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Abstract

The Fourier transform for homogeneous vector bundles over quaternion unit disk is studied,
and the corresponding inversion formula and Plancherel formula are established.
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§1. Introduction

Let G be a connected noncompact semisimple Lie group with finite center and K a
maximal compact subgroup of G, and X = G/K the associated Riemannian symmetric
space of noncompact type.

Let (Vτ , τ) be an irreducible unitary representation of K, and Eτ be the homogeneous
vector bundle over G/K associated with the given representation τ . It is well known that a
cross section f ∈ Γ(Eτ ) may be identified with a vector-valued function f : G → Vτ which
is right-K-covariant of type τ , i.e.,

f(gk) = τ(k−1)f(g). (1.1)

We denote by C∞
0 (G, τ) the space of compactly supported smooth functions on G that are

right-K-covariant of type τ , and L2(G, τ) be the Hilbert space of square integrable functions,
with the scalar product defined by

⟨f1, f2⟩ =
∫
G

⟨f1(x), f2(x)⟩Vτ dx. (1.2)

If τ is the trivial representation of K, then L2(G, τ) = L2(G/K), the corresponding
Fourier transform is well-studied, and the inversion formula and Plancherel formula has been
established by Harish-Chandra, Gelfand and Helgason. The case dim τ = 1 is considered
by Shimeno[6], which is closely related to the weighted Plancherel formula on the bounded
symmetric domain (see [1-5] and [8]).

In this paper, we consider the generalized Fourier transform for vector-valued functions on
quaternion unit disk B = {|z| < 1|z ∈ H}, where H denotes the set of quaternion numbers.
In this case G = Sp(1, 1) and K = Sp(1)× Sp(1).
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§2. Preliminaries

Let H be the set of quaternions. The element of H can be expressed as x = x1 + x2i +
x3j+x4k. Sp(1, n) is the Lie group of right linear operators on Hn+1 which leaves invariant
the Hermitian form

(x, y) = ȳ0x0 − ȳ1x1 − · · · − ȳnxn,

where x = (x0, x1, · · · , xn) ∈ Hn+1, y = (y0, y1, · · · , yn) ∈ Hn+1. In particular, Sp(1) :=
Sp(1, 0) = {u ∈ H| |u| = 1} is the unit sphere of H, and Sp(1, 1) is a subgroup of GL(2,H)
which is isomorphic to the universal covering group of SO0(1, 4). It is easy to see that

G =

{
g =

(
a b
c d

)
∈ M2(H)

∣∣∣ āb = c̄d, |a|2 − |c|2 = 1, |d|2 − |b|2 = 1

}
,

and its maximal compact subgroup

K =

{(
u 0
0 v

) ∣∣∣u, v ∈ Sp(1)

}
.

Let G = Sp(1, 1). It has Iwasawa decomposition G = KAN , where

A =

{(
cosh t sinh t
sinh t cosh t

) ∣∣∣ t ∈ R
}
,

N =

{(
1− x x
−x 1 + x

) ∣∣∣x = ξ2i+ ξ3j + ξ4k, ξ2, ξ3, ξ4 ∈ R
}
.

The normalizer group M of A in K is

M =

{
g =

(
u 0
0 u

) ∣∣∣u ∈ Sp(1)

}
.

Then P = MAN is the minimal parabolic subgroup of G. We also have Cartan decomposi-
tion G = KAK.

For u = x1 + x2i+ x3j + x4k ∈ Sp(1), let

I(u) =

(
x1 + x2i x3 + x4i
−x3 + x4i x1 − x2i

)
.

Then the map I : Sp(1) → SU(2) is an isomorphism. For every n ∈ 1
2Z

+, there exists an
irreducible unitary representation ρn of SU(2) on the Hilbert space V n of dimension 2n+1.
Since K = Sp(1) × Sp(1) the irreducible unitary representation of K can be realized as

ρn ⊗ ρn
′
on V n ⊗ V n′

. Let ρn,n
′
= ρn ⊗ ρn

′
, i.e.,

ρn,n
′
(k) = ρn(u)⊗ ρn

′
(v) for k =

(
u 0
0 v

)
∈ K.

