(Ω

+))(vn(Ω
−)2 − vn(Ω

+)2),

∥[3(un−1(Ω
−)− un−1(Ω

+)) + vn(Ω
−)− vn(Ω

+)]vn(Ω
−)2∥σn−τn

≤ [3∥un−1(Ω
−)− un−1(Ω

+)∥σn−τn + ∥vn(Ω−)− vn(Ω
+)∥σn−τn ]∥vn(Ω−)∥2σn

≤ c|ϵ+ − ϵ−|((ϵ−)2e−( 3
2 )

n

)2 ≤ c(ϵ−)3e−2( 3
2 )

n

|(ϵ+)2 − (ϵ−)2|

= c̃(ϵ−)3e−2( 3
2 )

n

|Ω+ − Ω−|,



320 CHIN. ANN. OF MATH. Vol.21 Ser.B

∥(3un−1(Ω
+) + vn(Ω

+))(vn(Ω
−)2 − vn(Ω

+)2)∥σn−τn

≤ ∥3un−1(Ω
+) + vn(Ω

+)∥σn∥vn(Ω−) + vn(Ω
+)∥σn∥vn(Ω−)− vn(Ω

+)∥σn−τn

≤ c(ϵ+ + ϵ−)3e−2( 3
2 )

n

|Ω+ − Ω−|,

(u.bn) follows.

(iii) (F.b(n-1)) and (F’.bn)=⇒(v.bn).

According to the definition,

vn(Ω
+)− vn(Ω

−) = (F ′
n,Ω+)−1F (un−1(Ω

+))− (F ′
n,Ω−)−1F (un−1(Ω

−))

= [(F ′
n,Ω+)−1 − (F ′

n,Ω−)−1]F (un−1(Ω
+))

+ (F ′
n,Ω−)−1[F (un−1(Ω

+))− F (un−1(Ω
−))].

Without loss of generality, we may assume that ϵ+ < ϵ−. Then (v.bn) follows from

∥[(F ′
n,Ω+)−1 − (F ′

n,Ω−)−1]F (un−1(Ω
+))∥σn−τn

≤ cτ−2−8β
n (ϵ+ϵ−)−2|Ω+ − Ω−|∥F (un−1(Ω

+))∥σn−1

≤ cτ−2−8β
n (ϵ+ϵ−)

−2|Ω+ − Ω−|(ϵ+) 9
2 e−2( 3

2 )
n−1

≤ e−( 3
2 )

n

|Ω+ − Ω−|,
∥(F ′

n,Ω−)−1[F (un−1(Ω
+))− F (un−1(Ω

−))]∥σn−τn

≤ c(ϵ−2)τ−4β
n ∥F (un−1(Ω

+))− F (un−1(Ω
−))∥σn+τn

≤ c(ϵ−)
−2
τ−4β
n (ϵ+ + ϵ−)3e−2( 3

2 )
n−1

|Ω+ − Ω−| ≤ e−( 3
2 )

n

|Ω+ − Ω−|.

(iv) (u.b(n-1))=⇒(F’.bn).

Firstly, we have

∥(JΩ+ − JΩ−)w∥σ ≤ cτ−2
n |Ω+ − Ω−|∥w∥σ+τn , ∀σ > 0, ∀w ∈ Hσ+τn ,

since JΩ is diagonal with

|JΩ+(z, z)− JΩ−(z, z)| = |[k2(Ω+)2 − j2 − a]− [k2(Ω−)2 − j2 − a]| = k2|(Ω+)2 − (Ω−)2|
= k2|Ω+ − Ω−||Ω+ +Ω−| ≤ ck2|Ω+ − Ω−|, ∀z = (j, k) ∈ Z2.

Secondly, we have

∥un−1(Ω
+)2 − un−1(Ω

−)2∥σn−1

≤ ∥un−1(Ω
+)− un−1(Ω

−)∥σn−1∥un−1(Ω
+) + un−1(Ω

−)∥σn−1

≤ c(ϵ+ + ϵ−)|ϵ+ − ϵ−| ≤ c|Ω+ − Ω−|.

Therefore, for any given σ ≤ σn, we have

∥(F ′
n,Ω+ − F ′

n,Ω−)w∥σ+τn ≤ cτ−2
n |Ω+ − Ω−| ∥w∥σ+τn , ∀w ∈ Hσ+τn .

Then (F’.bn) follows from (F’.an), since

(F ′
n,Ω+)−1 − (F ′

n,Ω−)−1 = (F ′
n,Ω+)−1(F ′

n,Ω− − F ′
n,Ω+)(F ′

n,Ω−)−1.

Proof of Proposition 3.2. It follows from

∥un(Ω+)2 − un(Ω
−)2∥σn−τn ≤ ∥un(Ω+) + un(Ω

−)∥σn∥un(Ω+)− un(Ω
−)∥σn

≤ c(ϵ+ + ϵ−)|ϵ+ − ϵ−| = c|(ϵ+)2 − (ϵ−)2| = c̃|Ω+ − Ω−|

that the first estimate is valid.
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According to the definition, hΩ±,un−1(Ω±)(z) = L±
2 (L

±
4 )

−1L±
3 , where

L±
2 = X1F

′
n,Ω±X2 = −3X1⟨un−1(Ω

±)2⟩X2,

L±
3 = X2F

′
n,Ω±X1 = −3X2⟨un−1(Ω

±)2⟩X1,

L±
4 = X2F

′
n,Ω±X2 = X2JΩX2 − 3X2⟨un−1(Ω

±)2⟩X2,

and X1 = {z}, X2 = Bo(z). Therefore

|hΩ+,un−1(Ω+)(z)− hΩ−,un−1(Ω−)(z)| = ∥L+
2 (L

+
4 )

−1L+
3 − L−

2 (L
−
4 )

−1L−
3 ∥σn−1

≤ ∥(L+
2 − L−

2 )(L
+
4 )

−1L+
3 ∥σn−1 + ∥L−

2 [(L
+
4 )

−1 − (L−
4 )

−1]L+
3 ∥σn−1

+ ∥L−
2 (L

−
4 )

−1(L+
3 − L−

3 )∥σn−1 .

It follows from (u.a(n-1)) and (u.b(n-1)) that

∥L±
2 ∥σn−1 ≤ cϵ(Ω±)2, ∥L±

3 ∥σn−1 ≤ cϵ(Ω±)2,

∥L+
2 − L−

2 ∥σn−1 ≤ c|Ω+ − Ω−|, ∥L+
3 − L−

3 ∥σn−1 ≤ c|Ω+ − Ω−|.
And, noting that |JΩ±(p, p)| ≥ d0 for any given p ∈ Bo(z), we have

∥(L±
4 )

−1∥σn−1 ≤ 2d−1
0 , ∥L+

4 − L−
4 ∥σn−1 ≤ ck2|(Ω+)2 − (Ω−)2| ≤ c|Ω+ − Ω−|.

Therefore

∥(L+
2 − L−

2 )(L
+
4 )

−1L+
3 ∥σn−1 ≤ cϵ(Ω+)2|Ω+ − Ω−|,

∥L−
2 (L

−
4 )

−1(L+
3 − L−

3 )∥σn−1 ≤ cϵ(Ω−)2|Ω+ − Ω−|,
∥L−

2 [(L
+
4 )

−1 − (L−
4 )

−1]L+
3 ∥σn−1 = ∥L−

2 (L
−
4 )

−1(L−
4 − L+

4 )(L
+
4 )

−1L+
3 ∥σn−1

≤ cϵ(Ω+)2ϵ(Ω−)2k2|Ω+ − Ω−|,
which implies the second estimate in the proposition.
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