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Abstract

This paper studies a stochastic linear quadratic optimal control problem (LQ problem, for
short), for which the coefficients are allowed to be random and the cost functional is allowed

to have a negative weight on the square of the control variable. The authors introduce the
stochastic Riccati equation for the LQ problem. This is a backward SDE with a complicated
nonlinearity and a singularity. The local solvability of such a backward SDE is established,

which by no means is obvious. For the case of deterministic coefficients, some further discussions
on the Riccati equations have been carried out. Finally, an illustrative example is presented.
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§1. Introduction

Let (Ω,F ,P, {Ft}t≥0) be a complete filtered probability space on which a standard one-
dimensional Brownian motion w(·) is defined such that {Ft}t≥0 is the natural filtration
generated by w(·), augmented by all the P-null sets in F . We consider the following state
equation{

dx(t) = [A(t)x(t) +B(t)u(t)]dt+ [C(t)x(t) +D(t)u(t)]dw(t), t ∈ [τ, T ],
x(τ) = ξ,

(1.1)

where τ ∈ T [0, T ], the set of all {Ft}t≥0-stopping times taking values in [0, T ], ξ ∈ Xτ
∆
=L2

Fτ
(Ω;

lRn); A,B,C,D are matrix-valued {Ft}t≥0-adapted bounded processes. In the above, u(·) ∈
U [τ, T ]∆=L2

F (τ, T ; lR
m) is a control process and x(·) is the corresponding state process.
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Clearly, for any (ξ, u(·)) ∈ Xτ × U [τ, T ], there exists a unique (strong) solution x(·) ∈
L2
F (τ, T ; lR

n) to (1.1). Thus, we can define a cost functional as follows:

J(τ, ξ;u(·)) = E
{∫ T

τ

[
⟨Q(t)x(t), x(t)⟩+ ⟨R(t)u(t), u(t)⟩

]
dt+ ⟨Gx(T ), x(T )⟩

∣∣Fτ

}
, (1.2)

where Q(·) and R(·) are symmetric matrix-valued {Ft}t≥0-adapted bounded processes and
G is a symmetric matrix-valued FT -measurable bounded random variable. Note that, as in
[6], we do not assume the nonnegativity of R(·).

Now, we state the stochastic linear quadratic optimal control problem as follows:
Problem (LQ). For each τ ∈ T [0, T ] and ξ ∈ Xτ , find a u(·) ∈ U [τ, T ], such that

J(τ, ξ;u(·)) = inf
u(·)∈U [τ,T ]

J(τ, ξ;u(·))∆=V (τ, ξ), a.s. ω ∈ Ω. (1.3)

Function V is called the value function of Problems (LQ).
In this paper, we are going to continue the study in [6]. We solve Problem (LQ) via

solving corresponding Riccati equation. To avoid some unnecessary repetition, we refer the
readers to [6] for notations that we omit the definitions here.

Now, we recall the following basic assumption (see [6]).
(S) Let{

A,C ∈ L∞
F (0, T ; lRn×n), B ∈ L∞

F (0, T ; lRn×m), D ∈ CF ([0, T ]; lR
n×m),

Q ∈ CF ([0, T ];Sn), R ∈ CF ([0, T ];Sm), G ∈ L∞
FT

(Ω;Sn).
(1.4)

In addition, we also introduce the following interesting special cases of the above.
(DV) Let{

A,C ∈ L∞(0, T ; lRn×n), B ∈ L∞(0, T ; lRn×m), D ∈ C([0, T ]; lRn×m),
Q ∈ C([0, T ];Sn), R ∈ C([0, T ];Sm), G ∈ Sn.

(1.5)

(DI) Let

A,C ∈ lRn×n, B,D ∈ lRn×m, Q,G ∈ Sn, R ∈ Sm. (1.6)

We see that under (DV) (resp. (DI)), the control system (1.1) is of time-varying (resp.
time-invariant) deterministic coefficients and under (S), (1.1) is of random coefficients.

The following definition is copied from [6].
Definition 1.1. Problem (LQ) is said to be (i) partially finite at (τ, ξ) ∈ ∆[0, T ] if

P(V (τ, ξ) > −∞) > 0. (1.7)

(ii) (uniquely) partially solvable at (τ, ξ) ∈ ∆[0, T ] if there exists a (unique) control u(·) ∈
U [τ, T ], such that

J(τ, ξ;u) = V (τ, ξ), a.s. ω ∈ (V (τ, ξ) > −∞). (1.8)

If one has

P
(
V (τ, ξ) > −∞

)
= 1, (1.9)

we omit the word “partially” in the above notions.
If for τ ∈ T [0, T ], Problem (LQ) is finite (resp. (uniquely) solvable) at all (τ, ξ) with

ξ ∈ Xτ , we say that Problem (LQ) is finite (resp. (uniquely) solvable) at τ . If Problem (LQ)
is finite (resp. (uniquely) solvable) at all τ ∈ T [0, T ], we say that Problem (LQ) is finite
(resp. (uniquely) solvable).

The following result was proved in [6].
Theorem 1.2. Let (S) hold. Suppose Problem (LQ) is partially finite at some (τ, ξ) ∈

∆[0, T ). Then

R(T ) +D(T )TGD(T ) ≥ 0, a.s. ω ∈ (V (τ, ξ) > −∞). (1.10)
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Moreover, it was shown in [6] by an example that if the equality holds in (1.10), Problem
(LQ) might be not finite. We will assume a little stronger assumption than (1.10) later.

We now introduce the Riccati equation corresponding to Problem (LQ):
dP = −

{
PA+ATP + CTPC + ΛC + CTΛ +Q−

(
PB + CTPD + ΛD

)
×
(
R+DTPD

)−1(
BTP +DTPC +DTΛ

)}
dt+ Λdw(t), t ∈ [τ, T ],

P (T ) = G,
det[R(t) +D(t)TP (t)D(t)] ̸= 0, t ∈ [τ, T ], a.s. ω ∈ Ω.

(1.11)

This is a backward stochastic differential equation (BSDE, for short). An adapted solution
of (1.11) is a pair (P,Λ) of {Ft}t≥0-adapted Sn-valued processes. Once an adapted solution
(P,Λ) is obtained, one can construct an optimal state feedback control (see §2). Thus, we
hope to solve (1.11).