If τ = ρn,n
′
, then τ |M can be decomposed as τ |M =

n+n′∑
k=|n−n′|

ρk. In this paper, we only

consider the case that τ = ρ0,n or τ = ρn,0, i.e., τ |M is irreducible.

§3. Generalized Fourier Transform for Vector Bundles

For λ ∈ a∗C, b ∈ K/M , consider the End(Vτ )-valued function

Eτ
λ,b(g) = e−(iλ+ρ)(H(g−1k))τ(K(g−1k))τ(k−1), b = kM, (3.1)

where H(g), K(g) is defined by the Iwasawa decomposition

g = K(g) expH(g)n(g)
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with K(g) ∈ K, H(g) ∈ a (the Lie algebra of A) and n(g) ∈ N . For m ∈ M ,

H(g−1km) = H(g−1k), K(g−1km) = K(g−1k)m,

so Eτ
λ,b is well-defined. Moreover, we have the following elementary properties

Eτ
λ,b(kg) = Eτ

λ,k−1·b(g)τ(k
−1), (3.2)

Eτ
λ,b(gk) = τ(k−1)Eτ

λ,b(g). (3.3)

The τ -spherical function can be defined by

ϕτ
λ(g) =

∫
K/M

Eτ
λ,b(g)db. (3.4)

From (3.2) and (3.3) it is easy to see that

ϕτ
λ(k1gk2) = τ(k−1

2 )ϕτ
λ(g)τ(k

−1
1 ). (3.5)

Let D(G, τ) be the algebra of G-invariant differential operators mapping sections of Eτ to
sections of Eτ , C∞(G, τ) be the space of C∞ maps from G to Vτ satisfying (1.1). Then
D(G, τ) acts naturally on C∞(G, τ) in view of the identification of C∞(G, τ) with the space
of C∞ cross sections of Eτ .

Let C∞(G,EndVτ ; τ) be the space of C∞ maps from G to EndVτ satisfying

F (gk) = τ(k−1)F (g).

For F ∈ C∞(G,EndVτ ; τ), v ∈ Vτ , the function f(g) = F (g)v is in C∞(G, τ). So we can let
D(G, τ) act on C∞(G,EndVτ ; τ) by

(DF )(g)v = D(F (g)v), ∀D ∈ D(G, τ), F ∈ C∞(G,EndVτ ; τ).

Clearly, DF ∈ C∞(G,EndVτ ; τ). Moreover, if F is bi-K-covariant of type τ , i.e.,

F (k1gk2) = τ(k−1
2 )F (g)τ(k−1

1 ),

then DF is also bi-K-covariant.

Theorem 3.1. For D ∈ D(G, τ), we have

DEτ
λ,b = χλ,τ (D)Eτ

λ,b, (3.6)

Dϕτ
λ = χλ,τ (D)ϕτ

λ, (3.7)

where χλ,τ is an algebra homomorphism from Dτ into C which is given by

χλ,τ (D) =
1

dτ
Tr[Dϕτ

λ(e)] ∈ C,

where dτ is the dimension of Vτ .

Proof. Let τ = ρ0,n, and K1 be the subgroup of K defined by

K1 =

{(
u 0
0 1

) ∣∣∣u ∈ Sp(1)

}
.

Then τ(k) = 1 for k ∈ K1. Let b = k1M , and for g, h ∈ G and k ∈ K,

H((gkh)−1k1) = H(h−1K(h−1g−1k1)) +H(g−1k1),

K((gkh)−1k1) = K(h−1K(k−1g−1k1)),

K(k−1g−1k1) = k−1(K(g−1k1)).

By (3.1), we have

Eτ
λ,k1M (gkh) = Eτ

λ,K(k−1g−1k1)M
(h)τ(k−1)Eτ

λ,k1M (g).
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Since K/M = {kM |k ∈ K1}, by integrating the above equation over K1, we get∫
K1

Eτ
λ,b(gkh)dk = ϕτ

λ(h)E
τ
λ,b(g). (3.8)

Now we act on both sides with operator D ∈ D(G, τ). Since D commutes with left transla-
tions, we have ∫

K

DEτ
λ,b(gkh)dk = (Dϕτ

λ)(h)E
τ
λ,b(g).

