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Abstract

The authors prove the existence and uniqueness of smallest g-supersolution with an equality
constraint on (y, z) for one demensional stochastic differential equations whose drift coefficients
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§1. Introduction

Since the result of monotonic limit theorem of BSDE and its application to nonlinear
Doob-Meyer decomposition theorem, the smallest g-supersolution with a constraint on (Y,Z)
(see [1]), some developments have been done, for example, in [4], where by a penalization
method, Chen and Peng discussed nonlinear Doob-Meyer decomposition theorem with the
BSDE introduced by Duffie and Epstein[3]. In [5] Lin discussed the smallest g-supersolution
to BSDE with a constraint on (y, z) with non-Lipschitz condition imposed on the drift
coefficient.

In this work, we suppose that the drift coefficient is linearly growing and continuous in
(y, z), and the terminal condition is square integrable, which is the same as in [2]. Under
these hypotheses we prove the existence and uniqueness of smallest g-supersolution for a one
demensional BSDE with the constraint, ϕ(s, y, z) = 0, with ϕ satisfying Lipschitz condition
on (y, z).

Let (Ω,F ,P) be a probability space, Wt, t > 0 be a d-dimensional standard Brownian
motion, {Ft}0≤t≤T be a σ-filtration generated by Wt, where T is a finite constant. We set

µ2(0, T,R) =
{
X : [0, T ]× Ω → R; X ∈ P, ∥X∥2 = E

∫ T

0

|Xs|2ds < ∞
}
,

where P is the set of all predictable processes. Our main result is
Theorem 1.1. Assume that g : Ω× [0, T ]×R×Rd → R is P ×B(R1+d) measurable and

satisfies
(1) Linear growth: ∃K < ∞, ∀ ω, t, y, z ∈ Ω×R×Rd,

|g(ω, t, y, z)| ≤ K(1 + |y|+ |z|), (H1)
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(2) For fixed ω, t, g(ω, t, ·, ·) is continuous, (H2)

(3) There exists a g-supersolution Ŷ on [0, T ] with E sup
0≤t≤T

|Ŷt|2 < ∞, terminal condition

YT = ξ, and (Ẑt, Ât) as its decomposition such that (Ŷ , Ẑ) satisfies the constraint

ϕ(t, Ŷt, Ẑt) = 0 a.s., a.e.,

i.e. the triple (Ŷ , Ẑ, Â) satisfies the following BSDE:

Ŷt = ξ +

∫ T

t

g(s, Ŷs, Ẑs)ds+ ÂT − Ât −
∫ T

t

ẐsdWs

and ϕ(s, Ŷs, Ẑs) = 0.
Then there exists a smallest g-supersolution with the constraint (y, z), i.e. there exists an

RCLL process Yt with its decomposition (At, Zt) satisfying following BSDE

Yt = ξ +

∫ T

t

g(s, Ys, Zs)ds+AT −At −
∫ T

t

ZsdWs (1.1)

such that

ϕ(t, Yt, Zt) = 0. (1.2)

If there exists another solution (Y ′, Z ′) for BSDE (1.1) with the decomposition (A′, Z ′)
and (1.2) holds, then Y ′ ≥ Y a.e.

Here, At is an RCLL increasing processes with EA2
T < ∞, ϕ : Ω× [0, T ]×R×Rd → R+

being a given nonnegative function such that, for each (y, z) ∈ R1+d, ϕ(·, y, z) ∈ µ2(0, T,R+)
and ϕ is globally Lipschitz with respect to (y, z).

Remark 1.1. The condition (3) is necessary (cf. Example 3.1 in this paper).
Since the drift coefficient of BSDE (1.1) is only continuous in (y, z), and linearly growing,

there is no uniqueness solution for the BSDE in general. An example can be found in [5].
We must extend the concept of g-supersolution and the concept of smallest g-supersolution
with the constraint on (y, z) later. The difficulty is that actually there is no comparison
theorem and monotonic limit theorem available for such BSDE. To overcome this difficulty,
we first construct a sequence of solution for the BSDE, then, in order to get the smallest
g-supersolution with the constraint on (y, z), we use a suitable approximation method, by
introducing a two index g-supersolution sequence, then obtain an increasing g-supersolution
(with only one index). Lastly, by the method of “Weak-convergence” introduced by Peng[1],
we have the conclusion. The method with which we study this problem can be viewed as a
combination of “strong” convergence and “weak” convergence.