Note that the drift of (1.11) is quadratic in Λ and has a singularity in P . These bring some
essential difficulties in proving the existence of an adapted (local) solution. We emphasize
that unlike the forward SDEs, the local existence of an adapted solution to BSDE (1.11)
is by no means obvious. Some recent efforts devoted to the study of BSDEs with local
Lipschitz drift can be found in [11,12] (for one-dimensional case, global solutions) and [15]
(for higher dimensional case, local and global solutions). However, those works do not cover
the case that we have here, in particular, the singularity in P was not considered. One
of main contributions of this paper is the establishment of local existence of an adapted
solution to (1.11).

We refer the readers to [8,1,3,4] for finite-dimensional deterministic LQ problems, to
[10,13] for infinite-dimensional counterpart, to [16,2,5,17], especially to [6] for stochastic LQ
problems. Other relevant results about BSDEs can be found in [14,7,17].

§2. Optimal State Feedback Control

If (P (·),Λ(·)) is a pair of {Ft}t≥0-adapted, Sn-valued processes satisfying (1.11) for some
τ ∈ T [0, T ), we call (P (·),Λ(·), τ) a local adapted solution of (1.11). A local adapted
solution (P (·),Λ(·), τ) is called a global adapted solution of (1.11) if in (1.11), [τ, T ] is
replaced by (τ, T ] with

τ = sup{t ≤ T
∣∣ det[R(t) +D(t)TP (t)D(t)] = 0}, (2.1)

and such a τ happens to be a stopping time. We see that τ is a part of unknowns if we
are looking for a global adapted solution of (1.11). From this point of view, (1.11) on (τ, T ]
with (2.1) is a free boundary problem for a nonlinear BSDE.

Note that (1.11) is a nonlinear BSDE with the coefficient being random, quadratic in
Λ, and having singularities in P (the place where det[R + DTPD] = 0). The existence of
local adapted solutions to such BSDEs is unknown so far. Recall that in [15] several local
existence results were obtained for nonlinear BSDEs under some technical conditions, which
do not cover the case that we have here. Let us postpone the study of existence of local
adapted solutions of (1.11), and first present the following result, which motivates the study
of (1.11). See [5] for a related result.

Theorem 2.1. Let (S) hold. Let{
Ω+

∆
={R(T ) +D(T )TGD(T ) ≥ δ0} = {R(T ) +D(T )TGD(T ) ≥ 0} ∈ Fτ ,

P(Ω+) > 0
(2.2)

for some δ0 > 0 and τ ∈ T [0, T ). Suppose (1.11) admits an adapted solution (P (·),Λ(·)) on
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[τ, T ] such that {
BΨ, DΨ ∈ L∞

F (τ, T ; lRn×n),

Ψ
∆
=[R+DTPD]−1[BTP +DTPC +DTΛ].

(2.3)

Then Problem (LQ) is partially solvable at τ with the partially optimal control u(·) being of
state feedback form

u(t) = −Ψ(t)x(t), t ∈ [τ, T ], (2.4)

V (τ, ξ) = ⟨P (τ)ξ, ξ⟩, a.s. ω ∈ (V (τ, ξ) > −∞) = Ω+, ∀ξ ∈ Xτ . (2.5)

Furthermore, if P(Ω+) = 1, then Problem (LQ) is solvable at τ with the optimal control u(·)
of form (2.4), and the optimal cost being

V (τ, ξ) = ⟨P (τ)ξ, ξ⟩, ∀ξ ∈ Xτ . (2.6)

Proof. By (S) and (2.3), we see that the following SDE{
dx(t) =

[
A(t)−B(t)Ψ(t)

]
x(t)dt+

[
C(t)−D(t)Ψ(t)

]
x(t)dw(t),

x(τ) = ξ,
(2.7)

admits a unique strong solution x(·) satisfying E sup
τ≤s≤T

|x(t)|2 ≤ KE|ξ|2, where K is a

constant. Then the control u(·) defined by (2.4) is admissible, and, by taking such a control,
x(·) is the corresponding state process. We claim that u(·) is a partially optimal control.
To this end, we take any u(·) ∈ U [τ, T ], and let x(·) be the corresponding state process.
Applying Itô’s formula to ⟨P (·)x(·), x(·)⟩, we have

⟨P (T )x(T ), x(T )⟩ = ⟨P (τ)ξ, ξ⟩

+

∫ T

τ

{
⟨[(PB + CTPD + ΛD)(R+DTPD)−1(BTP +DTPC +DTΛ)−Q]x(t), x(t)⟩

+ 2⟨[BTP +DTPC +DTΛ]x(t), u(t)⟩+ ⟨DTPDu(t), u(t)⟩
}
dt+

∫ T

τ

[· · · ]dw(t).

Hence, it follows that (note (1.11) and Ω+ ∈ Fτ )

J(τ, ξ;u(·))IΩ+ − ⟨P (τ)ξ, ξ⟩IΩ+

= E
{
IΩ+

[∫ T

τ

[
⟨Qx(t),x(t)⟩+⟨Ru(t),u(t)⟩

]
dt+⟨P (T )x(T ),x(T )⟩−⟨P (τ)ξ, ξ⟩

]∣∣∣Fτ

}
= E

{
IΩ+

∫ T

τ

[
⟨(PB + CTPD + ΛD)(R+DTPD)−1(BTP +DTPC +DTΛ)x(t), x(t)⟩

+ ⟨[R+DTPD]u(t), u(t)⟩+ 2⟨[BTP +DTPC +DTΛ]x(t), u(t)⟩
]
dt
∣∣∣Fτ

}
= E

{
IΩ+

∫ T

τ

|[R+DTPD]
1
2

{
[R+DTPD]−1[BTP +DTPC+DTΛ]x(t)+u(t)

}
|2dt

∣∣∣Fτ

}
.

This yields

J(τ, ξ, u(·))IΩ+ = ⟨P (τ)ξ, ξ⟩IΩ+ ≤ J(τ, ξ;u(·))IΩ+ , (2.8)

which implies that Ω+ ⊆ (V (τ, ξ) > −∞). By Theorem 1.1, it is necessary that Ω+ =
(V (τ, ξ) > −∞), and u(·) is a partially optimal control. The last assertion is clear.

The first part of the above theorem gives a sufficient condition for the partial solvability
of Problem (LQ) . This is a unique feature of LQ problems with random coefficients.

