THE MINIMAL CLOSED NON-TRIVIAL IDEALS OF TOEPLITZ ALGEBRAS ON DISCRETE GROUPS**

XU QINGXIANG*

Abstract

Let G be a discrete group and (G, G_+) an ordered group. Let (G, G_F) be the minimal quasiordered group containing (G, G_+) . Let $\mathcal{T}^{G_+}(G)$ and $\mathcal{T}^{G_F}(G)$ be the corresponding Toeplitz algebras, and γ^{G_F,G_+} the natural C*-algebra morphism from $\mathcal{T}^{G_+}(G)$ to $\mathcal{T}^{G_F}(G)$. This paper studies the connection between Ker γ^{G_F,G_+} and the minimal closed ideal of $\mathcal{T}^{G_+}(G)$. It is proved that if G is amenable and $G_F \neq G_+$, then Ker γ^{G_F,G_+} is exactly the minimal closed non-trivial ideal of $\mathcal{T}^{G_+}(G)$. As an application, in the last part of this paper, a character of K-groups of Toeplitz algebras on ordered groups is clarified.

Keywords Discrete group, Toeplitz algebra, Minimal ideal

1991 MR Subject Classification 47B35

Chinese Library Classification 0177.5 Document Code A Article ID 0252-9599(2000)03-0367-08

§1. Introduction

Let G be a discrete (not necessarily abelian) group. For any subset G_+ of G, we say that (G, G_+) is a quasi-partial ordered group if $e \in G_+, G_+ \cdot G_+ \subseteq G_+$ and $G = G_+ \cdot G_+^{-1}$, where e is the unit of G and $G_+^{-1} = \{g^{-1} | g \in G_+\}$; further, (G, G_+) is referred to as a quasi-ordered group if $G = G_+ \cup G_+^{-1}$. Note that when $G_+^0 = G_+ \cap G_+^{-1} = \{e\}$, a quasipartial ordered group (resp. quasi-ordered group) (G, G_+) is known as a partially ordered (resp. ordered) group.

Let $\{\delta_g \mid g \in G\}$ be the usual orthonormal basis for $\ell^2(G)$, where

$$\delta_g(h) = \begin{cases} 1, & \text{if } g = h, \\ 0, & \text{otherwise} \end{cases}$$

for $g, h \in G$. For any $g \in G$, we define a unitary u_g on $\ell^2(G)$ by $u_g(\delta_h) = \delta_{gh}$ for $h \in G$. For any $E \subseteq G$, let $\ell^2(E)$ be the closed subspace of $\ell^2(G)$ generated by $\{\delta_g \mid g \in E\}$; its projection is denoted by p^E . The C*-algebra generated by $\{p^E u_g p^E \mid g \in G\}$ is denoted by $\mathcal{T}^E(G)$ and is called the Toeplitz algebra with respect to E.

Manuscript received January 7, 1999. Revised October 13, 1999.

^{*}Department of Mathematics, Shanghai Normal University, Shanghai 200234, China.

E-mail:qxxu@shtu.edu.cn

^{**}Project supported by the National Natural Science Foundation of China (No. 19901019) and the Youth Science Foundation of Colleges and Universities of Shanghai, China (No.98QN75).

Now let (G, G_+) be an ordered group. For any $g \in G_+ \setminus \{e\}$, let G_g be the semigroup of G generated by G_+ and g^{-1} . Let

$$G_F = \bigcap_{g \in G_+ \setminus \{e\}} G_g.$$

Clearly, (G, G_F) is the minimal quasi-ordered group containing (G, G_+) property. Let

$$G_F^0 = G_F \cap G_F^{-1}, \quad F(G_+) = G_F^0 \cap G$$

Let K(F(G)) be the closed ideal of $\mathcal{T}^{G_+}(G)$ generated by

$$\{1 - p^{G_+} u_g p^{G_+} u_{g^{-1}} p^{G_+} \, \big| \, g \in F(G_+) \, \}.$$

It is remarkable that when G is abelian, $F(G_+)$ is the positive part of the subgroup of finite elements in G (see [6]), K(F(G)) is the minimal closed non-trivial ideal of $\mathcal{T}^{G_+}(G)$ in the sense that every closed non-trivial ideal of $\mathcal{T}^{G_+}(G)$ always contains it (see [1, Theorem 2.11]), and it was proved in [6] that $K(F(G)) = \operatorname{Ker} \gamma^{G_F,G_+}$, where γ^{G_F,G_+} is the natural morphism from $\mathcal{T}^{G_+}(G)$ to $\mathcal{T}^{G_F}(G)$ satisfying