For k ∈ K1, Dϕτ
λ(gk) = ττ (k

−1)Dϕτ
λ(g), by specializing the argument to h = e, we get

DEτ
λ,b(g) = Dϕτ

λ(e)E
τ
λ,b(g).

This proves (3.6), and (3.7) follows easily from (3.6).
Notice that Dϕτ

λ ∈ C∞(G,EndVτ ; τ) and satisfies

Dϕτ
λ(k1gk2) = τ(k−1

2 )Dϕτ
λ(g)τ(k

−1
1 ).

So Dϕτ
λ(e) ∈ EndK(Vτ ), i.e.,

τ(k)Dϕτ
λ(e) = Dϕτ

λ(e)τ(k).

By Schur’s Lemma, Dϕτ
λ(e) = cIdτ , with c = 1

dτ
Tr[Dϕτ

λ(e)].
Finally, we have

χλ,τ (D1D2) =
1

dτ
Tr[(D1D2ϕ

τ
λ)(e)] =

1

dτ
Tr[D1

(
χλ,τ (D2)

)
ϕτ
λ)(e)]

= χλ,τ (D1)χλ,τ (D2).

Proposition 3.1. The τ -spherical function ϕτ
λ satisfies

ϕτ
λ(at) = (1− tanh2 t)−nϕ1,2n+1

λ (t)Idτ = (1− tanh2 t)n+1ϕ
1,−(2n+1)
λ (t)Idτ , (3.9)

where

at =

(
cosh t sinh t
sinh t cosh t

)
,

and Idτ
is the identity element in End(Vτ ), ϕ

1,2n+1
λ and ϕ

1,−(2n+1)
λ are Jacobi functions of

order (1, 2n+ 1) and (1,−(2n+ 1)) respectively.
Proof. Since ϕτ

λ is bi-K-covariant of type τ (see (3.5)), it is determined by its restriction
to A, and ϕτ

λ(a) ∈ EndM (Vτ ), ∀a ∈ A. Then ϕτ
λ(a) = f(a)Idτ for some function f on A. f

can be calculated explicitly either by using the radial part of the Casimir operator of G, or
by using the integral formula of ϕτ

λ(a). We have (see [7])

f(at) =
1

dτ

∫
K

e−(iλ+ρ)H(a−1
t k)χτ (K(a−1

t k)k−1)dk

= (1− tanh2 t)
3+iλ

2 F
(2n+ 3 + iλ

2
,
1− 2n+ iλ

2
; 2; tanh2 t

)
.

This proves the proposition.
Proposition 3.2.

ϕτ
λ(x

−1y) =

∫
K

Eτ
λ,b(y)(E

τ
λ̄,b(x))

∗dk, (3.10)

where ∗ denotes adjoint.
Proof. By the definition of ϕτ

λ,

ϕτ
λ(x

−1y) =

∫
K

e−(iλ+ρ)(H(y−1xk))τ(K(y−1xk))τ(k−1)dk.
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By a change of variable k = K(x−1k1), since k1 = K(xk), we have

ϕτ
λ(x

−1y)

=

∫
K

e−(iλ+ρ)(H(y−1k1)−H(x−1k1))τ(K(y−1k1))τ((K(x−1k1))
−1)e−2ρ(H(x−1k1))dk1

=

∫
K

Eτ
λ,kM (y)(Eτ

λ̄,kM (x))∗dk.

Let D(G, τ) be the space of compactly supported C∞-functions on G that are right-K-
covariant of type τ , and D♯(G, τ) be the space of functions F in D(G, τ) which satisfy

F (k1ak2) = τ(k−1
2 )τ(k−1

1 )f(a)v, (3.11)

where f is a function on A+ and v ∈ Vτ .
For λ ∈ a∗C, f ∈ D♯(G, τ), the spherical transform is defined by

F̂ (λ) =

∫
G

(
ϕτ
λ̄(g)

)∗
F (g)dg. (3.12)

For λ ∈ a∗,b ∈ K/M , F ∈ D(G, τ), the generalized Fourier transform is defined by

F̂ (λ, b) =

∫
G

(
Eτ

λ̄,b(g)
)∗
F (g)dg =

∫
G

e(iλ−ρ)(H(g−1k))τ(k)τ(K(g−1k)−1)F (g)dg. (3.13)