Note that (2.2) holds with P(Ω+) = 1, for some δ0 > 0, is equivalent to (1.10).
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§3. Local Solvability of the Riccati Equation—the Case D=0

From Theorem 2.1, we see that when (S) and (1.10) hold, provided one can find an
adapted solution (P,Λ) to the Riccati equation (1.11) on [τ, T ], an optimal control of state
feedback form can be obtained (see (2.4)). We now look at the local solvability of (1.11).
Let us start with a special case: D = 0. Note that in the present case (1.11) becomes{
dP = −

{
PA+ATP + CTPC + ΛC + CTΛ +Q− PBR−1BTP

}
dt+ Λdw(t), t ∈ [τ, T ],

P (T ) = G,
(3.1)

which is still a nonlinear BSDE. The advantage of this case is that the drift is at most
linear in Λ and there is no singularities (in P ). This allows us to have the following result,
without additional technical conditions.

Theorem 3.1. Let (S) hold. Let δ0 > 0 and t0 ∈ [0, T ) such that∣∣detR(t)∣∣ ≥ δ0, t ∈ [t0, T ], a.s. ω ∈ Ω. (3.2)

Then (3.1) admits a local adapted solution (P,Λ, τ) and (P,Λ) is unique on [τ, T ].

The main idea of proving the above result is to use the contraction mapping theorem.
Due to the “backward” nature of the equation (3.1), we need to be careful in taking care of
the pair (P,Λ) (not just P , which is much easier). The following Gronwall type inequality
involving conditional expectations will be useful.

Lemma 3.1. Let τ ∈ T [0, T ). Let φ(·)∈ CF ([τ, T ]; lR) be nonnegative, f(·)∈ L1
F (τ, T ; lR),

g ∈ L2
FT

(Ω; lR), and K0 > 0, such that

φ(s ∨ τ) ≤ E
{
K0

∫ T

s∨τ

φ(r)dr +

∫ T

s∨τ

f(r)dr + g
∣∣∣Fs∨τ

}
, ∀s ∈ [0, T ]. (3.3)

Then

φ(s ∨ τ) ≤ E
{
eK0(T−s∨τ)g +

∫ T

s∨τ

eK0(r−s∨τ)f(r)dr
∣∣∣Fs∨τ

}
, ∀s ∈ [0, T ]. (3.4)

Proof. Let (φ,ψ) be the adapted solution of the following linear BSDE{
dφ(t) = −

[
K0φ(t) + f(t)

]
dt+ ψ(t)dw(t),

φ(T ) = g.
(3.5)

Then φ̂(t)
∆
=φ(t)− φ(t) satisfies

E
{
φ̂(s ∨ τ)

∣∣Fs∨τ

}
≤ E

{
K0

∫ T

s∨τ

φ̂(r)dr
∣∣∣Fs∨τ

}
, a.s. ω ∈ Ω. (3.6)

Thus, for any F ∈ Fs∨τ , we have∫
F

φ̂(s ∨ τ)dP ≤ K0

∫
F

∫ T

s∨τ

φ̂(r)drdP

≤ K0

∫ T

s∨τ

[ ∫
F

φ̂(r)dP
]
dr, ∀s ∈ [0, T ], a.s. ω ∈ Ω. (3.7)

Here, we have used the usual Fubini’s Thereom, noting that all the integrals involved in
the above are usual ones (not Itô’s type integral). Now, by the proof of usual Gronwall’s
inequality, we see easily that∫

F

φ̂(s ∨ τ)dP ≤ 0, ∀s ∈ [0, T ], a.s. ω ∈ Ω, F ∈ Fs∨τ . (3.8)
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Consequently

φ(s ∨ τ) ≤ φ(s ∨ τ) = E
{
eK0(T−s∨τ)g +

∫ T

s∨τ

eK0(r−s∨τ)f(r)dr
∣∣∣Fs∨τ

}
,

which proves (3.4).
Note that in the above lemma, f(·) and g are not necessarily to be nonnegative.
Proof of Theorem 3.1. Take any p(·) ∈ L∞

F (τ, T ;Sn). We solve the following linear
nonhomogenuous BSDE dP = −

{
PA+ATP + CTPC + ΛC + CTΛ +Q− pBR−1BT p

}
dt

+Λdw(t), t ∈ [t0, T ],
P (T ) = G.

(3.9)

By [14], (3.9) admits a unique adapted solution (P,Λ) over [t0, T ]. By Itô’s formula, we have
(note (S))

E
{
|P (s ∨ t0)|2 +

∫ T

s∨t0

|Λ(r)|2dr
∣∣∣Fs∨t0

}
= E

{
|G|2 − 2

∫ T

s∨t0

tr
{
P
[
PA+ATP + CTPC + ΛC

+ CTΛ +Q− pBR−1BT p
]}
dr
∣∣∣Fs∨t0

}
≤ K0E

{
1 +

∫ T

s∨t0

{
|P (r)|2 + |p(r)|4

}
dr
∣∣∣Fs∨t0

}
. (3.10)

It follows from Lemma 3.1 that

E
{
|P (s ∨ t0)|2 +

∫ T

s∨t0

|Λ(r)|2dr
∣∣∣Fs∨t0

}
≤ KE

{
1 +

∫ T

s∨t0

|p(r)|4dr
∣∣∣Fs∨t0

}
,

∀0 ≤ s ≤ T, a.s. ω ∈ Ω (3.11)

for some constant K (depending only on the bounds of A,B,C,Q,R,R−1, G and T ). In
particular,

|P (t)|2 ≤ KE
{
1 +

∫ T

t

|p(r)|4dr
∣∣∣Ft

}
, ∀t0 ≤ t ≤ T, a.s. ω ∈ Ω. (3.12)

Consequently, for any 0 < ε < T − t0,

esssup
T−ε≤t≤T

ω∈Ω

|P (t, ω)|2 ≤ K +K esssup
T−ε≤t≤T

ω∈Ω

|p(t, ω)|4ε. (3.13)

Now, we choose ε > 0 small enough such that K +K(K + 1)4ε ≤ (K + 1)2, and let B be
the closed ball of radius K + 1 centered at 0 in L∞

F (τ, T ;Sn). Then the map p 7→ P is from
B to itself. Using a similar argument as above, we can show that this map is contractive
(we might need to properly shrink ε > 0 a little further). Thus, by Contraction Mapping
Theorem, we obtain a unique fixed point P , which together with the corresponding Λ and

τ
∆
=T − ε gives a local adapted solution. It is clear that for the obtained τ , (P,Λ) is unique

on [τ, T ].

