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Abstract

By making use of variational method, the authors obtain some results about existence of
multiple positive solutions and their asymptotic behavior as the parameter λ → +∞ for a
semilinear elliptic problem in RN .
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§1. Introduction

Consider the semilinear elliptic problem{ −∆u+ (λa(x) + 1)u = up, x ∈ RN ,

u ∈ H1(RN ), u > 0 in RN ,
(1.1)

where p ∈ (1, N+2
N−2 ) for N ≥ 3, and p ∈ (1,+∞) for N = 1, 2, 0 ≤ a(x) ∈ C(RN ), λ > 0 is a

real parameter.

The existence and uniqueness of solution for such problems have been considered by many
authors recently (see [1–4] and references therein). In [3], T. Bartsch and Wang, Z. Q. proved

that with more genaral nonlinearities (1.1) has at least one solution for λ large under some
conditions on a(x) , one of which is that a−1(0) has nonempty interior, and they put forward
a question whether or not one can get rid of this assumption.

In this paper, we study the existence of multiple solutions for (1.1) and the asymptotic
behavior of the solutions as λ → +∞. We only assume that a(x) has some flatness at its
zero points, i.e.

(a1) a ∈ C(RN , R) satisfies a ≥ 0, a−1(0) =
K∪
i=1

{ai} and Dαa(ai) = 0, 1 ≤ |α| ≤ k − 1,

a(x+ ai) = a(x+ aj), i ̸= j, x near zero point. Here K is a positive integer and k ≥ 2 will

be determined later.

(a2) There exists a∞ > 0 such that lim inf
|x|→∞

a(x) ≥ a∞ > 0.
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In [5], D. M. Cao and E. S. Noussair gave a result about existence of multiple positive
solutions of (1.1) with a(x) = 0 and nonlinearity Q(λx)|u|p−2u instead of up. They were

mainly interested in the effects of the “shape” of Q(x) while our focus is on a(x). It is easily
seen that if inf a(x) > 0 and a(x) is bounded, one can get a similiar result completely parallel
to [5]. But under conditions (a1), (a2), it seems impossible to prove that the corresponding

energy functional satisfies (PS) or local (PS) conditions by using concentration-compactness
principle as in [5], and this gives rise to some difficulties in the proof of the existence of
multiple solutions. By some delicate estimations, we noticed that the minimizing sequence

concentrates at the zero points of a(x) for λ large enough (see Section 2), and then by making
use of Ekeland’s variational principle, we obtain the following results about the existence of
multiple solutions of (1.1).

Theorem 1.1. Suppose conditions (a1), (a2) hold, and

k > max
{
k′, 4

(p+ 1

p− 1
− N + 1

2

)}
, (1.2)

where

k′ =


2

p−1 if N ≥ 3,

4
p−1 if N = 2,

p2+7
2(p−1) if N = 1,

k is as in (a1). Then there exists λ0 ≥ 1 such that problem (1.1) has at least K positive

solutions ui(i = 1, · · · ,K) for each λ ≥ λ0.

By the proof of Theorem 1.1, we immediately know that the solutions concentrate at the
zero points of a(x) in Lp+1 norm as λ → +∞. Moreover, the solutions also concentrate in

L∞ norm. More precisely, we have

Corollary 1.1. Under the conditions of Theorem 1.1, the solutions ui(i = 1, · · · ,K)

obtained in Theorem 1.1 concentrate at ai in the following sense: For any small δ > 0, as
λ→ +∞, 

max
dist(x,ai)≥δ

ui → 0,

max
dist(x,ai)<δ

ui → +∞.
(1.3)

The paper is organized as follows. Section 2 contains some preliminary lemmas. The
proofs of Theorem 1.1 and Corollary 1.1 are given in Section 3.

Throughout this paper, C,C0, C1, C2, · · · denote (possibly different) positive constants.

§2. Notations and Some Lemmas

As usual, we consider the functional

Iλ(u) =
1

2

∫
RN

(|∇u|2 + (λa(x) + 1)u2)dx− 1

p+ 1

∫
RN

|u|p+1dx, λ ≥ 1

on space

E =
{
u ∈ H1(RN ) : ∥u∥2 =

∫
RN

(|∇u|2 + (a(x) + 1)u2)dx < +∞
}
.

