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Abstract

Let G be a discrete group and (G,G+) an ordered group. Let (G,GF ) be the minimal quasi-

ordered group containing (G,G+). Let T G+ (G) and T GF (G) be the corresponding Toeplitz

algebras, and γGF ,G+ the natural C∗-algebra morphism from T G+ (G) to T GF (G). This

paper studies the connection between Ker γGF ,G+ and the minimal closed ideal of T G+ (G). It

is proved that if G is amenable and GF ̸= G+, then Ker γGF ,G+ is exactly the minimal closed
non-trivial ideal of T G+ (G). As an application, in the last part of this paper, a character of

K-groups of Toeplitz algebras on ordered groups is clarified.
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§1. Introduction

Let G be a discrete ( not necessarily abelian ) group. For any subset G+ of G, we say

that (G,G+) is a quasi-partial ordered group if e ∈ G+, G+ ·G+ ⊆ G+ and G = G+ ·G−1
+ ,

where e is the unit of G and G−1
+ = { g−1

∣∣ g ∈ G+ }; further, (G,G+) is referred to as a

quasi-ordered group if G = G+ ∪ G−1
+ . Note that when G0

+ = G+ ∩ G−1
+ = {e}, a quasi-

partial ordered group (resp. quasi-ordered group) (G,G+) is known as a partially ordered

(resp. ordered) group.

Let { δg
∣∣ g ∈ G } be the usual orthonormal basis for ℓ2(G), where

δg(h) =

{
1, if g = h,

0, otherwise

for g, h ∈ G. For any g ∈ G, we define a unitary ug on ℓ2(G) by ug(δh) = δgh for h ∈ G.

For any E ⊆ G, let ℓ2(E) be the closed subspace of ℓ2(G) generated by { δg
∣∣ g ∈ E }; its

projection is denoted by pE . The C∗-algebra generated by { pEugp
E
∣∣ g ∈ G } is denoted by

T E(G) and is called the Toeplitz algebra with respect to E.
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Now let (G,G+) be an ordered group. For any g ∈ G+ \ {e}, let Gg be the semigroup of

G generated by G+ and g−1. Let

GF =
∩

g∈G+\{e}

Gg.

Clearly, (G,GF ) is the minimal quasi-ordered group containing (G,G+) property. Let

G0
F = GF ∩G−1

F , F (G+) = G0
F ∩G+.

Let K(F (G)) be the closed ideal of T G+(G) generated by

{ 1− pG+ugp
G+ug−1pG+

∣∣ g ∈ F (G+) }.
It is remarkable that when G is abelian, F (G+) is the positive part of the subgroup of

finite elements in G (see [6]), K(F (G)) is the minimal closed non-trivial ideal of T G+(G) in

the sense that every closed non-trivial ideal of T G+(G) always contains it (see [1, Theorem

2.11]), and it was proved in [6] that K(F (G)) = Ker γGF ,G+ , where γGF ,G+ is the natural

morphism from T G+(G) to T GF (G) satisfying

γGF ,G+(pG+ugp
G+) = pGF ugp

GF for all g ∈ G.

The purpose of this paper is to generalize the above result to the case when G is a

non-abelian group. Let G be a discrete group, (G,G+) an ordered group. Suppose that

G+ ( GF . Let

T ∞ = sp{ pG+ugp
G+uh−1pG+

∣∣ g, h ∈ G+ }.
Since G is totally ordered, T ∞ is a dense ∗-subalgebra of T G+(G). Let

IF =
(
T ∞ ∩Ker γGF ,G+)∥·∥.

Then IF is a closed non-trivial ideal of T G+(G). Obviously, K(F (G)) ⊆ IF ⊆ Ker γGF ,G+ .

In this paper, we will show that IF = K(F (G)), which is the minimal closed non-trivial ideal

of T G+(G). Moreover, if G is amenable, then K(F (G)) = Ker γGF ,G+ . As an application,

in the last part of this paper, we clarify a character of K-groups of Toeplitz algebras on

discrete amenable groups.

§2. The Minimal Closed Non-Trivial Ideals

Throughout this section, G is a discrete group, (G,G+) is an ordered group. We always

assume that G+ ( GF . For any x, y ∈ G, by x ≤ y we mean that x−1y ∈ G+. From now

on, pG+ugp
G+ will be denoted by Tg for any g ∈ G.