§4. Local Solvability of the Riccati Equation—the General Case

Now, we look at the case that D is not necessarily 0. The essential difficulty is that the
drift term in (1.11) not only depends on Λ quadratically, but also contains some singularities
in P . Thus, we need to bound Λ from above and bound (R+DTPD) from below. In order
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to bound Λ, we need, roughly speaking, to “differentiate” the equation to obtain an equation
for Λ. To achieve this, we need some results involving Malliavin calculus. Let us make some
preliminaries first.

Let Ξ be the set of all (scalar) random variables ξ of form

ξ = f
(∫ T

0

h(s)dw(s)
)
, (4.1)

where f ∈ C1
b (lR

k), h(·) ∈ L∞
F (0, T ; lRk). For any ξ ∈ Ξ of form (4.1), we define

Dθξ = ⟨fx
(∫ T

0

h(s)dw(s)
)
, h(θ)⟩, 0 ≤ θ ≤ T, (4.2)

called the Malliavin derivative of ξ. Next, for any ξ ∈ Ξ, we define

∥ξ∥1,q
∆
=


{
E
(
|ξ|q +

∫ T

0
|Dtξ|qdt

)}1/q

, 1 ≤ q <∞,

esssup
[0,T ]×Ω

{
|ξ|+ |Dtξ|

}
, q = ∞,

(4.3)

and let lD1,q be the completion of Ξ under the norm ∥·∥1,q defined by (4.3). Clearly, operator
D admits a closed extension on lD1,q. It is important that for given t ∈ [0, T ),

ξ is Ft-measurable ⇒ Dθξ = 0, ∀θ ∈ (t, T ].

We let lDn
1,q and lDm×n

1,q be the set of all lRn and lRn×m-valued random variables with each
component belonging to lD1,q, respectively. For any k-dimensional random vector η and any
random field f defined on [0, T ]× lRk×Ω, we will distinguish D·

(
f(t, η(ω), ω)

)
(the Malliavin

derivative of the stochastic process f(t, η(t))) from D·f(t, η(ω), ω)
∆
=[D·f ](t, x, ω)

∣∣
x=η(ω)

. We

let Lq
F (τ, T ; lD1,q) be the set of all {Ft}t≥0-adapted processes y defined on [τ, T ], extending

to be zero on [0, τ), such that the following is finite:

∥y∥Lq
F (τ,T ;lD1,q)

∆
=


(∫ T

0
∥y(t)∥qlD1,q

dt
)1/q

, 1 ≤ q <∞,

esssup
[0,T ]

∥y(t)∥lD1,∞ , q = ∞.
(4.4)

We can accordingly define Lq
F (τ, T ; lD

n×m
1,q ), etc. In what follows, we will only use the case

q = 2,∞.
The following additional assumption will be crucial for our local existence of adapted

solution (P,Λ, τ) to (1.11).
(SS) Let {

A,C,Q ∈ L∞
F (0, T ; lDn×n

1,∞ ), B,D ∈ L∞
F (0, T ; lDn×m

1,∞ ),

R ∈ L∞
F (0, T ; lDm×m

1,∞ ), G ∈ lDn×n
1,∞ .

(4.5)

Moreover, let (ξ(·), ζ(·)) be the unique adapted solution of BSDE:

dξ(t) = ζ(t)dw(t), ξ(T ) = G. (4.6)

Suppose the following holds:

| det[R(t) +D(t)T ξ(t)D(t)]| ≥ δ0, t ∈ [t0, T ], a.s. ω ∈ Ω (4.7)

for some δ0 > 0, t0 ∈ [0, T ).
The above assumption imposes some “smoothness” conditions on the coefficients in ω.

Also, (4.17) is stronger than (1.10). Note that when (DV) or (DI) holds, (SS) holds auto-
matically.

Theorem 4.1. Let (S) and (SS) hold. Then (1.11) admits a local adapted solution
(P,Λ, τ), and on [τ, T ], (P,Λ) is unique. Moreover

P ∈ L∞
F (τ, T ; lDn×n

1,∞ ), Λ ∈ L2
F (τ, T ; lD

n×n
1,2 ), (4.8)
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|P (t)|+ |DθP (t)|+ E
{∫ T

t

[
|Λ(r)|2 + |DtΛ(r)|2

]
dr
∣∣∣Ft

}
≤ K,

∀t, θ ∈ [τ, T ], a.s. ω ∈ Ω (4.9)

for some constant K > 0, and DtP (t) is a version of Λ(t).
Proof. The main idea is to use the contraction mapping theorem. Thus, let us first

introduce a Banach space X[τ, T ], which is a subspace of L∞
F (τ, T ;Sn)2, whose norm is

given by

∥(p, l)∥X[τ,T ]
∆
=esssup

t,s∈[τ,T ]
ω∈Ω

{
|p(s)|+ |l(s)|+ |Dtp(s)|+

[
E
(∫ T

t

|Dtl(r)|2dr
∣∣∣Ft

)]1/2}
,

∀(p, l) ∈ X[τ, T ], (4.10)

where τ ∈ T [T − ε, T ) undetermined with 0 < ε < T − t0 small. Next, for any K ≥ 1,
0 < δ ≤ 1 we let BK,δ be the closed subset in X[τ, T ] which consists of all the pairs (p, l)
such that

∥(p, l)∥X[τ,T ] ≤ K, (4.11)

|det[R(t) +D(t)T p(t)D(t)]| ≥ δ, ∀t ∈ [τ, T ], a.s. (4.12)

Note that the set BK,δ is a kind of “annulus” in X[τ, T ]. Now, for any (p, l) ∈ BK,δ, we
consider the following BSDE{

dP = −Θ(t, p(t), λ(t))dt+ Λdw(t), t ∈ [τ, T ],
P (T ) = G,

(4.13)

where

Θ(t, p, l) = pA+AT p+ CT pC + lC + CT l +Q−
(
pB + CT pD + lD

)
×
(
R+DT pD

)−1(
BT p+DT pC +DT l

)
. (4.14)

By [14], there exists a unique adapted solution (P (·),Λ(·)) to (4.13). We want to show that
for a suitable choice of τ,K and δ, (P,Λ) ∈ X[τ, T ]. Then we have defined a solution map
(p, l) 7→ (P,Λ), from BK,δ to itself. Further, a similar argument will show that this map
is contractive and thus admits a unique fixed point, which gives the unique local adapted
solution.

