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THE MINIMAL CLOSED NON-TRIVIAL
IDEALS OF TOEPLITZ ALGEBRAS
ON DISCRETE GROUPS**
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Abstract

Let G be a discrete group and (G, G4 ) an ordered group. Let (G, Gr) be the minimal quasi-
ordered group containing (G,G4). Let TE+(G) and TEF (G) be the corresponding Toeplitz
algebras, and y©F:C+ the natural C*-algebra morphism from 7%+(G) to TEF(G). This
paper studies the connection between Ker y“F:G+ and the minimal closed ideal of 7+ (G). It
is proved that if G is amenable and G # G4, then Ker y“F:C+ is exactly the minimal closed
non-trivial ideal of TG+ (G). As an application, in the last part of this paper, a character of
K-groups of Toeplitz algebras on ordered groups is clarified.
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§1. Introduction

Let G be a discrete (not necessarily abelian) group. For any subset G4 of G, we say
that (G, G4 ) is a quasi-partial ordered group if e € G4,G4 - G4 C G4 and G = G4 - G},
where e is the unit of G and G;' = {g~! |g € G4} further, (G,Gy) is referred to as a
quasi-ordered group if G = G, U G;l. Note that when G} = G4 N G7' = {e}, a quasi-
partial ordered group (resp. quasi-ordered group) (G,G.) is known as a partially ordered
(resp. ordered) group.

Let {4 |g € G} be the usual orthonormal basis for (*(G), where

1, ifg=h,
5g(h) :{

0, otherwise
for g,h € G. For any g € G, we define a unitary u, on ¢*(G) by uy(6s) = dgp for h € G.
For any E C G, let £2(E) be the closed subspace of £2(G) generated by {d,|g € E}; its
projection is denoted by p¥. The C*-algebra generated by { pZu,p? |g € G} is denoted by
TE(G) and is called the Toeplitz algebra with respect to E.
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Now let (G,G) be an ordered group. For any g € G \ {e}, let G, be the semigroup of
G generated by G, and g !. Let

Gr= (] G,
g€G\{e}

Clearly, (G, GFr) is the minimal quasi-ordered group containing (G, G ) property. Let

GY=GrNnGL, F(Gy)=G%naG,.
Let K(F(G)) be the closed ideal of T+ (G) generated by

{1 pugp“ru,p®t g € F(G4) ).
It is remarkable that when G is abelian, F(G4) is the positive part of the subgroup of
finite elements in G (see [6]), K (F(G)) is the minimal closed non-trivial ideal of 7+ (G) in
the sense that every closed non-trivial ideal of 7+ (G) always contains it (see [1, Theorem
2.11]), and it was proved in [6] that K(F(G)) = Kery“7:¢+ where y97:¢+ is the natural
morphism from 7¢+(G) to TEF(G) satisfying

A GF Gt (pG+ung+) = pGFungF for all g € G.

The purpose of this paper is to generalize the above result to the case when G is a
non-abelian group. Let G be a discrete group, (G,G4) an ordered group. Suppose that
G+ g GF. Let

T = sp{ p“ ugp®rup-1p°+ | g, h € G4 }.
Since G is totally ordered, 7 is a dense *-subalgebra of 7+ (G). Let
Ip = (T NKer~&rG+)ll
Then Ir is a closed non-trivial ideal of 7+ (G). Obviously, K (F(G)) C Ir C Kery%r G+,
In this paper, we will show that Ir = K(F(G)), which is the minimal closed non-trivial ideal
of T¢+(G). Moreover, if G is amenable, then K (F(G)) = Kery“#G+. As an application,
in the last part of this paper, we clarify a character of K-groups of Toeplitz algebras on

discrete amenable groups.

§2. The Minimal Closed Non-Trivial Ideals

Throughout this section, G is a discrete group, (G, G4 ) is an ordered group. We always
assume that G, C Gp. For any z,y € G, by # < y we mean that 2~y € G,. From now
on, p&+uyp®+ will be denoted by T, for any g € G.

Lemma 2.1.[%:Corollary 2.5] Ty (G G ) be an ordered group and (7, H) a unital represen-
tation of T9+(G). Let V(g) = n(T,) and L(g) = V(9)V (g9)* for g in G+. Then the following
two conditions are equivalent: (1) (m, H) is faithful; (2) L(g) # 1 for any g € G4 \ {e}.