Lemma 2.1.[4,Corollary 2.5] Let (G,G+) be an ordered group and (π,H) a unital represen-

tation of T G+(G). Let V (g) = π(Tg) and L(g) = V (g)V (g)∗ for g in G+. Then the following

two conditions are equivalent: (1) (π,H) is faithful; (2) L(g) ̸= 1 for any g ∈ G+ \ {e}.
Proposition 2.1. Let G be a discrete group and (G,G+) an ordered group. Then

K(F (G)) is the minimal closed non-trivial ideal of T G+(G).

Proof. Given any closed non-trivial ideal I of T G+(G), let

FI = { g ∈ G+ \ {e}
∣∣ 1− TgTg−1 ∈ I }.

Since the quotient map ρ : T G+(G) → T G+(G)
/
I is not faithful, by Lemma 2.1 we know

that FI ̸= ∅. Since for any g ∈ G+\{e}, g ∈ FI if and only if ρ(Tg) is a unitary in T G+(G)
/
I,

FI is a semigroup of G+.
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For any g ∈ G+ and gI ∈ FI , if gg
−1
I /∈ G+, i.e., gI = xg for some x ∈ G+ \ {e}, then

ρ(Tx) ρ(Tg) ρ(Tg)
∗ ρ(Tx)

∗ = ρ(TgI ) ρ(TgI )
∗ = 1. (2.1)

Since ρ(Tx)
∗ ρ(Tx) = 1, multiplying with ρ(Tx)

∗ from left and ρ(Tx) from right, by (2.1) we

know that ρ(Tg) ρ(Tg)
∗ = 1. By (2.1) again we know that ρ(Tx) ρ(Tx)

∗ = 1, which implies

that x ∈ FI , thus gg
−1
I = x−1 ∈ (FI)

−1, so G+ · (FI)
−1 ⊆ G+ ∪ (FI)

−1. Similarly

(FI)
−1 ·G+ ⊆ G+ ∪ (FI)

−1.

So if we set GI = G+ ∪ (FI)
−1, then GI is a semigroup of G. Since GF is minimal,

F (G+) ⊆ G0
I ∩G+ = FI ∪ {e},

which implies that K(F (G)) ⊆ I. Therefore K(F (G)) is minimal.

Next we show that K(F (G)) = IF .

Let (G,G+) be an ordered group. Let D = clos sp{TgTg−1 | g ∈ G+}. It is a unital abelian

C∗-subalgebra of T G+(G). Let D0 be the C∗-subalgebra of B (ℓ2(G+)) consisting of all the

operators having diagonal matrix with respect to the canonical basis. It is well-known that

there exists a linear and contractive map E0 : B (ℓ2(G+))→ D0 determined by the following

rule: the matrix of E0(T ) (with respect to the canonical basis) is obtained from the one of

T by replacing with zero all the entries which are not situated on the principal diagonal.

Lemma 2.2.[2,Section 3.3 and Section 3.6] or [6, Proposition 3.3]

(1) D = {T ∈ T G+(G) |T has diagonal matrix with respect to the canonical basis of

ℓ2(G+)}.
(2) Let E = E0|T G+ (G). Then E is a faithful bounded linear map from T G+(G) to D such

that for any g, h in G+

E(TgTh−1) =

{
TgTh−1 if g = h,

0 if g ̸= h.

Lemma 2.3.[5,Proposition 1.4] Let G be a discrete group, (G,E1) and (G,E2) be two quasi-

ordered groups with E1 ⊆ E2. Then there is a C∗-algebra morphism γE2,E1 from T E1(G) to

T E2(G) such that

γE2,E1(pE1ugp
E1) = pE2ugp

E2 for all g ∈ G.

Theorem 2.1. Let G be a discrete group, (G,G+) an ordered group. Then K(F (G)) =

IF .

Proof. Let I be any closed non-trivial ideal of T G+(G). Let FI and GI be as before.

Step 1. For any g ∈ G+ \ (FI ∪ {e}), we prove that pG+ugp
GIug−1pG+ /∈ T G+(G).