We now split the proof into several steps.
Step 1. For suitable τ ∈ T [T − ε, T ), K ≥ 1 and 0 < δ ≤ 1, (4.12) holds for (P,Λ).
Applying Itô’s formula to |P (·)− ξ(·)|2 (recall (4.6)), we have (∀s ∈ [0, T ])

|P (s ∨ τ)− Y (s ∨ τ)|2

≤
∫ T

s∨τ

|P (r)− Y (r)|2dr +
∫ T

s∨τ

{
|Θ(r, p(r), l(r))|2 − |Λ(r)− Z(r)|2

}
dr

− 2

∫ T

s∨τ

tr
{[
P (r)− Y (r)

][
Λ(r)− Z(r)

]}
dw(r).

Thus, by Lemma 3.1, we obtain

|P (t ∨ τ)− Y (t ∨ τ)|2 + E
(∫ T

t∨τ

|Λ(r)− Z(r)|2dr
∣∣Ft∨τ

)
≤ E

{∫ T

t∨τ

er−t∨τ |Θ(r, p(r), l(r))|2dr
∣∣Ft∨τ

}
≤ K0

(
1 +

K4

δ2

)
(T − t ∨ τ), t ∈ [0, T ], a.s. ω ∈ Ω. (4.15)
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Hereafter, K0 > 0 represents a generic constant (independent of K and δ, and thus uniform
in (p, l) ∈ BK,δ), which can be different at different places. Now, we observe the following∣∣R(t) +D(t)T ξ(t)D(t)−R(t)−D(t)TP (t)D(t)

∣∣
≤ |D(t)|2|ξ(t)− P (t)|

≤ K0

(
1 +

K4

δ2

)
(T − t)

∆
=η(t), ∀t ∈ [τ, T ], a.s. ω ∈ Ω, (4.16)

where K0 is an absolute constant. Thus, for 0 < ε < T − t0 small, by defining τ = T − ε,
we have

η(t) ≤ δ0
2

∆
=δ, ∀t ∈ [τ, T ], a.s. ω ∈ Ω,

which leads to (4.11). It is important to note that this τ only depends on K, δ and is
independent of particular (p, l).

Step 2. For suitable choice of τ ∈ T [T − ε, T ), K ≥ 1 and 0 < δ ≤ 1, (P,Λ) ∈ BK,δ.

Let τ ∈ T [T − ε, T ] for some small ε > 0. Applying Itô’s formula to |P (·)|2, we have

|P (s ∨ τ)|2 ≤ |G|2 + 1

µ

∫ T

s∨τ

|P (r)|2dr +
∫ T

s∨τ

{
µ|Ψ(r, p(r), l(r))|2 − |Λ(r)|2

}
ds

− 2

∫ T

s∨τ

tr
[
P (r)Λ(r)

]
dw(r) (4.17)

for any µ ∈ (0, 1]. Thus, by Lemma 3.1, we obtain

|P (t)|2 + E
(∫ T

t

|Λ(r)|2dr
∣∣∣Ft

)
≤ E

{
e

T−t
µ |G|2 + µ

∫ T

t

e
r−t
µ |Θ(r, p(r), l(r))|2dr

∣∣∣Ft

}
≤ K0e

ε
µ

{
1 + µ

(
1 +

K4

δ2

)
ε
}
, t ∈ [τ, T ], a.s. ω ∈ Ω. (4.18)

Next, (p, l) ∈ BK,δ, together with (SS), implies that Θ(· , p(·), l(·)) ∈ L2
F (0, T ; lD

n×n
1,2 ) with

|DθΘ(r, p(r), l(r))| ≤ K0

[
1 + |p(r)|+ |l(r)|

]
+
K0

δ

[
1 + |p(r)|+ |l(r)|

][
|Dθp(r)|+ |Dθl(r)|

]
≤ K0(1 +K) +

K0

δ
(1 +K)

[
|Dθp(r)|+ |Dθl(r)|

]
. (4.19)

Then by [7], (P,Λ) ∈ L2
F (τ, T ; lD

n×n
1,2 ), and a version of it satisfies{

DθP (t) = DθΛ(t) = 0, τ ≤ θ < t ≤ T ;

DθP (t) = DθG−
∫ T

t
DθΘ(s, p(s), λ(s))ds−

∫ T

t
DθΛdw(s), τ ≤ θ ≤ t ≤ T.

(4.20)

Moreover, {DtP (t) : τ ≤ t ≤ T} is a version of {Λ(t) : τ ≤ t ≤ T}.
Similarly to (4.17)–(4.18), we have

|DθP (t)|2 + E
(∫ T

t

|DθΛ(r)|2dr
∣∣∣Ft

)
≤ E

{
e

T−t
µ |DθG|2 + µ

∫ T

t

e
r−t
µ |DθΘ(r, p(r), l(r))|2dr

∣∣∣Ft

}
≤ e

ε
µK0 + µe

ε
µ εK0(1 +K2) + µe

ε
µ
K0

δ2
(1 +K2)E

(∫ T

t

|Dθp(r)|2 + |Dθl(r)|2dr
∣∣∣Ft

)
≤ K0e

ε
µ

{
1 + µε(1 +K2) +

µ

δ2
(1 +K2)K2

}
, τ ≤ θ ≤ t ≤ T, a.s. (4.21)
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Adding (4.18) to (4.21), and taking µ =
√
ε, we obtain

|P (t)|2 + |DθP (t)|2 + E
(∫ T

t

|Λ(r)|2dr
∣∣∣Ft

)
+ E

(∫ T

t

|DθΛ(r)|2dr
∣∣∣Ft

)
≤ K0e

√
ε
{
1 + ε3/2

(
1 +

K4

δ2

)
+

√
ε

δ2
(1 +K2)K2

}
≤ K0

{
1 +

√
ε
(
1 +

K4

δ2

)}
. (4.22)

We note that K0 is an absolute constant. Now, let us take K = K0 + 1. We may choose
ε > 0 small enough so that

K0

{
1 +

√
ε
(
1 +

K4

δ2

)}
≤ (K0 + 1)2. (4.23)

For such a choice of K, recalling the fact that DtP (t) is a version of Λ(t), we see that
(P,Λ) ∈ BK,δ.