Then we have
Theorem 3.2. Let τ = ρ0,n. For F ∈ D♯(G, τ), we have the inversion formula

F (g) =

∫ ∞

0

ϕτ
λ(g)F̂ (λ)ρτ (λ)dλ+

k∑
m=0

dτ (m)ϕτ
i(2n−1−2m)(g)F̂ (i(2n− 1− 2m))

and the Plancherel formula∫
G

∥f(g)∥2Vτ
dg =

∫ ∞

0

∥F̂ (λ)∥2Vτ
ρτ (λ)dλ+

k∑
m=0

dτ (m)∥F̂ (i(2n− 1− 2m))∥2Vτ
,

where

k = max
{
j ∈ Z

∣∣∣ j < 2n− 1

2

}
,

and the Plancherel measures ρτ and dτ are given by

ρτ (λ) = cG
(2n+ 1)2 + λ2

4

λ sinhπλ

coshπλ+ (−1)2n
,

dτ (m) = cG(2n− 2m− 1)(m+ 1)(2n−m),

cG is a constant only depending on the choice of the Haar measure.
Proof. By Proposition 3.1, for F ∈ D♯(G, τ),

(ϕτ
λ̄(k1atk2) ∗ F (k1atk2) = (1− tanh2 t)n+1ϕ

1,−(2n+1)
λ (t)F (at).

Assume that F (a) = f(a)v for some v ∈ Vτ . Then

F̂ (λ) = c

∫
R+

(1− tanh2 t)n+1ϕ
1,−(2n+1)
λ (t)f(at)(2 sinh t)

3(2 cosh t)3dt · v

= c24n+4
(
(1− tanh2 t)−(n+1)f(at)

)̃
(λ) · v, (3.14)

where c is a constant depending only on the choice of the Haar measure, and ˜denotes the
Jacobi transform, which is defined, for f ∈ C∞

0 (R+), by

f̃(λ) =

∫ ∞

0

f(t)ϕ
1,−(2n+1)
λ (t)(2 sinh t)3(2 cosh t)−4n−1dt.
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Then by the inversion formula and Plancherel formula of Jacobi transform, we get

F (at) =
2−(4n+4)

2πc

∫ ∞

0

ϕτ
λ(at)F̂ (λ)|c(λ)|−2dλ

+
k∑

m=0

2−(4n+4)

c
d(m)ϕτ

i(2n−1−2m)(at)F̂ (i(2n− 1− 2m)), (3.15)

c

∫ ∞

0

∥F (at)∥2Vτ
(2 sinh t)3(2 cosh t)3dt

=
2−(4n+4)

2πc

∫ ∞

0

∥F̂ (λ)∥2Vτ
|c(λ)|−2dλ+

k∑
m=0

2−(4n+4)

c
d(m)∥F̂ (i(2n− 1− 2m))∥2Vτ

,
(3.16)

where

c(λ) =
21−2n−iλΓ(iλ)

Γ( 12 (iλ+ 1− 2n))Γ(12 (iλ+ 3 + 2n))
,

d(m) = −i Res
λ=i(2n−1−2m)

(c(λ)(−λ))−1, 0 ≤ m ≤ k.

By easy calculation, we have

2−(4n+4)

2πc
|c(λ)|−2 =

(2n+ 1)2 + λ2

28c

λ sinhπλ

coshπλ+ (−1)2n
, (3.17)

2−(4n+4)

c
d(m) =

(2n− 2m− 1)(m+ 1)(2n−m)

26c
. (3.18)

Taking cG = (26c)−1, by (3.15)–(3.18), we prove the theorem.

Theorem 3.3. Let τ = ρ0,n. For f ∈ D(G, τ), we have the inversion formula

f(g) =

∫ ∞

0

∫
B

Eτ
λ,b(g)f̂(λ, b)ρτ (λ)dbdλ

+

k∑
m=0

dτ (m)

∫
B

Eτ
i(2n−1−2m),b(g)F̂ (i(2n− 1− 2m), b) (3.19)

and the Plancherel formula∫
G

∥f(g)∥2Vτ
dg

=

∫ ∞

0

∫
B

∥f̂(λ, b)∥2Vτ
ρτ (λ)dbdλ

+
k∑

m=0

dτ (m)

∫
B

∥⟨f̂(i(2n− 1− 2m), b), f̂(−i(2n− 1− 2m), b)⟩∥Vτ db,
(3.20)

where ρτ and dτ are the same as in Theorem 3.2.