§2. Some Preliminary Results

In this section we prove the the existence of solution for BSDE (1.1) with continuous drift
coefficient, where g,A, ξ are given.

Theorem 2.1. Suppose that (H1),(H2) hold for a given g, then there exists a solution
for BSDE (1.1), where At is a given RCLL and increasing process, ξ ∈ L2(Ω,FT , P ). (In
fact, the solution is the minimal solution for the BSDE (1.1).)

For the purpose, we need the following several propositions.
Proposition 2.1. Let g : Rp → R be a continuous function with linear growth, that is,

there exists a constant K < ∞, such that, ∀x ∈ Rp, |g(x)| ≤ K(1 + |x|). Then the sequence
of functions

gn(x) = inf
y∈Qp

{g(y) + n|x− y|} (2.1)

is well defined for n > K and it satisfies
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• Linear growth: ∀x ∈ Rp, |gn(x)| ≤ K(1 + |x|);
• Monotonicity: ∀x ∈ Rp, gn(x) ↑;
• Lipschitz condition: ∀x ∈ Rp, |gn(x)− gn(y)| ≤ n|x− y|;
• Strong convergence: if xn → x, then gn(xn) → g(x) as n → ∞;

where |x| =
p∑

i=1

|xi| (see [2] for the proof).

Proposition 2.2. Let gn be defined as in (2.1), and At, ξ satisfy the conditions of
Theorem 2.1. Then there exists a unique pair of processes (Y n

t , Zn
t ) ∈ µ2(0, T,R1+d), which

is the solution of the following BSDE

Y n
t = ξ +

∫ T

t

gn(s, Y
n
s , Zn

s )ds+AT −At −
∫ T

0

Zn
s dWs. (2.2)

Proof. For fixed n, by Proposition 2.1, the coefficient of BSDE (2.1) gn satisfies Lipschitz
condition with the constant n. By Prosition 1.1 in [1], the result follows.

Proposition 2.3. There exists a constant C depending only on K,T,Eξ2 and EA2
T ,

such that ∀n ≥ K, ∥Y n∥ ≤ C, ∥Zn∥ ≤ C, where ∥Y n∥2 = E
∫ T

0
|Y n

s |2ds.
Proof. Consider h(t, ω, y, z) = K(1+|y|+|z|), then h is P×B(R1+d) measurable function,

and satisfies Lipschitz condition. Since ξ ∈ L2(Ω,FT , P ), At is RCLL with EA2
T < ∞, we

have, by [1], that there exists a unique pair of processes (Ut, Vt) ∈ µ2(0, T,R1+d) of solution
for the following BSDE

Ut = ξ +

∫ T

t

h(s, Us, Vs)ds+AT −At −
∫ T

t

VsdWs, (2.3)

and there exists a constant C depending only onK,T and Eξ2, EA2
T , such that E sup

0≤t≤T
|Ut|2

≤ C, E
∫ T

t
|Vt|2dt ≤ C. By comparison theorem we obtain that, ∀n ≥ m ≥ K,Y m ≤ Y n ≤

U , so

E sup
0≤t≤T

|Y n
s |2 ≤ E sup

0≤t≤T
|U |2 ≤ C, E

∫ T

0

|Y n
s |2ds ≤ C.

By Itô’s formula

(Y n
T )2 − (Y n

t )2 = 2

∫ T

t

Y n
s dY n

s +

∫ T

t

|Zn
s |2ds,

E|Y n
t |2 +E

∫ T

t

|Zn
s |2ds = Eξ2 + 2E

∫ T

t

Y n
s gn(s, Y

n
s , Zn

s )ds+ 2E

∫ T

t

Y n
s dAs,∣∣∣2E∫ T

t

Y n
s gn(s, Y

n
s , Zn

s )ds
∣∣∣ ≤ (2K + la2)E

(∫ T

t

|Y n
s |2ds+ 2KT

λ2
+

2K

λ2

∫ T

t

|Zn
s |2ds

)
,∣∣∣2E ∫ T

t

Y n
s dAs

∣∣∣ ≤ 2E sup
0≤t≤T

|Y n
s |AT ≤ E sup

0≤t≤T
|Y n

s |2 +EA2
T .