$$\gamma^{G_F,G_+}(p^{G_+}u_g p^{G_+}) = p^{G_F}u_g p^{G_F}$$
 for all $g \in G_+$

The purpose of this paper is to generalize the above result to the case when G is a non-abelian group. Let G be a discrete group, (G, G_+) an ordered group. Suppose that $G_+ \subsetneq G_F$. Let

$$\mathcal{T}^{\infty} = \sup\{ p^{G_+} u_g p^{G_+} u_{h^{-1}} p^{G_+} \mid g, h \in G_+ \}.$$

Since G is totally ordered, \mathcal{T}^{∞} is a dense *-subalgebra of $\mathcal{T}^{G_+}(G)$. Let

$$I_F = \overline{\left(\mathcal{T}^{\infty} \cap \operatorname{Ker} \gamma^{G_F, G_+}\right)^{\|\cdot\|}}.$$

Then I_F is a closed non-trivial ideal of $\mathcal{T}^{G_+}(G)$. Obviously, $K(F(G)) \subseteq I_F \subseteq \operatorname{Ker} \gamma^{G_F,G_+}$. In this paper, we will show that $I_F = K(F(G))$, which is the minimal closed non-trivial ideal of $\mathcal{T}^{G_+}(G)$. Moreover, if G is amenable, then $K(F(G)) = \operatorname{Ker} \gamma^{G_F,G_+}$. As an application, in the last part of this paper, we clarify a character of K-groups of Toeplitz algebras on discrete amenable groups.

§2. The Minimal Closed Non-Trivial Ideals

Throughout this section, G is a discrete group, (G, G_+) is an ordered group. We always assume that $G_+ \subsetneq G_F$. For any $x, y \in G$, by $x \leq y$ we mean that $x^{-1}y \in G_+$. From now on, $p^{G_+}u_q p^{G_+}$ will be denoted by T_q for any $g \in G$.

Lemma 2.1.^[4,Corollary 2.5] Let (G, G_+) be an ordered group and (π, H) a unital representation of $\mathcal{T}^{G_+}(G)$. Let $V(g) = \pi(T_g)$ and $L(g) = V(g)V(g)^*$ for g in G_+ . Then the following two conditions are equivalent: (1) (π, H) is faithful; (2) $L(g) \neq 1$ for any $g \in G_+ \setminus \{e\}$.

Proposition 2.1. Let G be a discrete group and (G,G_+) an ordered group. Then K(F(G)) is the minimal closed non-trivial ideal of $\mathcal{T}^{G_+}(G)$.

Proof. Given any closed non-trivial ideal I of $\mathcal{T}^{G_+}(G)$, let

$$F_I = \{ g \in G_+ \setminus \{ e \} \mid 1 - T_g T_{g^{-1}} \in I \}.$$

Since the quotient map $\rho : \mathcal{T}^{G_+}(G) \to \mathcal{T}^{G_+}(G)/I$ is not faithful, by Lemma 2.1 we know that $F_I \neq \emptyset$. Since for any $g \in G_+ \setminus \{e\}, g \in F_I$ if and only if $\rho(T_g)$ is a unitary in $\mathcal{T}^{G_+}(G)/I$, F_I is a semigroup of G_+ .