Proposition 2.1. Let G be a discrete group and (G,Gy) an ordered group. Then
K(F(Q)) is the minimal closed non-trivial ideal of T%+(G).

Proof. Given any closed non-trivial ideal I of 7%+ (G), let

Fr={g€Gi\{e}|1-T,7, 1 € I}.
Since the quotient map p : 7%+ (G) — T+ (G)/I is not faithful, by Lemma 2.1 we know

that F; # 0. Since for any g € G4 \{e}, g € Fy if and only if p(T}) is a unitary in T+ (G) /I,
Fy is a semigroup of G.
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For any g € G and g7 € Fy, if gg; ' ¢ G, i.e., g1 = 2g for some x € G4 \ {e}, then

p(T2) p(Tg) p(Tg)" p(Te)" = p(Ty,) p(Tg,)" = 1. (2.1)
Since p(T3)* p(Ty) = 1, multiplying with p(7,)* from left and p(T}) from right, by (2.1) we
know that p(Ty) p(Ty)* = 1. By (2.1) again we know that p(T}) p(T,)* = 1, which implies
that @ € Fy, thus gg; ' =27 € (F1)™!, 80 G4 - (F1)™' € G4 U (Fy)~!. Similarly

(Fr)™' -Gy CGrU(Fr)~h
So if we set G = G4 U (F;)~!, then G7 is a semigroup of G. Since G is minimal,
F(G+) - G?QG+ = F[U{@}',

which implies that K(F(G)) C I. Therefore K(F(G)) is minimal.

Next we show that K(F(QG)) = Ip.

Let (G, G ) be an ordered group. Let D = clos sp{TyT,-1 | g € G }. It is a unital abelian
C*-subalgebra of T+ (G). Let Dy be the C*-subalgebra of B (¢2(G',)) consisting of all the
operators having diagonal matrix with respect to the canonical basis. It is well-known that
there exists a linear and contractive map FEy : B (£2(G4.)) — Do determined by the following
rule: the matrix of Eg(T) (with respect to the canonical basis) is obtained from the one of
T by replacing with zero all the entries which are not situated on the principal diagonal.

Lemma 2.2.[2,Section 3.3 and Section 3.6] or [6, Proposition 3.3]

(1) D = {T € TC(G)|T has diagonal matriz with respect to the canonical basis of
(G4)}-

(2) Let E = Eo| ey (). Then E is a faithful bounded linear map from T (G) to D such
that for any g,h in G4
T,T,+  ifg=h,

0 if g # h.

Lemma 2.3.0:Proposition L4 1ot G e g discrete group, (G, E1) and (G, Es) be two quasi-
ordered groups with Ey C Es. Then there is a C*-algebra morphism vF>F1 from TE1(G) to
TE2(G) such that

BT, 7o) = {

E27E1(

5 pPrugpt) = pPrugp™  for all g € G.

Theorem 2.1. Let G be a discrete group, (G,G4) an ordered group. Then K(F(G)) =
Ip.
Proof. Let I be any closed non-trivial ideal of 7¢+(G). Let Fy and G} be as before.
Step 1. For any g € G \ (Fr U {e}), we prove that p&+u,pCru,1p&+ ¢ T (G).
In fact, if
T = pG+ung’ugflpG+ - pGJrugpchugflpc;+ e T4+ (@),
then since T" has a diagonal matrix with respect to the usual basis { d, | g € G1}, by Lemma

2.2, we know that there are A\g € C, A1, A2 -+ , A\, € C\{0} and zg = e, z1, 29, , 2, € G4
such that z1 < 29 < --- < x,, and

|- i AT, T,
i=0

1
3

< (2.2)
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Let S = Z: o P, where

i= @i eq)?

i
o; = Z/\k, Tp41 = +00,
k=0

[z, 2i01) = {9 € Gy |wi < g <wip1}
and P[wi,wwl) is the projection from ¢%(G) to the closed subspace generated by {d, | g €
[zi,2i41) }. Then S = Y \;T,,T,—1. Choose any h € Fy. Since (G4 \ (FrU{e}))- (F)™* C
i=0 i
G4 and |T — S|| < &, we know that

1
(T~ 8) byl < 5. (23
Suppose that gh™! € [z, 7;11) for some i. Then by (2.3) we know that
1
o1 <5 (24)
By (2.2) again, we know that [[(T'— S)d,,| < 3. By (2.4) we know that z; € g - (Fy)™*

(otherwise, |o;| = ||(T — S) 0, || < &, which is in contradiction with (2.4)). Let F = {j |1 <
j<n,z;€g- (Fy)™"}. Let ig be the least number in F. Then z;, = gl~* for some I € F}.
Now let y = gl™2 € G If y € [z}, ;41) for some j, then since [|(T — S) 4, < %, we know
that |o; — 1] < &. It follows that z; € g- (F;)~!, which implies that z;, < z;. But obviously
z; <y < x,. It is a contradiction.