Obviously, Iλ ∈ C1(E,R1) and a positive critical point of Iλ is a solution of Equation (1.1)

(see [1,3]).
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Let δ0 > 0, L > 0 be such that

aiδ0 ∩ a
j
δ0

= ∅, i ̸= j and

K∪
i=1

aiδ0 ⊂
N∏
i=1

(−L,L),

where aiδ0 = {x ∈ RN |dist(x, ai) < δ0}, and ai is as in the condition (a1). Let φ ∈ C(R1, R1)
be such that

φ(t) =

 2L, t > 2L,
t, −L ≤ t ≤ L,
−2L, t < −2L

(2.1)

and define g ∈ C(E,RN ) by

g(u) = (gi(u))1≤i≤N =

(∫
RN φ(xi)|u|p+1dx∫

RN |u|p+1dx

)
1≤i≤N

. (2.2)

Define

Mλ = {u ∈ E : u ̸≡ 0, ⟨I ′λ(u), u⟩ = 0},
M i

λ = {u ∈Mλ : g(u) ∈ aiδ0},
Oi

λ = {u ∈Mλ : g(u) ∈ ∂aiδ0},
where 1 ≤ i ≤ K, and Mλ ̸= ∅, Oi

λ ̸= ∅ (see [5]). Let

mi
λ = inf

Mi
λ

Iλ, mi
λ = inf

Oi
λ

Iλ.

By (a1), it is not hard to prove that for i ̸= j,

mi
λ = mj

λ ≥ c1 > 0, mi
λ = mj

λ ≥ c2 > 0, (2.3)

where c1, c2 are independent of λ.

In this section, we give the estimations of mi
λ and mi

λ for λ large, and then by making

use of Ekeland-variational principle, we obtain a (PS) sequence.
Lemma 2.1. Suppose the condition (a1) holds. Then for λ ≥ 1 large enough,

mi
λ ≤ Cλ

2
k+2 (−

p+1
p−1−

N
2 ),

where the constant C > 0 is independent of λ, and k is as in (a1).
Proof. Let

v =

{
1− λσ|x− ai|, |x− ai| < λ−σ,
0, |x− ai| ≥ λ−σ,

where σ > 0 is a constant to be determined later.

It is easily seen that suppv ⊂ aiδ0 for λ large enough and there exists t0 > 0 such that

u0 = t0v ∈M i
λ and g(u0) ∈ aiδ0 . By computing, we have∫

RN

|v|s = K1λ
−σN , (2.4)

where K1 =
∫ 1

0

∫
|ω|=1

(1− ρ)sρN−1dρdω, and∫
RN

|∇v|2 = ωNλ
2σ−Nσ, (2.5)

where ωN is the area of the unit sphere in RN , and∫
RN

|x− ai|kvs = K2λ
−σN−kσ, (2.6)
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where

K2 =

∫ 1

0

∫
|ω|=1

ρk(1− ρ)sρN−1dρdω.

Let σ = 1
k+2 . By (a1), using Taylor expansion of a(x) about ai and (2.4)–(2.6), we get

mi
λ ≤ Iλ(u0) = Iλ(t0v)

≤ max
t≥0

[ t2
2

∫
RN

(|∇v|2 + C1λ|x− ai|kv2 + v2)dx− tp+1

p+ 1

∫
RN

|v|p+1dx
]

≤ max
t≥0

[C2λ
2σ−Nσt2 − C3λ

−Nσtp+1]

≤ Cλ
2

k+2 (
p+1
p−1−

N
2 )

(2.7)

for λ ≥ 1 large enough, where Ci(i = 1, 2, 3) and C are positive constants independent of λ.

Lemma 2.2. Under the conditions of Theorem 1.1, for λ large enough, mi
λ > mi

λ.

