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ON CRITERION OF THE EXTREMALITY AND
CONSTRUCTION OF HAMILTON SEQUENCES

FOR A CLASS OF TEICHMÜLLER MAPPINGS***
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Abstract

It is proved that if f is a Teichmüller self-mapping of the unit disk with a holomorphic

quadratic differential φ, and φ satisfies the growth condition m(φ, r) = 1
2π

∫ 2π
0 |φ(reiθ)| dθ =

o((1 − r)−s), r → 1, for any s > 1, then f is extremal, and there exists a sequence {tn},
0 < tn < 1, lim

n→∞
tn = 1, such that {φ(tnz)} is a Hamilton sequence. It is the precision of a

theorem of Reich-Strebel in 1974, and gives a fairly satisfactory answer to a question of Reich
in 1988.
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§1. Introduction

f is a Teichmüller self-mapping of the unit disk D = {|z| < 1}, if f is a quasiconformal
self-mapping of D with a complex dilatation of the form

µf (z) =
fz̄
fz

= k
φ(z)

|φ(z)|
, 0 ≤ k < 1, z ∈ D, (1.1)

where φ(z) is holomorphic in D, and k is a constant. Let Q(f) denote the class of all
quasiconformal self-mappings of D that agree with f on the boundary ∂D. f will be called
extremal if ||µf ||∞ ≤ ||µg||∞, for any g ∈ Q(f). Let B(D) denote the class of functions
φ(z) holomorphic in D, with the additional restriction 0 < ||φ|| =

∫∫
D

|φ(z)| dx dy < ∞.

A necessary and sufficient condition that f is an extremal mapping is that there exists a
so-called Hamilton sequence[1], namely, a sequence φn ∈ B(D), n = 1, 2, 3, · · · , such that

lim
n→∞

∫∫
D

φ(z)
|φ(z)|φn(z) dx dy

||φn||
= 1.

In 1974, E. Reich and K. Strebel[1] proved the following
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Theorem A. If φ(z) satisfies the growth condition

m(φ, r) =
1

2π

∫ 2π

0

|φ(reiθ)| d θ = O((1− r)−1), r → 1, (1.2)

then f is extremal, and the extremality of f is no longer implied if O((1− r)−1) is replaced
by O((1− r)−s), for any s > 1.

In 1988, Reich[2] asked: If {tn} is a sequence of numbers, 0 < tn < 1, and lim
n→∞

tn = 1,

does {φ(tnz)} constitute a Hamilton sequence? He showed
Theorem B. If φ(z) is holomorphic on D except for a finite number of poles on ∂D and

f is uniquely extremal, then {φ(tnz)} is a Hamilton sequence.
Theorem C. If φ(z) satisfies the growth condition (1.2), then f is uniquely extremal (it

was deduced in [3] in 1982), and {φ(tnz)} is a Hamilton sequence (it was seen in the proof
of Theorem A).

Theorem D. If f and φ(z) in D are corresponding to Kx + iy and 1 in the chimney
region under a conformal mapping, then f is extremal but not uniquely extremal (it was seen
in [4] in 1962), and {φ(tnz)} is not a Hamilton sequence.

In 1995, the authors[5] conjectured that the best possible growth condition for the unique
extremality may be

m(φ, r) = o((1− r)−1 logs(1− r)−1), r → 1 for any s > 1, (1.3)

and that the best possible growth condition for the extremality may be

m(φ, r) = o((1− r)−s), r → 1 for any s > 1. (1.4)

In view of these and Theorems C, D, it seems that (1.3) should imply that {φ(tnz)} is
a Hamilton sequence, and that (1.4) should no longer imply that {φ(tnz)} is a Hamilton
sequence. But our Theorem 2.1 below says that the former is positive, the latter negative,
and so the conjecture that (1.4) is the best possible growth condition for the extremality of
f is true.

§2. Result and Its Proof

Our result is as follows:
Theorem 2.1. Suppose f is a Teichmüller self-mapping of D with complex dilatation

(1.1), and φ(z) satisfies the growth condition (1.4), then there exists a sequence {tn}, 0 <
tn < 1, lim

n→∞
tn = 1, such that {φ(tnz)} is a Hamilton sequence, and hence f is extremal.

Proof. For 1
2 < t2 < t < 1, set

α(t) =

∫∫
|z|<t

|φ(z)| dx dy, β(t) =

∫∫
t<|z|<1

φ(z)

|φ(z)|
φ(tz) dx dy,

γ(t) =

∫∫
|z|<t

φ(z)

|φ(z)|
[φ(tz)− φ(z)] dx dy.

We have ∫∫
D

φ(z)
|φ(z)|φ(tz) dx dy

||φn||
= t2 + t2

β(t) + γ(t)

α(t)
.

The proof is completed if we can prove that there exists a sequence {tn}, 0 < tn < 1,
lim

n→∞
tn = 1, such that

lim
n→∞

β(tn)

α(tn)
= 0, (2.1)

lim
n→∞

γ(tn)

α(tn)
= 0. (2.2)
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To estimate γ(t), we need the following

Lemma 2.1.[4] m(φ′, ρ) = 1
2π

∫ 2π

0
|φ′(ρeiθ)| d θ ≤ R

R2−ρ2m(φ,R), where R = 1+ρ
2 .