Step 2. Let h,g1,92, - ,gn € G4 \ (FrU{e}), such that g1 < go < -+ < gn. If

Z AipGJrugipGl uhflpGJr € TG+ (G)7
i=1
then \; =0fori=1,2,--- ,n.
In fact, let

T = Xi(p g, p up-1p%t — pug pruy,-p9r).
i=1
Then T € T+ (G), so Ty T € TE+(G). Since (G4 \ (FrU{e})) - (Fr)~' C G4, we know
that

= pFrug, puy-1pt)

G G G G G G
=p tupp Tup—1pT T —pTtuppT T up—pT Tt

G G
Tyt (07 F ug, p™ up—1p

So
A (P9 unp“Tup-1pt — p¥ upp“rup-1p©t) = E(T,,, 1 T) € D.
By Step 1, we know that A, = 0. Similarly, \; =0 for i =1,2,--- ,n— 1.
Step 3. Define a linear operator p : T (G) — B ((3(G4)) by p(X) = p¥+Xp%+ for
X € T9(G). Let T € T*. We prove that if S = T' — py“0:¢+(T) € T9+(G), then S € I.
Therefore, T N Kery“1¢+ C 1.

Let T = > NT,y,T,-1 for some Ay, Xo,---, A, € C\ {0}, g1,92,--- ,9» € G4 and
i=1 :
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hi,hg,--- ,h, € Gy4. Suppose that S =T — py¥1:G+(T) € TE+(G). Then

n
S = Z )\i(pcbr'U'gipGJruhi—lpGJr - pG+ug¢pGluhi—1pG+)'
i=1

Let 7 be the quotient map from 7%+(G) to T¢+(G)/I. Then for any g € G, h € Fy,

T (Tg) w1 (Thp—1) w1 (Th) = w(Ty) = 71 (Typ—1) 7 (Th).
Since 77(1},) is a unitary, we know that TgT},-1 — Typ,-1 € I, which implies that 7, T,-1 —
Thg-1 € 1. So we may assume without loss of generality that hy < hy < -+ < hy,, gi, b &
Fru{e} fori=1,2,---,n. If hyth,_1 ¢ (Fr)~' U {e}, then since ST},, , € T+ (G), we
know that /\anquganIuh;lhnilpGJf € 7Y+ (@), which is a contradiction by Step 2. So
hythn—1 € (Fr)~t U {e}. Let ig be the least number such that h;th; € (F;)~'U{e}. If
hiy = hy, then h; = h,, for ig < j < n — 1; otherwise, h;, 'h;, € (Fy)~1, in this case, for any
ip<j<n-—1,

hythy = (hy thig) (hythy) € (Fr)™' - G) NGEH C (Fr) U {e)

For any ip < j <n—1,let h,'h; = x;l for some z; € Fy U {e}. Let x,, = e and

io—1

Q G
S=3 M ug pruy 1 p%t = pFrug, pruy, 1 pr)
k=1

n
G G G G G G
+ E /\j(p +ugj;vjp +uh;1p t—p +ugja:jp Iuh;1p +)-
Jj=to

Then since

Tg].Thj—1 — ngijhn—l = ng (T shit T Tl’jThgl) el,

we know that S € T¢+(G). To show that S € I, it suffices to show that S € I. But since
STh,,_, € T9+(G), we know that
Z /\ij+ugjochGIuh;1hi0_1pG+ € TG+(G)-
J=to
Since gjz; € (G+ \ (FrU{e})) - Fr € G4+ \ (Fr U{e}), by Step 2 we know that this can
happen only if
Z /\ij+ugjwij’uh;1h pft = 0.

ig—1

Jj=to
Therefore
n n
G+ G+ — G+ G1 G+ —
E Ajp~ g Tt = ( E :/\Jp Uga; P Ui, P ) Ty -th, = 0.
J=to J=io
So

n n
Z )‘ij+ugjrij1uh;1pG+ = p'YG“GJr ( Z )‘ij+u9jmij+uh;1pG+> =0.
Jj=to J=to
Therefore it is reduced to showing that
io—1

Z )\k(pG+“gkpG+uhg1PG+ *PGJrugkpGluh;lpGﬂ €l
k=1
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Pursue the former process, eventually we know that S € I.