Step 3. Completion of the proof. Now, for any (p, l), (p̄, l̄) ∈ BK,δ, let (P,Λ) and (P̄ , Λ̄)
be the corresponding adapted solutions of (4.13). Then by a similar argument used above,
we can prove that

∥(P,Λ)− (P̄ , Λ̄)∥X[τ,T ] ≤ α∥(p, l)− (p̄, l̄)∥X[τ,T ] (4.24)

for some α ∈ (0, 1). Here, we probably need to shrink ε > 0 a little further. By the
Contraction Mapping Theorem, we obtain a unique fixed point of the map (p, l) 7→ (P,Λ),
which gives a local adapted solution to (1.11) having the properties stated in the theorem.

Corollary 4.1. Let (S) hold. Let either D = 0 and (3.2) hold, or (SS) hold. Then there
exists a τ ∈ T [0, T ), such that Problem (LQ) is solvable at τ .

To conclude this section, let us point out the following. The proof of Theorem 4.1 can be
modified so that it applies to the local solvability of more general nonlinear BSDEs of form{

dY (t) = b(t, Y (t), Z(t))dt+ Z(t)dw(t), t ∈ [τ, T ],
Y (T ) = η,

(4.25)

where b(t, y, z) : [0, T ] × O × lRn → lRn, with O ⊆ lRn being a domain, is allowed to have
any order of growth in (y, z). Since O is only a domain in lRn, b is allowed to have very bad
behavior as y → ∂O. What we need to assume is the following

(N) For any (y, z) ∈ O × lRn, b(t, y, z) is {Ft}t≥0-progressively measurable and continu-
ous, [Dθb](t, y, z), by(t, y, z), bz(t, y, z), byy(t, y, z), byz(t, y, z), bzz(t, y, z), [Dθby](t, y, z) and
[Dθbz](t, y, z) are continuous. Moreover, for any compact set F ⊆ O × lRn, there exists a
constant K > 0, such that

|b(t, y, z)|+ |[Dθb](t, y, z)|+ |by(t, y, z)|+ |bz(t, y, z)|+ |byy(t, y, z)|
+ |byz(t, y, z)|+ |bzz(t, y, z)|+ |[Dθby](t, y, z)|+ |[Dθbz](t, y, z)| ≤ K,

∀t, θ ∈ [0, T ], (y, z) ∈ F, a.s. ω ∈ Ω. (4.26)

Proposition 4.1. Let (N) hold. Let η ∈ lDn
1,∞ such that

d(ξ(t), ∂O)
∆
= inf

y∈∂O
|ξ(t)− y| ≥ δ, a.s. ω ∈ Ω, ∀t ∈ [t0, T ] (4.27)

for some δ > 0 and t0 ∈ [0, T ), where (ξ(·), z(·)) is the adapted solution of the following
BSDE

dξ(t) = ζ(t)dw(t), ξ(T ) = η. (4.28)

Then (4.25) admits a local solution (Y (·), Z(·), τ), with τ ∈ T [0, T ), and on [τ, T ], (Y (·), Z(·))
is unique.
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We omit the proof here.

§5. Deterministic Coefficient Case

In this section, we consider the case of deterministic coefficient. For the simplicity of
presentation, we will assume (DI) (The situation under (DV) can be discussed in a similar
fashion). We introduce the following terminal value problem of differential equation for
matrix-valued function P (·): Ṗ (t) = −P (t)A−ATP (t)−Q

+[P (t)B + CTP (t)D][R+DTP (t)D]−1[BTP (t) +DTP (t)C], t ∈ [τ, T ],
P (T ) = G,

(5.1)

where τ ∈ [0, T ). In the present case, (4.25) can be replaced by

R+DTGD > 0. (5.2)

Then one can always find some τ ∈ [0, T ), such that (5.1) admits a solution P (·) satisfying
R+DTP (t)D > 0, t ∈ [τ, T ]. (5.3)

Clearly, (P (·), 0, τ) is also a local adapted solution of (1.10). On the other hand, if (DI)
holds, then both (S) and (SS) hold. Thus, by Theorem 4.1, (P (·), 0) is the unique local
adapted solution of (1.11) on [τ, T ]. Hence, (5.1) actually coincides with (1.11) if condition
(DI) is assumed. Consequently, we have the following result.

Proposition 5.1. Suppose for τ ∈ [0, T ), there exists a solution P (·) : [τ, T ] → Sn to
(5.1) satisfying (5.3). Then Problem (LQ) is solvable at τ with the optimal control u(·) being
of state feedback form

u(t) = −[R+DTP (t)D]−1[BTP (t) +DTP (t)C]x(t), t ∈ [τ, T ], (5.4)

and (2.9) holds.
From the above result, we see that the interval on which the Riccati equation (5.1)

admits a solution P (·) satisfying Condition (5.3) is closely related to the solvability of our
LQ problems. Let us now define (see [6])

IR
∆
={τ ∈ [0, T )

∣∣ (5.1) admits a solution P (·) satisfying (5.3)},
IS

∆
={τ ∈ [0, T )

∣∣ ∀t ∈ [τ, T ], ξ ∈ Xt, ∃u ∈ U [t, T ], V (t, ξ) = J(t, ξ;u(·))},
IF

∆
={τ ∈ [0, T )

∣∣ ∀t ∈ [τ, T ], ξ ∈ Xt, V (τ, ξ) > −∞, a.s. }.

(5.5)

By Proposition 5.1, we see that IR ⊆ IS ⊆ IF . Now, we define

σ = inf IR. (5.6)

Thus, (σ, T ] is the maximum interval on which (5.1) admits a solution P (·) such that (5.3)
holds on (σ, T ]. From the definition of σ, and Proposition 5.1, we see that for any τ ∈ (σ, T ],
Problem (LQ) is solvable at τ . The following result is found in [6].