For any $g \in G_+$ and $g_I \in F_I$, if $gg_I^{-1} \notin G_+$, i.e., $g_I = xg$ for some $x \in G_+ \setminus \{e\}$, then

$$\rho(T_x)\,\rho(T_g)\,\rho(T_g)^*\,\rho(T_x)^* = \rho(T_{g_I})\,\rho(T_{g_I})^* = 1.$$
(2.1)

Since $\rho(T_x)^* \rho(T_x) = 1$, multiplying with $\rho(T_x)^*$ from left and $\rho(T_x)$ from right, by (2.1) we know that $\rho(T_g) \rho(T_g)^* = 1$. By (2.1) again we know that $\rho(T_x) \rho(T_x)^* = 1$, which implies that $x \in F_I$, thus $gg_I^{-1} = x^{-1} \in (F_I)^{-1}$, so $G_+ \cdot (F_I)^{-1} \subseteq G_+ \cup (F_I)^{-1}$. Similarly

$$(F_I)^{-1} \cdot G_+ \subseteq G_+ \cup (F_I)^{-1}$$

So if we set $G_I = G_+ \cup (F_I)^{-1}$, then G_I is a semigroup of G. Since G_F is minimal,

$$F(G_+) \subseteq G_I^0 \cap G_+ = F_I \cup \{e\},\$$

which implies that $K(F(G)) \subseteq I$. Therefore K(F(G)) is minimal.

Next we show that $K(F(G)) = I_F$.

Let (G, G_+) be an ordered group. Let $\mathcal{D} = \operatorname{clos} \operatorname{sp}\{T_g T_{g^{-1}} \mid g \in G_+\}$. It is a unital abelian C^* -subalgebra of $\mathcal{T}^{G_+}(G)$. Let \mathcal{D}_0 be the C^* -subalgebra of $\mathbb{B}(\ell^2(G_+))$ consisting of all the operators having diagonal matrix with respect to the canonical basis. It is well-known that there exists a linear and contractive map $E_0 : \mathbb{B}(\ell^2(G_+)) \to \mathcal{D}_0$ determined by the following rule: the matrix of $E_0(T)$ (with respect to the canonical basis) is obtained from the one of T by replacing with zero all the entries which are not situated on the principal diagonal.

Lemma 2.2.^{[2,Section 3.3} and Section 3.6] or [6, Proposition 3.3]

(1) $\mathcal{D} = \{T \in \mathcal{T}^{G_+}(G) | T \text{ has diagonal matrix with respect to the canonical basis of } \ell^2(G_+)\}.$

(2) Let $E = E_0|_{\mathcal{T}^{G_+}(G)}$. Then E is a faithful bounded linear map from $\mathcal{T}^{G_+}(G)$ to \mathcal{D} such that for any g, h in G_+

$$E(T_gT_{h^{-1}}) = \begin{cases} T_gT_{h^{-1}} & \text{ if } g = h, \\ 0 & \text{ if } g \neq h. \end{cases}$$

Lemma 2.3.^[5,Proposition 1.4] Let G be a discrete group, (G, E_1) and (G, E_2) be two quasiordered groups with $E_1 \subseteq E_2$. Then there is a C^{*}-algebra morphism γ^{E_2, E_1} from $\mathcal{T}^{E_1}(G)$ to $\mathcal{T}^{E_2}(G)$ such that

$$\gamma^{E_2, E_1}(p^{E_1}u_g p^{E_1}) = p^{E_2}u_g p^{E_2} \quad for \ all \ g \in G.$$

Theorem 2.1. Let G be a discrete group, (G, G_+) an ordered group. Then $K(F(G)) = I_F$.

Proof. Let *I* be any closed non-trivial ideal of $\mathcal{T}^{G_+}(G)$. Let F_I and G_I be as before. **Step 1.** For any $g \in G_+ \setminus (F_I \cup \{e\})$, we prove that $p^{G_+} u_g p^{G_I} u_{g^{-1}} p^{G_+} \notin \mathcal{T}^{G_+}(G)$. In fact, if

$$T = p^{G_+} u_g p^{G_I} u_{g^{-1}} p^{G_+} - p^{G_+} u_g p^{G_+} u_{g^{-1}} p^{G_+} \in \mathcal{T}^{G_+}(G),$$

then since T has a diagonal matrix with respect to the usual basis $\{\delta_g \mid g \in G_+\}$, by Lemma 2.2, we know that there are $\lambda_0 \in C, \lambda_1, \lambda_2, \dots, \lambda_n \in C \setminus \{0\}$ and $x_0 = e, x_1, x_2, \dots, x_n \in G_+$ such that $x_1 < x_2 < \dots < x_n$ and

$$\left\| T - \sum_{i=0}^{n} \lambda_i T_{x_i} T_{x_i^{-1}} \right\| \le \frac{1}{3}.$$
(2.2)