So

E

∫ T

t

|Zn
s |2ds ≤ Eξ2 +E sup

0≤t≤T
|Y n

s |2 +E
(
A2

T +
2K

λ2

∫ T

t

|Y n
s |2ds

+ λ2

∫ T

t

|Y n
s |2ds+ 2K

λ2

∫ T

t

|Zn
s |2ds

)
+

2KT

λ2
,(

1− 2K

λ2

)
E

∫ T

t

|Zn
s |2ds ≤ Eξ2 +E

(
sup

0≤t≤T
|Y n

s |2 +A2
T +

(2K
λ2

+ λ2
)∫ T

t

|Y n
s |2ds

)
+

2KT

λ2
.
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Taking λ2 > 2K, we have E
∫ T

0
|Zn

s |2ds ≤ C ′.

Proposition 2.4. (Y n, Zn) converges in µ2(0, T,R1+d).
Proof. Take n0 ≥ K. Since, by comparision theorem, (Y n) is increasing and bounded

by U , Y n converges. Denote by Y the limit of Y n. By dominated convergence theorem, Y n

also converges in µ2(0, T,R). Set

Y n
t = ξ +

∫ T

t

gn(s, Y
n
s , Zn

s )ds+AT −At −
∫ T

t

Zn
s dWs,

Y m
t = ξ +

∫ T

t

gm(s, Y m
s , Zm

s )ds+AT −At −
∫ T

t

Zm
s dWs,

Y n
t − Y m

t =

∫ T

t

[gn(s, Y
n
s , Zn

s )− gm(s, Y m
s , Zm

s )]ds−
∫ T

t

(Zn
s − Zm

s )dWs.

Now using Ito’s formula and taking n,m ≥ n0, we have

E|Y n
0 − Y m

0 |2 +E

∫ T

0

|Zn
s − Zm

s |2ds

= 2E

∫ T

0

(Y n
s − Y m

s )(gn(s, Y
n
s , Zn

s )− gm(s, Y m
s , Zm

s ))ds

= 2
(
E

∫ T

0

|Y n
s − Y m

s |2ds
) 1

2
(
E

∫ T

0

|gn(s, Y n
s , Zn

s )− gm(s, Y m
s , Zm

s )|2ds
) 1

2

.

Using the uniform linear growth condition on sequence (gn) and the fact that Y n, Zn are
bounded in µ2(0, T,R1+d), we know that {Zn

s } is a Cauchy sequence in µ2(0, T,Rd).
By Propositions 2.1 to 2.4 and Theorem 1 in [2], taking limits on m and supremum over

t we get

sup
0≤t≤T

|Y n
t − Yt| ≤

∫ T

0

|gn(s, Y n
s , Zn

s )− g(s, Ys, Zs)|ds

+ sup
0≤t≤T

∣∣∣ ∫ T

t

Zn
s dWs −

∫ T

t

ZsdWs

∣∣∣ P − a.s.

From this we deduce that Y n converges uniformly in t to Y (in particular Y is RCLL process).
Remember that Y n is monotone; therefore we actually have the uniform convergence for the
entire sequence and not just for a subsequence. Taking limits in the following BSDE:

Y n
t = ξ +

∫ T

t

gn(s, Y
n
s , Zn

s )ds+AT −At −
∫ T

t

Zn
s dWs, n ≥ K,

we deduce that (Y,Z) is an adapted µ2(0, T,R1+d) solution of (1.1).

Definition 2.1. Let (Y,Z) be a solution for BSDE (1.1). If for any solution (Ŷ , Ẑ) of

BSDE (1.1), we have Y ≤ Ŷ , then we call Y the minimal solution for BSDE (1.1).

Let (Ŷ , Ẑ) be any solution of BSDE (1.1) in µ2(0, T,R1+d). By comparison theorem we

have that ∀n, Y n ≤ Ŷ and therefore Y ≤ Ŷ . Thus Y is the minimal solution.
Now we introduce the definition of g-supersolution for BSDE:

Yt = ξ +

∫ T

t

g(s, Ys, Zs)ds+AT −At −
∫ T

t

ZsdWs.

Since the minimal solution is unique for BSDE (1.1) with continuous drift coefficient and
linear growth, we can extend the concept of g-supersolution for the case. Also thanks to the
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existence and uniqueness of minimal solution for the BSDE (1.1) under these condition, we
have the proposition of uniqueness of g-supersplution decomposition.