In fact, if

T = pG+ugp
GIug−1pG+ − pG+ugp

G+ug−1pG+ ∈ T G+(G),

then since T has a diagonal matrix with respect to the usual basis { δg
∣∣ g ∈ G+}, by Lemma

2.2, we know that there are λ0 ∈ C, λ1, λ2 · · · , λn ∈ C \{0} and x0 = e, x1, x2, · · · , xn ∈ G+

such that x1 < x2 < · · · < xn and∥∥∥T − n∑
i=0

λiTxiTx−1
i

∥∥∥ ≤ 1

3
. (2.2)
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Let S =
n∑

i=0

σiP[xi,xi+1)
, where

σi =
i∑

k=0

λk, xn+1 = +∞,

[xi, xi+1) = { g ∈ G+

∣∣xi ≤ g < xi+1 }

and P
[xi,xi+1)

is the projection from ℓ2(G+) to the closed subspace generated by { δg
∣∣ g ∈

[xi, xi+1) }. Then S =
n∑

i=0

λiTxiTx−1
i
. Choose any h ∈ FI . Since (G+ \ (FI ∪{e})) · (FI)

−1 ⊆

G+ and ∥T − S∥ ≤ 1
3 , we know that

∥(T − S) δgh−1∥ ≤ 1

3
. (2.3)

Suppose that gh−1 ∈ [xi, xi+1) for some i. Then by (2.3) we know that

|σi − 1| ≤ 1

3
. (2.4)

By (2.2) again, we know that ∥(T − S) δxi∥ ≤ 1
3 . By (2.4) we know that xi ∈ g · (FI)

−1

(otherwise, |σi| = ∥(T −S) δxi∥ ≤ 1
3 , which is in contradiction with (2.4)). Let F = { j

∣∣ 1 ≤
j ≤ n, xj ∈ g · (FI)

−1 }. Let i0 be the least number in F . Then xi0 = gl−1 for some l ∈ FI .

Now let y = gl−2 ∈ G+. If y ∈ [xj , xj+1) for some j, then since ∥(T − S) δy∥ ≤ 1
3 , we know

that |σj −1| ≤ 1
3 . It follows that xj ∈ g · (FI)

−1, which implies that xi0 ≤ xj . But obviously

xj ≤ y < xi0 . It is a contradiction.

Step 2. Let h, g1, g2, · · · , gn ∈ G+ \ (FI ∪ {e}), such that g1 < g2 < · · · < gn. If
n∑

i=1

λip
G+ugip

GIuh−1pG+ ∈ T G+(G),

then λi = 0 for i = 1, 2, · · · , n.
In fact, let

T =
n∑

i=1

λi(p
G+ugip

GIuh−1pG+ − pG+ugip
G+uh−1pG+).

Then T ∈ T G+(G), so Thg−1
n

T ∈ T G+(G). Since (G+ \ (FI ∪ {e})) · (FI)
−1 ⊆ G+, we know

that

Thg−1
n

(pG+ugnp
GIuh−1pG+ − pG+ugnp

G+uh−1pG+)

= pG+uhp
GIuh−1pG+ − pG+uhp

G+uh−1pG+ .

So

λn(p
G+uhp

GIuh−1pG+ − pG+uhp
G+uh−1pG+) = E(Thg−1

n
T ) ∈ D.

By Step 1, we know that λn = 0. Similarly, λi = 0 for i = 1, 2, · · · , n− 1.

Step 3. Define a linear operator ρ : T GI (G) → B (ℓ2(G+)) by ρ(X) = pG+XpG+ for

X ∈ T GI (G). Let T ∈ T ∞. We prove that if S = T − ργGI ,G+(T ) ∈ T G+(G), then S ∈ I.

Therefore, T ∞ ∩Ker γGI ,G+ ⊆ I.

Let T =
n∑

i=1

λiTgiTh−1
i

for some λ1, λ2, · · · , λn ∈ C \ {0}, g1, g2, · · · , gn ∈ G+ and
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h1, h2, · · · , hn ∈ G+. Suppose that S = T − ργGI ,G+(T ) ∈ T G+(G). Then

S =

n∑
i=1

λi(p
G+ugip

G+uh−1
i
pG+ − pG+ugip

GIuh−1
i
pG+).