Let $S = \sum\limits_{i=0}^n \sigma_i P_{_{[x_i,x_{i+1})}},$ where

$$\sigma_i = \sum_{k=0}^{i} \lambda_k, \quad x_{n+1} = +\infty,$$

$$[x_i, x_{i+1}) = \{ g \in G_+ \mid x_i \le g < x_{i+1} \}$$

and $P_{[x_i,x_{i+1})}$ is the projection from $\ell^2(G_+)$ to the closed subspace generated by $\{\delta_g \mid g \in [x_i,x_{i+1})\}$. Then $S = \sum_{i=0}^n \lambda_i T_{x_i} T_{x_i^{-1}}$. Choose any $h \in F_I$. Since $(G_+ \setminus (F_I \cup \{e\})) \cdot (F_I)^{-1} \subseteq G_+$ and $||T - S|| \leq \frac{1}{3}$, we know that

$$\|(T-S)\,\delta_{gh^{-1}}\| \le \frac{1}{3}.\tag{2.3}$$

Suppose that $gh^{-1} \in [x_i, x_{i+1})$ for some *i*. Then by (2.3) we know that

$$|\sigma_i - 1| \le \frac{1}{3}.\tag{2.4}$$

By (2.2) again, we know that $||(T-S)\delta_{x_i}|| \leq \frac{1}{3}$. By (2.4) we know that $x_i \in g \cdot (F_I)^{-1}$ (otherwise, $|\sigma_i| = ||(T-S)\delta_{x_i}|| \leq \frac{1}{3}$, which is in contradiction with (2.4)). Let $F = \{j \mid 1 \leq j \leq n, x_j \in g \cdot (F_I)^{-1}\}$. Let i_0 be the least number in F. Then $x_{i_0} = gl^{-1}$ for some $l \in F_I$. Now let $y = gl^{-2} \in G_+$. If $y \in [x_j, x_{j+1})$ for some j, then since $||(T-S)\delta_y|| \leq \frac{1}{3}$, we know that $|\sigma_j - 1| \leq \frac{1}{3}$. It follows that $x_j \in g \cdot (F_I)^{-1}$, which implies that $x_{i_0} \leq x_j$. But obviously $x_j \leq y < x_{i_0}$. It is a contradiction.

Step 2. Let $h, g_1, g_2, \dots, g_n \in G_+ \setminus (F_I \cup \{e\})$, such that $g_1 < g_2 < \dots < g_n$. If

$$\sum_{i=1}^{n} \lambda_{i} p^{G_{+}} u_{g_{i}} p^{G_{I}} u_{h^{-1}} p^{G_{+}} \in \mathcal{T}^{G_{+}}(G),$$

then $\lambda_i = 0$ for $i = 1, 2, \cdots, n$.

In fact, let

$$T = \sum_{i=1}^{n} \lambda_i (p^{G_+} u_{g_i} p^{G_I} u_{h^{-1}} p^{G_+} - p^{G_+} u_{g_i} p^{G_+} u_{h^{-1}} p^{G_+}).$$

Then $T \in \mathcal{T}^{G_+}(G)$, so $T_{hg_n^{-1}}T \in \mathcal{T}^{G_+}(G)$. Since $(G_+ \setminus (F_I \cup \{e\})) \cdot (F_I)^{-1} \subseteq G_+$, we know that

$$T_{hg_n^{-1}}(p^{G_+}u_{g_n}p^{G_I}u_{h^{-1}}p^{G_+} - p^{G_+}u_{g_n}p^{G_+}u_{h^{-1}}p^{G_+})$$

= $p^{G_+}u_hp^{G_I}u_{h^{-1}}p^{G_+} - p^{G_+}u_hp^{G_+}u_{h^{-1}}p^{G_+}.$

 So

$$\lambda_n(p^{G_+}u_hp^{G_I}u_{h^{-1}}p^{G_+} - p^{G_+}u_hp^{G_+}u_{h^{-1}}p^{G_+}) = E(T_{hg_n^{-1}}T) \in \mathcal{D}.$$

By Step 1, we know that $\lambda_n = 0$. Similarly, $\lambda_i = 0$ for $i = 1, 2, \dots, n-1$.