Let BSDE be as follows:

Yt = ξ +

∫ τ

t∧τ

g(s, Ys, Zs)ds+Aτ −At∧τ −
∫ τ

t∧τ

ZsdWs, 0 ≤ t ≤ T, (2.4)

where τ is a given stopping time, ξ ∈ L2(Ω,Fτ , P ), A is a given RCLL increasing process
with A0 = 0 and EA2

τ < ∞.
Definition 2.2. If Yt is a minimal solution for BSDE of (2.4), then we call Yt a g-

supersolution on [0, τ ]. If At = 0 in [0, τ ], we call Yt a g-solution on [0, τ ].
Proposition 2.5. Given a g-supersolution Yt on [0, τ ], there exists a unique Zt ∈

µ2(0, T,Rd) and a unique increasing RCLL process At on [0, τ ] with A0 = 0 and EA2
τ < ∞

such that the triple (Yt, Zt, At) satisfies (2.3).
Proof. Suppose (Yt, Zt, At) and (Yt, Z

′
t, A

′
t) satisfy (2.4). We apply Itô’s formula to

(Yt − Yt)
2(≡ 0) on [0, τ ] and take expectation

E

∫ τ

0

|Zt − Z ′
t|2dt+E

[ ∑
t∈(0,τ ]

(△(At −A′
t))

2
]
= 0. (2.5)

Thus Zt ≡ Z ′
t. From this At ≡ A′

t.
Definition 2.3. Let Yt be a supersolution on [0, τ ] and let (Yt, Zt, At) be the related

unique triple in the sence of Proposition 2.5. Then we call (At, Zt) the unique decomposition
of Yt.

Definition 2.4. Let Y be a g-supersolution on [0, τ ] with the decomposition (At, Zt), Y
′

be any g-supersolution on [0, τ ] with the decomposition (A′
t, Z

′
t). If Y ≤ Y ′, we call Y the

smallest g-supersolution on [0, τ ].
Let Y i be a sequence of g-supersolutions on [0, T ],

Y i
t = ξ +

∫ T

t

g(s, Y i
s , Z

i
s)ds+Ai

T −Ai
t −

∫ T

t

Zi
sdWs, i = 1, · · · , 0 ≤ t ≤ T, (2.6)

where g satisfies the condition in Theorem 2.1, ξ ∈ L2(Ω,FT , P ), and for every i, Ai
t is a

continuous increasing process with EAi
T
2
< ∞. By virtue of Theorem 2.1, there exists a

unique minimal solution (Y i, Zi) ∈ µ2(0, T,R1+d) for BSDE (2.6).
Suppose that Y i

t converges to Yt inceasingly with E sup
0≤t≤T

|Yt|2 < ∞. Obviously

E sup
0≤t≤T

|Y i
t |2 ≤ C, E

∫ T

0

|Y i
s − Ys|2ds → 0,

where C is independent of i.
Proposition 2.6. Let {Y i

t } and {Ai
t} be defined as before. Then there exists a constant

C, which is independent of i, such that

E

∫ T

t

|Zi
s|2ds ≤ C, E|Ai

T |2 ≤ C. (2.7)

Proof. Since

|Ai
T |2 =

∣∣∣Y i
0 − ξ −

∫ T

0

g(s, Y i
s , Z

i
s)ds+

∫ T

0

Zi
sdWs

∣∣∣2
≤ C

{
|Y i

0 |2 + |ξ|2 +
∣∣∣ ∫ T

0

g(s, Y i
s , Z

i
s)ds

∣∣∣2 + ∣∣∣ ∫ T

0

Zi
sdWs

∣∣∣2},∣∣∣ ∫ T

0

g(s, Y i
s , Z

i
s)ds

∣∣∣2 ≤ K

∫ T

0

(1 + |Y i
s |2 + |Zi

s|2)ds,
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we have

|Ai
T |2 ≤ C

{
|Y i

0 |2 + |ξ|2 +KT +

∫ T

0

(|Y i
s |2 +K|Zi

s|2)ds+
∣∣∣ ∫ T

0

Zi
sdWs

∣∣∣2},
E|Ai

T |2 ≤ D + CTE

∫ T

0

|Zi
s|2ds, (2.8)

where D,CT are constants. By Itô’s formula, we have

E|Y i
t |2 +E

∫ T

t

|Zi
s|2ds

≤ E|ξ|2 +E

∫ T

0

(α−1|Y i
s |2 + α|gis|2)ds+ 2E sup

0≤t≤T
|Y i

s ||Ai
T |

≤ Q+ 4CTE sup
0≤t≤T

|Y i
s |2 + αKE

∫ T

0

(1 + |Y i
s |2 + |Zi

s|2)ds+
1

4CT
E|Ai

T |2

≤ 1

4CT
E|Ai

T |2 + 2αK

∫ T

0

|Zi
s|2ds+Q1.