Theorem 5.1. Let (S) and (5.2) hold. Then the following are equivalent:
(i) σ ∈ IF .
(ii) There exists a sequence τk↓σ and Pσ ∈ Sn, such that

lim
k→∞

P (τk) = Pσ. (5.7)

In this case, it is necessary that

V (σ, ξ) = ⟨Pσξ, ξ⟩, a.s. ω ∈ Ω, ∀ ∈ Xσ. (5.8)

(iii) There exists a Pσ ∈ Sn, such that

lim
τ↓σ

P (τ) = Pσ. (5.9)
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From (5.1), as well as Theorem 5.1, we see that if σ ∈ IF , which implies that P (τ) stays
bounded as τ↓σ, it is necessary that

lim
τ↓σ

det
[
R+DTP (τ)D

]
= 0. (5.10)

We now would like to look at when σ ∈ IS .
Theorem 5.2. Let (S), (5.2) and (5.9) hold. Then σ ∈ IS if and only if

Ψ
∆
=[R+DTPD]−1[BTP +DTPC] ∈ L2(σ, T ; lRm×n). (5.11)

Proof. ⇐: From (5.11), we know that for any ξ ∈ Xσ, the following SDE{
dx(t) = [A−BΨ(t)]x(t)dt+ [C −DΨ(t)]x(t)dw(s), t ∈ [σ, T ],
x(σ) = ξ

admits a unique strong solution x(·) satisfying
E
{
|x(t)|k

∣∣Fσ

}
≤ K0(1 + |ξ|k), ∀t ∈ [σ, T ], a.s. ω ∈ Ω, k ≥ 1. (5.12)

Since Ψ(·) is a deterministic function, we then obtain

u(·)∆=−Ψ(·)x(·) ∈ U [τ, T ].
Clearly x(·) is the state process of the system under control u(·). Hence, similarly to the
proof of Theorem 5.1, we obtain

J(σ, ξ;u(·)) ≥ J(σ, ξ;u(·)) = ⟨Pσξ, ξ⟩,
proving σ ∈ IS .

⇒: For any ξ ∈ Xσ, let (x(·), u(·)) be an optimal pair of Problem (LQ) at (σ, ξ). Then,
by dynamic programming principle, u

∣∣
[τ,T ]

∈ U [τ, T ] is an optimal control of Problem (LQ)

at (τ, x(τ)), for any τ ∈ (σ, T ]. Using Proposition 5.1, we must have

u(t) = −Ψ(t)x(t), ∀t ∈ (σ, T ]. (5.13)

Thus, it follows that

Ψ(·)Φ̂(·)ξ ∈ L2
F (σ, T ; lR

m), ∀ξ ∈ Xσ, (5.14)

where Φ̂(·) is the solution of{
dΦ̂(t) = [A−BΨ(t)]Φ̂(t)dt+ [C −DΨ(t)]Φ̂(t)dw(t), t ∈ [σ, T ],

Φ̂(σ) = I.

It is clearly that E
{
|Φ̂(t)−1|

∣∣Fσ

}
≤ K0, ∀t ≥ σ. Hence, (5.13) implies (5.10) (note again

that Ψ(·) is deterministic).
The following example shows that sometimes

σ
∆
= inf IR = inf IS . (5.15)

Example 5.1. Consider the following one-dimensional control system{
dx(t) = 1

2x(t)dt+ u(t)dw(t), t ∈ [τ, T ],
x(τ) = ξ

(5.16)

with the cost functional

J(τ, ξ;u(·)) = E
{∫ T

τ

eu(t)2dt− x(T )2
∣∣∣Fτ

}
. (5.17)

Thus, we have the case A = 1
2 , B = C = Q = 0, D = 1, G = −1 and R = e. Consequently,

R+DTGD = e− 1 > 0, and the Riccati equation (5.1) reads{
Ṗ (t) = −P (t), t ∈ [τ, T ],
P (T ) = −1,

(5.18)
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whose solution is given by

P (t) = −eT−t, t ∈ [τ, T ]. (5.19)

Then (5.3) becomes R+DTP (t)D = e− eT−t > 0, t ∈ [τ, T ], which leads to (by (5.6))
σ = T − 1. A direct computation shows that for any u(·) ∈ U [τ, T ],

J(τ, ξ;u(·)) = −eT−τξ2 + eE
{∫ T

τ

u(t)2[1− eT−1−r]dr
∣∣Fτ

}
.

Thus

V (τ, ξ) =

{
−∞, ∀(τ, ξ) ∈ ∆[0, T − 1),
−eT−τξ2, ∀(τ, ξ) ∈ ∆[T − 1, T ].

Hence, (5.15) holds.
We note that (5.19) coincides with (5.1) only on (σ, T ] since the later is at most defined

on (σ, T ]. At this moment, we do not know if (5.15) holds in general.

§6. One-Dimensional Cases

We now look at the one-dimensional time-invariant deterministic cases, for which we will
solve our LQ problem more completely via Riccati equation.

Note that the case D = 0 reduces Riccati Equation (5.1) to a standard one (for deter-
ministic LQ problems). Thus, let us assume that D = 1, after scaling. Then, we can write
our Riccati Equation (5.1) and Condition (5.3) as follows Ṗ = −(2A+ C2)P −Q+ (B+C)2P 2

P+R , τ ∈ [τ, T ],

P (T ) = G,
P (t) +R > 0, t ∈ [τ, T ].

(6.1)

Now, by making a change of variable:

y(t) = P (T − t) +R, t ≤ T, (6.2)

we can further write (6.1) as follows: ẏ = ay2+by+c
y , t ≥ 0,

y(0) = g,
y(t) > 0, t ≥ 0,

(6.3)

where {
a = (2A+ C2)− (B + C)2, b = Q−R

[
(2A+ C2)− 2(B + C)2

]
,

c = −R2(B + C)2 ≤ 0, g = G+R > 0.
(6.4)

The last (strict) inequality in (6.4), which is an analog of (5.2), will be assumed in the sequel.
It is easy to see the following

(i) (6.1) admits a solution P (·) on [τ, T ] if and only if (6.3) admits a solution y(·) on
[0, T − τ ], which implies the solvability of Problem (LQ) over [τ, T ].

(ii) lim
t↓σ

P (t) exists if and only if lim
t↑T−σ

y(t) exists.

(iii) Ψ ≡ (B+C)P
P+R ∈ L2(σ, T ) if and only if c

y ∈ L2(0, T − σ).

In what follows, we let

θ = sup{t > 0
∣∣ (6.3) admits a solution on [0, t]} = T − σ. (6.5)

Then θ determines the maximal interval in which our LQ problems are solvable through the
Riccati equation. The following result gives the explicit description of θ in terms of a, b, c
and g defined by (6.4).
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Proposition 6.1. Let (DI) hold with n = m = 1, and a, b, c, g be defined by (6.4). Then
the following hold.