Step 3. Define a linear operator $\rho : \mathcal{T}^{G_I}(G) \to \mathbb{B}(\ell^2(G_+))$ by $\rho(X) = p^{G_+}Xp^{G_+}$ for $X \in \mathcal{T}^{G_I}(G)$. Let $T \in \mathcal{T}^{\infty}$. We prove that if $S = T - \rho\gamma^{G_I,G_+}(T) \in \mathcal{T}^{G_+}(G)$, then $S \in I$. Therefore, $\mathcal{T}^{\infty} \cap \operatorname{Ker} \gamma^{G_I,G_+} \subseteq I$.

Let
$$T = \sum_{i=1}^{n} \lambda_i T_{g_i} T_{h_i^{-1}}$$
 for some $\lambda_1, \lambda_2, \cdots, \lambda_n \in C \setminus \{0\}, g_1, g_2, \cdots, g_n \in G_+$ and

 $h_1, h_2, \cdots, h_n \in G_+$. Suppose that $S = T - \rho \gamma^{G_I, G_+}(T) \in \mathcal{T}^{G_+}(G)$. Then

$$S = \sum_{i=1}^{n} \lambda_i (p^{G_+} u_{g_i} p^{G_+} u_{h_i^{-1}} p^{G_+} - p^{G_+} u_{g_i} p^{G_I} u_{h_i^{-1}} p^{G_+}).$$

Let π_I be the quotient map from $\mathcal{T}^{G_+}(G)$ to $\mathcal{T}^{G_+}(G)/I$. Then for any $g \in G_+, h \in F_I$,

$$\pi_I(T_g) \,\pi_I(T_{h^{-1}}) \,\pi_I(T_h) = \pi(T_g) = \pi_I(T_{gh^{-1}}) \,\pi_I(T_h).$$

Since $\pi_I(T_h)$ is a unitary, we know that $T_g T_{h^{-1}} - T_{gh^{-1}} \in I$, which implies that $T_h T_{g^{-1}} - T_{hg^{-1}} \in I$. So we may assume without loss of generality that $h_1 \leq h_2 \leq \cdots \leq h_n$, $g_i, h_i \notin F_I \cup \{e\}$ for $i = 1, 2, \cdots, n$. If $h_n^{-1} h_{n-1} \notin (F_I)^{-1} \cup \{e\}$, then since $ST_{h_{n-1}} \in \mathcal{T}^{G_+}(G)$, we know that $\lambda_n p^{G_+} u_{g_n} p^{G_I} u_{h_n^{-1} h_{n-1}} p^{G_+} \in \mathcal{T}^{G_+}(G)$, which is a contradiction by Step 2. So $h_n^{-1} h_{n-1} \in (F_I)^{-1} \cup \{e\}$. Let i_0 be the least number such that $h_n^{-1} h_{i_0} \in (F_I)^{-1} \cup \{e\}$. If $h_{i_0} = h_n$, then $h_j = h_n$ for $i_0 < j \leq n-1$; otherwise, $h_n^{-1} h_{i_0} \in (F_I)^{-1}$, in this case, for any $i_0 < j < n-1$,

$$h_n^{-1}h_j = (h_n^{-1}h_{i_0})(h_{i_0}^{-1}h_j) \in ((F_I)^{-1} \cdot G_+) \cap G_+^{-1} \subseteq (F_I)^{-1} \cup \{e\}.$$