Set

s(t) =

∫ t

1
2

m(φ, r) dr, σ(t) =

∫ 1+t
2

1
2

1 + t− 2R

1−R
m(φ,R) dR, δ(t) = σ(t)− σ(t2).

By Lemma 2.1, one finds that

|γ(t)| ≤
∫∫
|z|<t

|φ(tz)− φ(z)| dx dy

≤
∫ t

0

r dr

∫ 2π

0

dθ

∫ r

tr

|φ′(ρeiθ)| dρ ≤ 2πt

∫ t

0

dr

∫ r

tr

R

R2 − ρ2
m(φ,R) dρ

≤ 4π

∫ t

0

dr

∫ 1+r
2

1+tr
2

R

(3R− 1)(1−R)
m(φ,R) dR ≤ 4π

∫ t

0

dr

∫ 1+r
2

1+tr
2

m(φ,R)

1−R
dR

= 4π

∫ 1+t
2

1
2

1 + t− 2R

1−R
m(φ,R) dR− 4π

∫ 1+t2

2

1
2

1 + t2 − 2R

t(1−R)
m(φ,R) dR

≤ 4π[σ(t)− σ(t2)] = 4πδ(t), (2.3)

and that

α(t) = 2π

∫ t

0

rm(φ, r) dr ≥ πs(t), (2.4)

|β(t)| ≤ 2π

t2

∫ t

t2
rm(φ, r) dr ≤ 4π

t
[s(t)− s(t2)]. (2.5)

To prove (2.1) and (2.2), we need the following lemmas
Lemma 2.2. There exists a sequence {tn}, 0 < tn < 1, lim

n→∞
tn = 1, such that

lim
n→∞

δ(tn)

s(1 + t2n/2)
= 0. (2.6)

Proof. We first show that
lim
t→1

σ(t)

σ(t2)
= 1. (2.7)

Otherwise, we may suppose that the right side of (2.7) is a constant c > 1. Hence there
exists t0,

1
2 < t0 < 1 and c0, 1 < c0 < c, 1 < c0 < 2 such that for any t, t0 ≤ t < 1, it holds

that

σ(t) > c0σ(t
2). (2.8)

Define t2n = tn−1, n = 1, 2, 3, · · · , then lim
n→∞

tn = 1. Making use of (2.8), one derives

σ(tn) > cn0σ(t0), n = 1, 2, 3, · · · . Since t0 = t2
n

n , evidently

cn0 =
( log t0
log tn

) 1
logc0

2

, σ(tn) > cn0σ(t0) ∼ c1

( 1

1− tn

)c2
, n → ∞, (2.9)

where c1 = σ(t0)
(
log 1

t0

)c2
, c2 = 1

logc0
2 > 0. On the other hand, it follows from (1.4) that

σ(tn) ≤ 2tn

∫ 1+tn
2

1
2

m(φ, r) dr = o((1− tn)
1−s), n → ∞

for any s > 1, which contradicts (2.9). Therefore, (2.7) holds.

Since σ(t2) ≤ 2t2
∫ 1+t2

2
1
2

m(φ, r) dr = 2t2s((1 + t2)/2), we have
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δ(t)

s((1 + t2)/2)
=

σ(t2)
[

σ(t)
σ(t2) − 1

]
s((1 + t2)/2)

≤ 2t2
[ σ(t)

σ(t2)
− 1

]
.

In view of (2.7), we obtain (2.6).
Lemma 2.3. There exists a sequence {tn}, 0 < tn < 1, lim

n→∞
tn = 1, such that

lim
n→∞

s((1 + t2n)/2)− s(t2n)

s((1 + t2n)/2)
= 0, (2.10)

lim
n→∞

s(t2n)

s((1 + t2n)/2)
= 1. (2.11)

Proof. Set

K(t) =

∫ 1+t2

2

t2

1 + t− 2R

1−R
m(φ,R) dR−

∫ 1+t2

2

t2

1 + t2 − 2R

1−R
m(φ,R) dR.

It is clear that K(t) ≤ δ(t), and that

K(t) =

∫ 1+t2

2

t2

t(1− t)

1−R
m(φ,R) dR ≥ t

1 + t

∫ 1+t2

2

t2
m(φ,R) dR =

t

1 + t
[s((1 + t2)/2)− s(t2)].

Hence s((1+t2)/2)−s(t2)
s((1+t2)/2) ≤ (1+t)K(t)

ts((1+t2)/2) ≤ (1+t)δ(t)
ts((1+t2)/2) . It follows from (2.6) that (2.10), and

then (2.11) holds.
Lemma 2.4. There exists a sequence {tn}, 0 < tn < 1, lim

n→∞
tn = 1, such that

lim
n→∞

s(tn)− s(t2n)

s(tn)
= 0, (2.12)

lim
n→∞

δ(tn)

s(tn)
= 0. (2.13)

Proof. Since s(t) is increasing, we have lim
n→∞

s(t)−s(t2)
s(t) ≤ s((1+t2)/2)−s(t2)

s((1+t2)/2) . (2.12) comes

by (2.10). Note that δ(t)
s(t) ≤ δ(t)

s((1+t2)/2) ·
s((1+t2)/2)

s(t2) , and (2.13) follows from (2.6) and (2.11).

Combining (2.3)–(2.5), (2.12) and (2.13), now we see easily that (2.1) and (2.2) hold. The
proof of Theorem 2.1 is completed.
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