Proof. Let f ∈ D(G, τ), v be an arbitrary fixed vector in Vτ . Let F : G 7→ EndVτ be
defined by

F (g)(w) = ⟨w, v⟩f(g), w ∈ Vτ .

Obviously, f(g) = F (g)v and for all A ∈ EndVτ ,

Tr(AF (g)) = ⟨Af(g), v⟩. (3.21)
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For h ∈ G, define

F1(g) =

∫
K

F (hkg)τ(k)dk.

Then F1 is bi-K-covariant of type τ , and for any w ∈ Vτ , F1(g)w ∈ D♯(G, τ). Moreover

TrF1(e) =

∫
K

Tr(τ(k−1)F (h)τ(k))dk = Tr(F (h)) = ⟨f(h), v⟩. (3.22)

Let {ei|i = 1, 2, · · · , dτ} be an orthonormal basis of Vτ . Then

dτ∑
i=1

⟨(F1(g)ei)̂(λ), ei⟩Vτ =

dτ∑
i=1

⟨∫
G

∫
K

(
ϕτ
λ̄(g)

)∗
F (hkg)τ(k)dkdgei, ei

⟩
Vτ

=

dτ∑
i=1

⟨∫
G

∫
K

τ(k−1)
(
ϕτ
λ̄(h

−1g)
)∗
F (g)τ(k)dkdgei, ei

⟩
Vτ

=

∫
G

Tr
[(
ϕτ
λ̄(h

−1g)
)∗
F (g)

]
dg.

By (3.19) and Proposition 3.2, we get

dτ∑
i=1

⟨(F1(g)ei)̂(λ), ei⟩Vτ =
⟨∫

G

(
ϕτ
λ̄(h

−1g)
)∗
f(g)dg, v

⟩
=

⟨∫
G

∫
K

Eτ
λ,b(h)

(
Eτ

λ̄,b(g)
)∗
f(g)dbdg, v

⟩
=

⟨∫
K

Eτ
λ,b(h)f̂(λ, b)db, v

⟩
. (3.23)

By (3.22), (3.23) and Theorem 3.2,

⟨f(h), v⟩ =
∫ ∞

0

⟨ dτ∑
i=1

(F1(g)ei)̂(λ), ei

⟩
Vτ

ρτ (λ)dλ

+

k∑
m=0

dτ (m)
⟨ dτ∑

i=1

(F1(ei))̂(i(2n− 1− 2m)), ei

⟩
Vτ

=
⟨∫ ∞

0

∫
B

Eτ
λ,b(h)f̂(λ, b)ρτ (λ)dbdλ, v

⟩
Vτ

+
⟨ k∑

m=1

dτ (m)

∫
B

Eτ
i(2n−1−2m),b(g)f̂(i(2n− 1− 2m), b)db, v

⟩
Vτ

.

From this expression we get (3.19).

The Plancherel formula easily follows from (3.19). First, we note that∫
G

(f(g))∗Eτ
λ,b(g)dg =

(∫
G

(Eτ
λ,b(g))

∗f(g)dg
)∗

= (f̂(λ̄, b))∗. (3.24)
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By (3.19),∫
G

∥f(g)∥2Vτ
dg =

∫
G

(f(g))∗f(g)dg

=

∫
G

∫ ∞

0

∫
B

(f(g))∗Eτ
λ,b(g)f̂(λ, b)ρτ (λ)dbdλdg

+
k∑

m=0

dτ (m)

∫
G

∫
B

(f(g))∗Eτ
i(2n−1−2m),b(g)f̂(i(2n− 1− 2m), b)dbdg

=

∫ ∞

0

∫
B

∥f̂(λ, b)∥2Vτ
ρτ (λ)dbdλ

+
k∑

m=0

dτ (m)

∫
B

∥⟨f̂(i(2n− 1− 2m), b), f̂(−i(2n− 1− 2m), b)⟩∥Vτ db.

This proves (3.20).
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