Let πI be the quotient map from T G+(G) to T G+(G)
/
I. Then for any g ∈ G+, h ∈ FI ,

πI(Tg)πI(Th−1)πI(Th) = π(Tg) = πI(Tgh−1)πI(Th).

Since πI(Th) is a unitary, we know that TgTh−1 − Tgh−1 ∈ I, which implies that ThTg−1 −
Thg−1 ∈ I. So we may assume without loss of generality that h1 ≤ h2 ≤ · · · ≤ hn, gi, hi /∈
FI ∪ {e} for i = 1, 2, · · · , n. If h−1

n hn−1 /∈ (FI)
−1 ∪ {e}, then since SThn−1 ∈ T G+(G), we

know that λnp
G+ugnp

GIuh−1
n hn−1

pG+ ∈ T G+(G), which is a contradiction by Step 2. So

h−1
n hn−1 ∈ (FI)

−1 ∪ {e}. Let i0 be the least number such that h−1
n hi0 ∈ (FI)

−1 ∪ {e}. If

hi0 = hn, then hj = hn for i0 < j ≤ n− 1; otherwise, h−1
n hi0 ∈ (FI)

−1, in this case, for any

i0 < j < n− 1,

h−1
n hj = (h−1

n hi0)(h
−1
i0

hj) ∈ ((FI)
−1 ·G+) ∩G−1

+ ⊆ (FI)
−1 ∪ {e}.

For any i0 ≤ j ≤ n− 1, let h−1
n hj = x−1

j for some xj ∈ FI ∪ {e}. Let xn = e and

S̃ =

i0−1∑
k=1

λk(p
G+ugkp

G+uh−1
k
pG+ − pG+ugkp

GIuh−1
k
pG+)

+
n∑

j=i0

λj(p
G+ugjxjp

G+uh−1
n
pG+ − pG+ugjxjp

GIuh−1
n
pG+).

Then since

TgjThj
−1 − TgjxjThn

−1 = Tgj (Txjh
−1
n
− TxjTh−1

n
) ∈ I,

we know that S̃ ∈ T G+(G). To show that S ∈ I, it suffices to show that S̃ ∈ I. But since

S̃Thi0−1 ∈ T G+(G), we know that
n∑

j=i0

λjp
G+ugjxjp

GIuh−1
n hi0−1

pG+ ∈ T G+(G).

Since gjxj ∈ (G+ \ (FI ∪ {e})) · FI ⊆ G+ \ (FI ∪ {e}), by Step 2 we know that this can

happen only if
n∑

j=i0

λjp
G+ugjxjp

GIuh−1
n hi0−1

pG+ = 0.

Therefore
n∑

j=i0

λjp
G+ugjxjp

G+ =
( n∑

j=i0

λjp
G+ugjxjp

GIuh−1
n hi0−1

pG+

)
Thi0−1

−1hn
= 0.

So
n∑

j=i0

λjp
G+ugjxjp

GIuh−1
n
pG+ = ρ γGI ,G+

( n∑
j=i0

λjp
G+ugjxjp

G+uh−1
n
pG+

)
= 0.

Therefore it is reduced to showing that
i0−1∑
k=1

λk(p
G+ugkp

G+uh−1
k
pG+ − pG+ugkp

GIuh−1
k
pG+) ∈ I.
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Pursue the former process, eventually we know that S ∈ I.

Step 4. By Step 3, we know that T ∞ ∩Ker γGI ,G+ ⊆ I for any closed non-trivial ideal

I of T G+(G). Since GF ⊆ GI , by Lemma 2.3 we know that there exist two C∗-algebra

morphisms γGI ,GF : T GF (G)→ T GI (G) and γGF ,G+ : T G+(G)→ T GF (G) such that

γGI ,GF (pGF ugp
GF ) = pGIugp

GI , γGF ,G+(Tg) = pGF ugp
GF

for all g ∈ G. Obviously, γGI ,GF ◦ γGF ,G+ = γGI ,G+ . So Ker γGF ,G+ ⊆ Ker γGI ,G+ .

Therefore, T ∞ ∩Ker γGF ,G+ ⊆ I for any closed non-trivial ideal I of T G+(G).

Remark. At this point, one may ask whether K(F (G)) = Ker γGF ,G+ for a general

discrete ordered group (G,G+). We are unable to answer this question. However, if G is

amenable, then we will show that K(F (G)) is exactly equal to Ker γGF ,G+ .