Proof. Let un ∈ Oi
λ be a minimizing sequence of mi

λ, i.e. g(un) ∈ ∂aiδ0 ,

1

2

∫
RN

|∇un|2 + (λa(x) + 1)u2n =
1

p+ 1

∫
RN

|un|p+1 +mi
λ + o(1) as n→ ∞,

(2.8)∫
RN

|∇un|2 + (λa(x) + 1)u2n =

∫
RN

|un|p+1. (2.9)

By (2.8), (2.9), we get∫
RN

|∇un|2 + (λa(x) + 1)u2n ≤ 2(p+ 1)

p− 1
mi

λ + o(1) as n→ ∞. (2.10)

Using Sobolev inequality in (2.9), one can prove that

|un|p+1
Lp+1(RN )

≥ C∗ > 0, (2.11)

where C∗ is independent of λ, n and δ0.

Let δ < δ0 and

a−1
δ
4

(0) =
K∪
i=1

aiδ
4
=

K∪
i=1

{
x ∈ RN

∣∣∣dist(x, ai) < δ

4

}
.

By (a2) and (2.10), we have

|un|2
L2
(
RN\a−1

δ
4

(0)
) ≤ C

mi
λ

λ
. (2.12)

If N ≥ 3, by setting θ = N(p−1)
2(p+1) , the Gagliardo-Nirenberg inequality, (2.10) and (2.12) yield

|un|p+1

Lp+1
(
RN\a−1

δ
4

(0)
) ≤ C|∇un|θ(p+1)

L2
(
RN\a−1

δ
4

(0)
)|un|(1−θ)(p+1)

L2
(
RN\a−1

δ
4

(0)
) ≤ C

(
mi

λ

λ1−θ

) p+1
2

. (2.13)

Similiarly, if N = 1, 2, let sε0 > p be such that

1

p+ 1
=

θε0
sε0 + 1

+
1− θε0

2
,

where ε0 > 0 is a small constant, and θε0 = 2( 12 − 1
p+1 ) + ε0 . Then we also have

|un|p+1

Lp+1
(
RN\a−1

δ
4

(0)
) ≤

(
mi

λ

λ1−θε0

) p+1
2

. (2.14)
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Now, we prove this lemma by contradiction. Suppose that mi
λ ≤ mi

λ. Then by Lemma 2.1,
(2.13), (2.14) and the condition (1.2), it can be shown that as λ→ +∞,

|un|p+1

Lp+1
(
RN\a−1

δ
4

(0)
) = o(1) (2.15)

and then using (2.11), we get

|un|p+1

Lp+1
(
a−1

δ
4

(0)
) ≥ C∗

2
> 0 (2.16)

for λ large enough. Since g(un) ∈ ∂aiδ0 , (2.15), (2.16) imply that there is at least two points

aj1 , aj2 ∈ a−1(0) and C∗
1 > 0, C∗

2 > 0 (independent of n, λ, δ ) such that

|un|p+1

Lp+1
(
a
j1
δ
4

) ≥ C∗
1 > 0, |un|p+1

Lp+1
(
a
j2
δ
4

) ≥ C∗
2 > 0

for λ large enough. In fact, if {|un|p+1
Lp+1} concentrates at any one zero point of a(x) in

the sense of (2.15) and (2.16), then by the definition of g, we know that g(un) ∈ aiδ0
2

or

g(un) ∈ RN\aiδ0 for λ large enough, a contradiction.

By (2.3), we assume (without loss of generality ) that {|un|p+1
Lp+1} concentrates at ai and

aj , i.e.

|un|p+1

Lp+1
(
ai

δ
4

) ≥ C∗
1 > 0, |un|p+1

Lp+1
(
aj

δ
4

) ≥ C∗
2 > 0, (2.17)

|un|
Lp+1

(
RN\

(
ai

δ
4

∪aj
δ
4

)) = o(1) as λ→ +∞. (2.18)

Let vin = unψi, v
j
n = unψj , where ψi, ψj ∈ C1(RN ) satisfy 0 ≤ ψi ≤ 1, 0 ≤ ψj ≤ 1 and