Taking α = 1
4K , we have

1

2
E

∫ T

0

|Zi
s|2ds ≤ ℓ1 +

1

4CT
E|Ai

T |2, (2.9)

where Q, ℓ,Q1 are constants. By (2.7) and (2.8) we have proved this proposition.

Proposition 2.7. Let (H1), (H2) hold, and suppose that Ai
t is continuous and increasing.

Y i
t increasingly converges to Yt with E sup

0≤t≤T
|Yt|2 < ∞. Then there exists a process Z ∈

µ2(0, T,Rd) and an RCLL square integrable increasing process At, such that (Yt, Zt) satisfies
the following equation

Yt = ξ +

∫ T

t

g(s, Ys, Zs)ds+AT −At −
∫ T

t

ZsdWs, 0 ≤ t ≤ T, (2.10)

where {Zs} is the limit of {Zi
s}, At is the limit of {Ai

t}, dt× dP .

Proof. Since {Y i}, {Zi} are bounded in µ2(0, T,R1+d), and |g(s, Y i, Zi)| ≤ C(1 +
|Y i|+ |Zi|), which implies g is bounded in µ2(0, T,R), there exist subsequences which con-
verge to {Z, go} weakly, for simplicity, we still denote all the corresponding subsequence by
{Y i, Zi, g(·, Y i, Zi), Ai}. For any t, the following weak convergence holds in L2(Ω,Ft, P ),∫ t

0

Zi
sdWs →

∫ t

0

ZsdWs,

∫ t

0

gisds →
∫ t

0

g0sdWs,

Ai
t → At ≡ −Yt + Y0 −

∫ t

0

g0sds+

∫ t

0

ZsdWs,

At is an increasing process, At and Yt are RCLL. Furthermore, by monotonic limit theorem
of BSDE (see [1]) Zi converges to Z strongly in µp(0, T,Rd), p ∈ [1, 2) (see [1]).

Since Y n converges in µ2(0, T,R) and dt ⊗ dP to Y ∈ µ2(0, T,R), it follows that G =
sup
n

|Y n| is dt⊗ dP integrable.

On the other hand, since Zn → Z in µp(0, T,Rd), passing to a subsequence if necessary,
we have that Zn → Z dt⊗ dP and Zn is bounded uniformly in µ2(0, T ). Set H = sup

n
|Zn|,
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which is ds⊗ dP integrable. Therefore, we get for almost all ω,

g(s, Y n
t , Zn

t ) → g(s, Yt, Zt) dt− a.e.,

|g(s, Y n
t , Zn

t )| ≤ K(1 + sup
n

|Y n
t |+ sup

n
|Zn

t |) = K(1 +Gt +Ht) ∈ L1([0, T ], dt).

Thus, for almost all ω and uniformly in t,∫ T

t

g(s, Y n
s , Zn

s )ds →
∫ T

t

g(s, Ys, Zs)ds.

From the continuity property of the stochastic integral we get

sup
0≤t≤T

∣∣∣ ∫ T

t

Zn
s dWs −

∫ T

t

ZsdWs

∣∣∣ P→ 0.

Passing again to a subsequence we can assume that the last convergence is P -a.s. That is,
for almost all ω,

Ai
t → At ≡ −Yt + Y 0 −

∫ t

0

g(s, Ys, Zs)ds+

∫ t

0

ZsdWs, dt a.e.

The proof is complete.

§3. The Proof of Theorem 1.1

In this section we prove the main result of this paper. Before proving Theorem 1.1, we
give an example to indicate that the condition (3) in Theorem 1.1 is needed.