Lemma 2.4.[6,Theorem 3.5] Let G be an amenable group and (G,E) a quasi-ordered group.

Let V : E → B (H) be an isometric representation of E (i.e. V (e) = 1; V (g)∗V (g) = 1,

V (g)V (h) = V (gh) for any g, h ∈ G+; and V (l)V (l)∗ = 1 for any l ∈ E ∩E−1). Then there

is a C∗-algebra morphism πV : T E(G)→ B (H) such that

πV (p
Eugp

E) = V (g) for all g ∈ G.

Proposition 2.2. Let G be a discrete amenable group and (G,G+) an ordered group.

Then Ker γGF ,G+ is the minimal closed non-trivial ideal of T G+(G).

Proof. Since K(F (G)) ⊆ Ker γGF ,G+ , γGF ,G+ induces a C∗-algebra morphism σ :

T G+(G)
/
K(F (G))→ T GF (G) such that

σ([Tg]) = pGF ugp
GF for all g ∈ G.

On the other hand, let V (g) = π(Tg) for g ∈ GF , where π is the quotient map from

T G+(G) to T G+(G)
/
K(F (G)). Then since

G0
F = F (G+) ∪ (F (G+))

−1,

we know that V (e) = 1, V (g)∗V (g) = 1 for any g ∈ GF and V (h)V (h)∗ = 1 for any h ∈ G0
F .

For any g ∈ G+ and h ∈ F (G+),

V (g)V (h−1)V (h) = V (g) = V (gh−1)V (h).

Since V (h) is a unitary, we know that V (g)V (h−1) = V (gh−1). So V is an isometric

representation of GF . By Lemma 2.4, there is a C∗-algebra morphism πV : T GF (G) →
T G+(G)

/
K(F (G)) such that πV (p

GF ugp
GF ) = π(Tg) for any g ∈ G. Clearly πV = σ−1, so

K(F (G)) = Ker γGF ,G+ .

§3. A Character of K-Groups of
Toeplitz Algebras on Ordered Groups

Let G be a discrete group, (G,G+) an ordered group. When G is a countable infinite

abelian group, it is proved in [6] that if

K0(T G+(G))⊕K1(T G+(G)) ∼= Z,

then K0(T G+(G)) ∼= Z and K1(T G+(G)) = 0. The purpose of this section is to generalize

such a result to the case when G is an amenable group.
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Lemma 3.1. Let G be a discrete group, (G,G+) an ordered group. Then K(ℓ2(G+)) ⊆
T G+(G) if and only if G admits a least positive element, where K(ℓ2(G+)) is the ideal

of compact operators on ℓ2(G+). When G admits a least positive element, K(ℓ2(G+)) =

K(F (G)).

Proof. “ =⇒ ”. Suppose that K(ℓ2(G+)) ⊆ T G+(G). Then since the quotient map

π : T G+(G)→ T G+(G)
/
K(ℓ2(G+)) is not faithful, by Lemma 2.1 we know that there exists

g ∈ G+ \ {e} such that 1 − TgTg−1 ∈ K(ℓ2(G+)). So the subset Fg = {h ∈ G+

∣∣h ≤ g } is
finite, therefore G admits a least positive element.

“⇐= ”. For any T ∈ B (ℓ2(G+)), if TTg = TgT and TTg−1 = Tg−1T for any g ∈ G+,

then T = λ for some λ ∈ C, so T G+(G) is irreducible. Suppose now that G admits a

least positive element g0. Then 1 − Tg0Tg−1
0
∈ K(ℓ2(G+)), so K(ℓ2(G+)) ⊆ T G+(G) since

T G+(G) is irreducible.

Let g0 be the least positive element in G. Then g−1
0 g ∈ G+ for any g ∈ G+ \ {e}, so

g−1
0 = (g−1

0 g)g−1 ∈ Gg for any g ∈ G+ \ {e}, i.e., g0 ∈ F (G+). Since K(F (G)) is irreducible

( because T G+(G) is ), we know that K(ℓ2(G+)) ⊆ K(F (G)). By Proposition 2.1 we know

that

K(ℓ2(G+)) = K(F (G)).