ψi(x) =

{
1, x ∈ aiδ

2

,

0, x ∈ RN\aiδ,
ψj(x) =

{
1, x ∈ ajδ

2

,

0, x ∈ RN\ajδ.
According to (2.10), Lemma 2.1 and the condition (1.2), we have∫

RN\a−1
δ
2

(0)

|un∇un| ≤ C
mi

λ

λ
1
2

≤ C
mi

λ

λ
1
2

≤ C
λ

2
k+2 (

p+1
p−1−

N
2 )

λ
1
2

= o(1) as λ→ +∞. (2.19)

Then by (2.9),(2.18) and (2.19), one can easily prove that as λ→ +∞,

Ai +Aj +Bi +Bj + Cij = o(1), (2.20)

where

Ai =

∫
RN

|∇vin|2 + (λa(x) + 1)|vin|2 −
∫
RN

|vin|p+1,

Aj =

∫
RN

|∇vjn|2 + (λa(x) + 1)|vjn|2 −
∫
RN

|vjn|p+1,

Bi = 2

∫
RN

ψi(1− ψi)|∇un|2 + 2

∫
RN

(λa(x) + 1)ψi(1− ψj)u
2
n ≥ 0,

Bj = 2

∫
RN

ψj(1− ψj)|∇un|2 + 2

∫
RN

(λa(x) + 1)ψj(1− ψj)u
2
n ≥ 0,

Cij =

∫
RN

(1− ψi − ψj)
2(|∇un|2 + (λa(x) + 1)u2n)dx ≥ 0.
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If Ai < o(1), there exists t ∈ (0, 1) such that tvin ∈Mλ, then tv
i
n ∈M i

λ. So by (2.18)–(2.20),
we have that as n→ ∞, λ→ +∞,

mi
λ ≥ mi

λ = Iλ(un) + o(1)

=
1

2

∫
RN

|∇un|2 + (λa(x) + 1)u2n − 1

p+ 1

∫
RN

|un|p+1 + o(1)

= Iλ(v
i
n) + Iλ(v

j
n) +

1

2
Bi +

1

2
Bj +

1

2
Cij + o(1)

≥
(1
2
− 1

p+ 1

)∫
RN

|∇vin|2 + (λa(x) + 1)|vin|2 +
1

p+ 1
Ai

+
1

2
Aj +

1

2
Bi +

1

2
Bj +

1

2
Cij + o(1)

≥
(1
2
− 1

p+ 1

)∫
RN

|∇(tvin)|2 + (λa(x) + 1)|tvin|2 +
( 1

p+ 1
− 1

2

)
Ai + o(1)

> mi
λ;

A contradiction is obtained.
If Aj < o(1), we can prove that mi

λ ≥ mi
λ > mj

λ by above arguments; this contradicts
(2.3).

If Ai ≥ o(1), Aj ≥ o(1), by (2.20) we know that

Ai = o(1), Aj = o(1), Bi = o(1), Bj = o(1), Cij = o(1).

Then there exists tλ = 1 + o(1) as λ→ +∞, such that tλv
i
n ∈M i

λ. So

Iλ(v
i
n) =

(1
2
− 1

p+ 1

)∫
RN

|∇vin|2 + (λa(x) + 1)|vin|2 + o(1)

≥ 1

t2λ
mi

λ + o(1) as λ→ +∞.

Similarly, Iλ(v
j
n) ≥ 1

t2λ
mj

λ + o(1). Hence

mi
λ ≥ mi

λ = Iλ(un) + o(1) = Iλ(v
i
n) + Iλ(v

j
n) + o(1)

≥
mi

λ +mj
λ

t2λ
+ o(1) > mi

λ as λ→ +∞,

a contradiction. The proof of Lemma 2.2 is completed.

Now, one can apply Ekeland Variational principle to the closed set M i
λ ∪ Oi

λ to set a
minimizing sequence of mi

λ which is a (PS) sequence.
Lemma 2.3. Assume the conditions of Theorem 1.1 hold. Then for i = 1, · · · ,K, there

exists λ0 ≥ 1 such that for each λ > λ0, m
i
λ has a minimizing sequence {un} ⊂M i

λ satisfing
un ≥ 0 and

Iλ(un) → mi
λ, I ′λ(un) → 0 in H−1 as n→ ∞.