Example 3.1. Suppose that y∗t, y
∗
t are two given processes and y∗t < y∗t . For the

following two BSDEs

−dYt = [f0(Yt) + g(Zt)]dt+ dAt − ZtdWt, YT = ξ, (∗)
−dY t = [f0(Yt) + g(Zt)]dt− ZtdWt, Y 0 = y∗0 , (∗∗)

where dAt ≥ 0, A0 = 0, AT ∈ L2(Ω,FT , P ), and f0(t, y), g(t, z) ∈ L2(0, T ) for any (y, z) ∈ R2

satisfying Lipschitz condition.
Consider the solutions for the two BSDEs in [y∗t, y

∗
t ] and Z ∈ K = {Zt, ϕ(Zt) = 0}.

(1) If ξ ≥ Y T , and P (ξ > Y T ) > 0, by strict comparison theorem there is no g-
supersolution in [y∗t, y

∗
t ] for BSDE(∗).

(2) If ξ ≤ Y T , then there exists a g-supersolution for BSDE(∗) satisfying the constraint.
Proof of Theorem 1.1. We investigate the following BSDE

Yt = ξ +

∫ T

t

g(s, Ys, Zs)ds+ i

∫ T

t

ϕ(s, Ys, Zs)ds−
∫ T

t

ZsdWs, (3.1)

where g is as in Theorem 1.1, ϕ(s, ·, ·) is assumed to be a globally Lipschitz condition with
respet to (y, z) and ϕ(s, ·, ·) ≥ 0.

Consider BSDE:

Y i
t (n) = ξ +

∫ T

t

gn(s, Y
i
s (n), Z

i
s(n))ds+ i

∫ T

t

ϕ(s, Y i
s (n), Z

i
s(n))ds−

∫ T

t

Zi
s(n)dWs, (3.2)

where

gn(x) = inf
y∈Qp

{g(y) + n|x− y|}. (3.3)

For any n, by Proposition 2.1, gn satisfies Lipschitz condition and other three properties.
From Theorem 2.1 there exists (Y i, Zi) satisfying

Y i
t = ξ +

∫ T

t

g(s, Y i
s , Z

i
s)ds+ i

∫ T

t

ϕ(s, Y i
s , Z

i
s)ds−

∫ T

t

Zi
sdWs.
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Notice: Y i is minimal solution for the above BSDE, and by comparison theorem,

E sup
0≤t≤T

|Y i
t |2 ≤ E sup

0≤t≤T
|Ŷt|2 < ∞.

Since for any i, n, Y i(n) ≤ Y i+1(n), it is obvious that Y i is increasing and bounded with
respect to i. Suppose Y i ↑ Y . We have

lim
i→∞

E

∫ T

0

|Y i
s − Ys|2ds → 0, E sup

0≤t≤T
|Yt|2 < ∞.

Set Ai
t = i

∫ t

0
ϕ(s, Y i

s , Z
i
s)ds. For any fixed i, E|Ai

T |2 < ∞. From Proposition 2.6, there

exists a constant C such that E|Ai
T |2 ≤ C, E

∫ T

t
|Zi

s|2ds ≤ C. By Proposition 2.7 there
exist Z and A, such that (Y,Z,A) satisfy the following BSDE

Yt = ξ +

∫ T

t

g(s, Ys, Zs)ds+AT −At −
∫ T

t

ZsdWs, (3.4)

where At is an RCLL increasing process with EA2
T < ∞. Since EA2

T ≤ C,

E

∫ T

0

ϕ(s, Y i
s , Z

i
s)ds ≤

C

i
.

We also have Zi → Z in µp(0, T,Rd), for p ∈ [1, 2). Then it follows that

ϕ(s, Y i
s , Z

i
s) → ϕ(s, Ys, Zs), ϕ(s, Ys, Zs) = 0

in strong sense.
Suppose Y is any g-supersolution with its decomposition (Z,A), and the following BSDE

holds:

Y t = ξ +

∫ T

t

g(s, Y s, Zs)ds+AT −At −
∫ T

t

ZsdWs

with ϕ(s, Y , Z) = 0. By comparison theorem we have Y i
s (n) ≤ Y , where (Y i(n), Zi(n))

solves

Y i
t (n) = ξ +

∫ T

t

gn(s, Y
i
s (n), Z

i
s(n))ds+ i

∫ T

t

ϕ(s, Y i
s (n), Z

i
s(n))ds−

∫ T

t

Zi
s(n)dWs,

Y i
s ≤ Y s, and finally Ys ≤ Y s. So Y is the smallest g-supersolution .
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