Lemma 3.2. Let G be an amenable discrete group, (G,G+) an ordered group. Let

E = G× Z, E+ = G+ × Z. Then T E+(E) ∼= T G+(G)⊗ C(T ), where T is the unit circle in

C.

Proof. For any n ∈ Z, let χn ∈ C(T ), χn(e
iθ) = einθ for θ ∈ [0, 2π]. For any h = (g, n) ∈

E+, let V (h) = Tg ⊗ χn ∈ T G+(G) ⊗ C(T ). Then V is an isometric representation of E+.

By Lemma 2.4, there is a C∗-algebra morphism πV : T E+(E)→ T G+(G)⊗C(T ) such that

πV (p
E+u(g,n)p

E+) = Tg ⊗ χn for all (g, n) ∈ E.

On the other hand, by Lemma 2.4 and [1, Lemma 1.2], we know that there are C∗-algebra

morphisms ρ : T G+(G)→ T E+(E) and λ : C(T )→ T E+(E) such that

ρ(Tg) = pE+u(g,0)p
E+ for any g ∈ G, λ(χn) = pE+u(e,n)p

E+ for any n ∈ Z.

It is easy to show that for any g ∈ G and n ∈ Z,

ρ(Tg)λ(χn) = λ(χn)ρ(Tg).

Since C(T ) is nuclear, by [3, Corollary T.6.9], we know that there is a C∗-algebra morphism

ρ⊗ λ : T G+(G)⊗ C(T )→ T E+(E) such that(
ρ⊗ λ

)(
Tg ⊗ χn

)
= pE+u(g,0)p

E+ · pE+u(e,n)p
E+ = pE+u(g,n)p

E+

for any g ∈ G and n ∈ Z. Clearly, ρ⊗ λ = (πV )
−1, so

T E+(E) ∼= T G+(G)⊗ C(T ).

Theorem 3.1.[6,Theorem 2.2] Let G be a countable infinite discrete amenable group, (G,G+)

an ordered group. If K0(T G+(G))⊕K1(T G+(G)) ∼= Z, then

K0(T G+(G)) ∼= Z and K1(T G+(G)) = 0.

Proof. Let E = G × Z, E+ = G+ × Z, and (E,Elex) be the lexico-ordered group. By
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Lemma 3.1 and Lemma 3.2, we have the following short exact sequence of C∗-algebras

0 −−−−→ K(ℓ2(E+))
i−−−−→ T Elex(E)

σ−−−−→ T G+(G)⊗ C(T ) −−−−→ 0

where i is the inclusion map and

σ(pElexu(g,n)p
Elex) = Tg ⊗ χn for any (g, n) ∈ E.

So we have the following periodic six-term exact sequence of K-groups

Z ∼= K0(K)
i∗−−−−→ K0(T Elex(E))

σ∗−−−−→ K0(T G+(G)⊗ C(T ))xindex map δ

y
K1(T G+(G)⊗ C(T )) ←−−−−

σ∗
K1(T Elex(E)) ←−−−−

i∗
K1(K) = 0

Since

K0(T G+(G)⊗ C(T )) ∼= K1(T G+(G)⊗ C(T )) ∼= K0(T G+(G))⊕K1(T G+(G)) ∼= Z,

and T Elex(E) contains a Fredholm operator of index one (which implies that the index map

in the exact sequence is an isomorphism), we know that

K0(T Elex(E)) ∼= Z, K1(T Elex(E)) = 0.

Let V : Elex → T G+(G), V (g, n) = Tg for any (g, n) ∈ Elex. Then V is an isometric

representation of Elex. So there is a C∗-algebra morphism ρ : T Elex(E) → T G+(G) such

that

ρ(pElexu(g,n)p
Elex) = Tg for any (g, n) ∈ E.

Similarly, there is a C∗-algebra morphism θ : T G+(G)→ T Elex(E) such that

θ(Tg) = pElexu(g,0)p
Elex .

Since T G+(G) is generated by {Tg

∣∣ g ∈ G+ }, we know that ρ ◦ θ = idT G+ (G), so

ρ∗ ◦ θ∗ = idK1(T G+ (G)).

It follows that the map

ρ∗ : K1(T Elex(E))→ K1(T G+(G))

is onto, therefore K1(T G+(G))= 0.
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