Step 4. By Step 3, we know that 7°° N Kery“1%+ C I for any closed non-trivial ideal
I of T¢+(G). Since Gr C Gy, by Lemma 2.3 we know that there exist two C*-algebra
morphisms y90:CF . TCr(G) — T9(G) and y97 G+ : TE+(G) — TEF(G) such that

,YGI,GF (pGFungF) _ pGIungI’ ,VGF7G+ (Tq) — pGFungF
for all g € G. Obviously, Y91:Cr o AGr Gt = AG1.G+  §o KeryCr G+ C Kery@rC+.
Therefore, 7> N Kery“FS+ C [ for any closed non-trivial ideal I of 7%+ (G).

Remark. At this point, one may ask whether K(F(G)) = Kery“#:¢+ for a general
discrete ordered group (G,G4). We are unable to answer this question. However, if G is
amenable, then we will show that K (F(G)) is exactly equal to Kery&# G+,

Lemma 2.4.[6:Theorem 3.5] o4 & he qn amenable group and (G, E) a quasi-ordered group.
Let V : E — B(H) be an isometric representation of E (i.e. V(e) = 1; V(g)*V(g) = 1,
V(g)V(h) = V(gh) for any g,h € G4; and V()V(1)* =1 for anyl € ENE~1). Then there
is a C*-algebra morphism my : TE(G) — B (H) such that

my (pFugp?) = V(g) for all g < G.

Proposition 2.2. Let G be a discrete amenable group and (G,G4) an ordered group.
Then Ker y¢#:G+ is the minimal closed non-trivial ideal of T+ (G).

Proof. Since K(F(G)) C Kery“rG+ ~%r.C+ induces a C*-algebra morphism o :
T9(G)/K(F(G)) = TE"(G) such that

o([Ty]) = pPFugp®r for all g€ G.

On the other hand, let V(g) = 7(T}) for ¢ € GF, where 7 is the quotient map from
TCE+(G) to T¢+(G)/K(F(G)). Then since

GY = F(Gy)U(F(Gy)) ™,

we know that V(e) =1,V (g)*V(g) =1 for any g € Gp and V(h)V(h)* = 1 for any h € G%.
For any g € G4 and h € F(G4),

V(g)V(h YV (h) = V(g) = V(gh™ ")V (h).

Since V(h) is a unitary, we know that V(g)V(h™1) = V(gh™!). So V is an isometric
representation of Gp. By Lemma 2.4, there is a C*-algebra morphism my : 797 (G) —
T+ (G)/K(F(G)) such that my (p&ruyp®r) = n(Ty) for any g € G. Clearly my =07, so

K(F(G)) = Kery“r%+,

§3. A Character of K-Groups of
Toeplitz Algebras on Ordered Groups

Let G be a discrete group, (G,G4) an ordered group. When G is a countable infinite
abelian group, it is proved in [6] that if

]
Ko(TH(G)) @ KA(TCH(G)) 2 Z,

then Ko(T%+(G)) =2 Z and K(T%+(G)) = 0. The purpose of this section is to generalize
such a result to the case when G is an amenable group.
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Lemma 3.1. Let G be a discrete group, (G,G4) an ordered group. Then K ((*(G4)) C
TE+(G) if and only if G admits a least positive element, where K(¢2(Gy)) is the ideal
of compact operators on (*(Gy). When G admits a least positive element, K((*(Gy)) =

Proof. “ = 7. Suppose that K(¢*(G;)) C T+ (G). Then since the quotient map
m: T (G) — T9(G)/K({*(G4)) is not faithful, by Lemma 2.1 we know that there exists
g € G4\ {e} such that 1 — T,T,-» € K({*(G4)). So the subset Fy = {h € G4 |h < g}is
finite, therefore G admits a least positive element.