Proof. The proof of this lemma is similiar to [5], so it is omitted.

§3. Proof of the Results

Proof of Theorem 1.1 and Corollary 1.1. Let {uin} be the minimizing sequence of

mi
λ(1 ≤ i ≤ K) obtained in Lemma 2.3, i.e. {uin} ⊂M i

λ satisfying{
Iλ(u

i
n) → mi

λ,

I ′λ(u
i
n) → 0 in H−1

as n→ +∞. (3.1)
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So as (2.10), we have∫
RN

|∇uin|2 + (λa(x) + 1)|uin|2 ≤ 2(p+ 1)

p− 1
mi

λ + o(1) as n→ ∞. (3.2)

Then there exists ui ∈ E and a subsequence of {uin} (still denoted by uin ) such that

uin → ui weakly in E.

Thus one may check that ui is a solution of Equation (1.1), and the result of Theorem 1.1
follows if we can show that ui ̸≡ 0 and ui ̸= uj for i ̸= j, 1 ≤ i, j ≤ K for λ large enough. In

fact, by the same arguments as in Lemma 2.2, we know that |uin|Lp+1 concentrate at ai, i.e.
for any 0 < δ < δ0

4 , as λ→ +∞ { |uin|
p+1
Lp+1(RN\ai

δ)
= o(1),

|uin|
p+1
Lp+1(ai

δ)
≥ C∗

2 > 0,
(3.3)

where C∗ is independent of n, λ and δ, aiδ is defined in Section 2. This implies that ui ̸≡ 0

and ui ̸= uj for λ large enough by making use of the Sobolev imbeding theorem. The proof
of Therem 1.1 is completed.

Forthermore, by using Brezis-Lieb Lemma[7] to (3.2),(3.3), we get

|ui|p+1
Lp+1(RN\ai

δ)
= o(1) as λ→ +∞, (3.4)∫

RN

|∇ui|2 + (λa(x) + 1)|ui|2 ≤ 2(p+ 1)

p− 1
mi

λ. (3.5)

Then by Lemma 2.1 and (2.19), we have∫
RN\ai

δ
2

|∇ui · ui| = o(1) as λ→ +∞. (3.6)

Let ψui be a test-function for Equation (1.1), where 0 ≤ ψ ≤ 1, ψ = 1 in RN\ai3δ
4

, ψ = 0 in

aiδ
2

and |∇ψ| < 4
δ . Then by (3.4),(3.6), we get∫

RN\ai
3δ
4

|∇ui|2 + |ui|2 = o(1) as λ→ +∞.

Note that ui is a subsolution of ∆u + c(x)u = 0 with c(x) = |ui|p−1. By the one-sided
Harnack inequality and the Sobolev inequality (see [2, 8]), we have

max
R\ai

δ

|ui| ≤ C
(∫

RN\ai
3δ
4

|ui|2
∗
) 1

2∗ ≤ C

∫
RN\ai

3δ
4

|∇ui|2 + |ui|2 = o(1) as λ→ +∞,

where 2∗ = 2N
N−2 for N ≥ 3, 2∗ ∈ (1,+∞) for N = 1, 2. So

max
RN\ai

δ

|ui| → 0 as λ→ +∞.

Since C∗ in (3.3) is independent of δ,

max
ai
δ

ui → +∞ as λ→ ∞.

This completes the proof of Corollary 1.1.
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Remark. Suppose (a2) holds and a ≥ 0, a−1(0) = B1(0). Then by the proof of Theorem
1.1 and Corollary 1.1, we know that

mi
λ ≤ C < +∞,

and uλ → u0 in C2
loc(R

N ) as λ→ +∞. Here u0 ≡ 0 in RN\B1(0) and satisfies{ −∆u0 + u0 = up0,

u0|∂B1(0) = 0, u0 > 0 inB1(0).

Moreover, by the results of [2], uλ has only one local maximum point xλ such that

xλ → 0 as λ→ +∞.
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