(i) When b = c = 0, θ = +∞.
(ii) When b = 0 and c ̸= 0, we have θ < +∞ if and only if c < −a+g2. In this case,

θ =

{
g2

2|c| , a = 0,
1
2a ln c

ag2+c , a ̸= 0.
(6.6)

(iii) When b ̸= 0 and c = 0, we have θ < +∞ if and only if b < −a+g. In this case,

θ =

{ g
|b| , a = 0,
1
a ln b

ag+b , a ̸= 0.
(6.7)

(iv) When a = 0 and bc ̸= 0, we have θ < +∞ if and only if b < 0. In this case,

θ =
|c|
b2

{bg
c

− ln
(
1 +

bg

c

)}
. (6.8)

(v) When abc ̸= 0, let ∆ = b2 − 4ac.
(a) If ∆ > 0, then θ < +∞ if and only if one of the following holds:{

a > 0, b <
√
∆− 2ag,

a < 0, b /∈
[
0,
(
2|a|g −

√
∆
)+]

.

In either of the above cases,

θ =
1√
∆

{
y+ ln

y+
y+ − g

− y− ln
y−

y− − g

}
, (6.9)

where y± = −b±
√
∆

2a .

(b) If ∆ = 0, then θ < +∞ if and only if b /∈
[
0, 2|a|g

]
. In this case,

θ =
1

a

{
ln

b

2ag + b
+

2ag

2ag + b

}
. (6.10)

(c) If ∆ < 0, one always has θ < +∞ and

θ =
1

2a

{
ln

c

ag2 + bg + c
− 2b√

−∆

[
tan−1 b√

−∆
− tan−1 2ag + b√

−∆

]}
. (6.11)

The proof is pretty straightforward and we omit it here.
From the above result, we can determine the maximum interval (σ, T ] on which the

Riccati equation (6.1) is solvable, which leads to the solvability of our LQ problems at any
τ ∈ (σ, T ]. Also, we see that in the present case,

lim
τ↓σ

P (τ) = −R. (6.12)

Thus, when σ ∈ [0, T ), we always have σ ∈ IF . Finally, we have the following result.
Proposition 6.2. Let σ ∈ [0, T ) be defined by (5.6). Then σ ∈ IS if and only if

R(B + C) = 0. (6.13)

Proof. By Theorem 5.2, we know that σ ∈ IS if and only if Ψ ≡ (B+C)P
P+R ∈ L2(σ, T ).

In the case R(B+C) = 0, Ψ(t) = (B+C) ∈ L2(σ, T ). On the other hand, if R(B+C) ̸= 0,
Ψ ∈ L2(σ, T ) is equivalent to c

y ∈ L2(0, θ) with c ≡ −R2(B + C)2 < 0. Now, from (6.3), we

have

y(t)2 = −1

2

∫ θ

t

[ay(s)2 + by(s) + c]ds =
|c|(θ − t)

2
+ o(θ − t).
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Thus, c
y(t) =

√
2|c|√

θ−t+o(θ−t)
/∈ L2(0, θ). This means that Ψ /∈ L2(σ, T ), proving σ /∈ IS .

§7. An Example

In this section, we present an example for which our theory applies (less non-trivially).

Consider the following state equation
d

(
x(t)
y(t)

)
=

(
0 1
0 0

)(
x(t)
y(t)

)
dt+

(
0
1

)
dw(t),(

x(τ)
y(τ)

)
=

(
ξ
η

) (7.1)

with the cost functional

J(τ, ξ, η;u(·)) = E
{∫ T

τ

[
− u(t)2 + x(t)2 + 2(t− T − 1)x(t)y(t)

]
dt

+ x(T )2 +G3y(T )
2
∣∣∣Fτ

}
. (7.2)

We assume that

G3 ∈ lD1,∞, G3 − 1 ≥ δ0 > 0, a.s. (7.3)

In terms of the general framework, we have
A =

(
0 1
0 0

)
, D =

(
0
1

)
, B = 0, C = 0,

Q =

(
1 t− T − 1

t− T − 1 0

)
, G =

(
1 0
0 G3

)
, R = −1.

(7.4)

Note that

R(T ) +D(T )TGD(T ) = G3 − 1 ≥ δ0 > 0. (7.5)

Thus, condition (1.11) holds. The corresponding Riccati equation takes the following form(
P =

(
P1 P2

P2 P3

)
, Λ =

(
Λ1 Λ2

Λ2 Λ3

))
:

d

(
P1 P2

P2 P3

)
=

{
−
(

0 P1

P1 2P2

)
+ 1

P3−1

(
Λ2
2 Λ2Λ3

Λ2Λ3 Λ2
3

)
−Q

}
dt

+

(
Λ1 Λ2

Λ2 Λ3

)
dw(t),

P (T ) = G.

(7.6)

This is equivalent to the following


dP1 =

[
Λ2

2

P3−1 − 1
]
dt+ Λ1dw(t), P1(T ) = 1,

dP2 =
[
− P1 +

Λ2Λ3

P3−1 + T + 1− t
]
dt+ Λ2dw(t), P2(T ) = 0,

dP3 =
[
− 2P2 +

Λ2
3

P3−1

]
dt+ Λ3dw(t), P3(T ) = G3.

(7.7)

By Theorem 4.1, we know that (7.6) admits a local solution (P,Λ, τ) and on [τ, T ], (P,Λ)
is unique. By uniqueness, this local solution satisfies the following on [τ, T ]:

Λ1 = Λ2 = P2 = 0, P1 = 1 + T − t, (7.8)
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and (P3,Λ3) is the adapted solution of{
dP3 =

Λ2
3

P3−1dt+ Λ3dw(t),

P3(T ) = G3.
(7.9)

A direct computation (using Itô’s formula) gives

E
( 1

P3(t)− 1

)2

≤ E
( 1

P3(t)− 1

)2

+ E

∫ T

t

Λ3(s)
2

[P3(s)− 1]4
ds = E

( 1

G3 − 1

)2

≤ 1

δ20
. (7.10)

Also

EP3(t)
2 + 3E

∫ T

t

Λ3(s)
2ds = EG2

3. (7.11)

Hence, (7.9) admits a unique adapted solution on [0, T ]. Consequently, (7.6) admits a
unique adapted solution (P,Λ) over [0, T ], and the corresponding Problem (LQ) is solvable
(on [0, T ]).
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