“e—=". For any T € B((*(Gy)), if TT, = T,T and TT,~» = T,-1T for any g € G,
then T = X for some A € C, so 7% (@) is irreducible. Suppose now that G admits a
least positive element go. Then 1 — Ty, T, -1 € K(%(Gy)), so K({%(Gy)) C T (Q) since
TE+(Q) is irreducible.

Let go be the least positive element in G. Then galg € G4 for any g € G4 \ {e}, so
9" =(95"9)9g7 ' € G, for any g € G\ {e}, i.e., go € F(G4). Since K(F(G)) is irreducible
(because T+ (Q) is), we know that K (¢2(G,)) C K(F(G)). By Proposition 2.1 we know
that

K(P(Gy) = K(F(G)).

Lemma 3.2. Let G be an amenable discrete group, (G,G4) an ordered group. Let
E=GxZ, Ey =Gy xZ. Then TP+(E) = T%(G) @ C(T), where T is the unit circle in
C.

Proof. For any n € Z, let x,, € C(T), xn(e?) = € for § € [0,27]. For any h = (g,n) €
Eiylet V(h) =T, ® xn € T¢+(G) ® C(T). Then V is an isometric representation of E..
By Lemma 2.4, there is a C*-algebra morphism 7y : 75+ (E) — T+ (G) ® C(T) such that

ﬂ'v(pEJru(g,n)pE*) =T,®x, forall (g,n) € E.

On the other hand, by Lemma 2.4 and [1, Lemma 1.2], we know that there are C*-algebra
morphisms p : T¢+(G) — TE+(E) and A : O(T) — TF+(FE) such that

p(T,) = pE+u(g,0)pE+ forany g € G, A(xn) = pE+u(e,n)pE+ for any n € Z.
It is easy to show that for any ¢ € G and n € Z,
P(Tg)A(Xn) = A(xn)p(Ty)-

Since C(T) is nuclear, by [3, Corollary T.6.9], we know that there is a C*-algebra morphism
p@N: T+ (G)® C(T) — TF+(E) such that

(P @A) (Ty @ xn) = P u(g0p™ - PP H (e myp™ = pugmp™
for any g € G and n € Z. Clearly, p®@ X = (7)1, so
TEH(E) 2 T (G) ® C(T).

Theorem 3.1.[6:Theorem 2.2} 1oy @ pe g countable infinite discrete amenable group, (G,Gy)
an ordered group. If Ko(T%+(G)) ® K1(T9+(G)) 2 Z, then

Ko(TC+(G)) = Z and K (T¢+(G)) =0.
Proof. Let E = G x Z, E; = G4 X Z, and (E, Ejx) be the lexico-ordered group. By
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Lemma 3.1 and Lemma 3.2, we have the following short exact sequence of C*-algebras
0 —— K(?(E})) —— TP(E) —Z— T+ (G) @ C(T) — 0
where i is the inclusion map and
a(pE‘e"u(g’n)pElex) =T, ®xn forany (g,n)€E.
So we have the following periodic six-term exact sequence of K-groups

Z=Ko(K) — —" Ko(TP=(E)) —Z— Ko(T%(G)® C(T))

Tindex map Jl

KT (@) @ O(T)) «—— K(TP=(E)) «——  Ki(K)=0

Since
Ko(T%(G) ® O(T)) = Ky(T%+(G) © O(T)) = Ko(T%(G)) & Ka(TO+(G)) = 2,

and T %ex(E) contains a Fredholm operator of index one (which implies that the index map
in the exact sequence is an isomorphism), we know that

Ko(TPe(E)) = Z, K,\(TPe=(E)) = 0.

Let V : Eiex — T9+(G), V(g,n) =T, for any (¢,n) € Elex. Then V is an isometric
representation of Eie. So there is a C*-algebra morphism p : TFex(E) — T¢+(G) such
that

p(pPuy pyp®) =T, for any (g,n) € E.

Similarly, there is a C*-algebra morphism 6 : 7+ (G) — TP (E) such that

G(Tg) _ pElexu(gyo)pElex .

Since 79 (G) is generated by {T, | g € G4 }, we know that po§ = id o, (G)s SO
,0* 9 9* - ZdKl(TG+(G))
It follows that the map
pi s K (TP(E)) = Ki(T9H(G))
is onto, therefore K (7 %+ (G))= 0.
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