For any $i_0 \leq j \leq n-1$, let $h_n^{-1}h_j = x_j^{-1}$ for some $x_j \in F_I \cup \{e\}$. Let $x_n = e$ and i_{0-1}

$$\begin{split} \tilde{S} &= \sum_{k=1}^{n} \lambda_k (p^{G_+} u_{g_k} p^{G_+} u_{h_k^{-1}} p^{G_+} - p^{G_+} u_{g_k} p^{G_I} u_{h_k^{-1}} p^{G_+}) \\ &+ \sum_{j=i_0}^{n} \lambda_j (p^{G_+} u_{g_j x_j} p^{G_+} u_{h_n^{-1}} p^{G_+} - p^{G_+} u_{g_j x_j} p^{G_I} u_{h_n^{-1}} p^{G_+}). \end{split}$$

Then since

$$T_{g_j}T_{h_j}{}^{-1} - T_{g_jx_j}T_{h_n}{}^{-1} = T_{g_j}(T_{x_jh_n}{}^{-1} - T_{x_j}T_{h_n}{}^{-1}) \in I,$$

we know that $\tilde{S} \in \mathcal{T}^{G_+}(G)$. To show that $S \in I$, it suffices to show that $\tilde{S} \in I$. But since $\tilde{S}T_{h_{i_0-1}} \in \mathcal{T}^{G_+}(G)$, we know that

$$\sum_{j=i_0}^n \lambda_j p^{G_+} u_{g_j x_j} p^{G_I} u_{h_n^{-1} h_{i_0} - 1} p^{G_+} \in \mathcal{T}^{G_+}(G).$$

Since $g_j x_j \in (G_+ \setminus (F_I \cup \{e\})) \cdot F_I \subseteq G_+ \setminus (F_I \cup \{e\})$, by Step 2 we know that this can happen only if

$$\sum_{j=i_0}^n \lambda_j p^{G_+} u_{g_j x_j} p^{G_I} u_{h_n^{-1} h_{i_0-1}} p^{G_+} = 0.$$

Therefore

$$\sum_{j=i_0}^n \lambda_j p^{G_+} u_{g_j x_j} p^{G_+} = \Big(\sum_{j=i_0}^n \lambda_j p^{G_+} u_{g_j x_j} p^{G_I} u_{h_n^{-1} h_{i_0-1}} p^{G_+} \Big) T_{h_{i_0-1}^{-1} h_n} = 0.$$

 So

$$\sum_{j=i_0}^n \lambda_j p^{G_+} u_{g_j x_j} p^{G_I} u_{h_n^{-1}} p^{G_+} = \rho \, \gamma^{G_I, G_+} \Big(\sum_{j=i_0}^n \lambda_j p^{G_+} u_{g_j x_j} p^{G_+} u_{h_n^{-1}} p^{G_+} \Big) = 0$$

Therefore it is reduced to showing that

$$\sum_{k=1}^{u_{0}-1} \lambda_{k} (p^{G_{+}} u_{g_{k}} p^{G_{+}} u_{h_{k}^{-1}} p^{G_{+}} - p^{G_{+}} u_{g_{k}} p^{G_{I}} u_{h_{k}^{-1}} p^{G_{+}}) \in I$$

Pursue the former process, eventually we know that $S \in I$.

Step 4. By Step 3, we know that $\mathcal{T}^{\infty} \cap \operatorname{Ker} \gamma^{G_I,G_+} \subseteq I$ for any closed non-trivial ideal I of $\mathcal{T}^{G_+}(G)$. Since $G_F \subseteq G_I$, by Lemma 2.3 we know that there exist two C^* -algebra morphisms $\gamma^{G_I,G_F}: \mathcal{T}^{G_F}(G) \to \mathcal{T}^{G_I}(G)$ and $\gamma^{G_F,G_+}: \mathcal{T}^{G_+}(G) \to \mathcal{T}^{G_F}(G)$ such that

$$\gamma^{G_{I},G_{F}}(p^{G_{F}}u_{g}p^{G_{F}}) = p^{G_{I}}u_{g}p^{G_{I}}, \quad \gamma^{G_{F},G_{+}}(T_{g}) = p^{G_{F}}u_{g}p^{G_{F}}$$

for all $g \in G$. Obviously, $\gamma^{G_I,G_F} \circ \gamma^{G_F,G_+} = \gamma^{G_I,G_+}$. So Ker $\gamma^{G_F,G_+} \subseteq$ Ker γ^{G_I,G_+} . Therefore, $\mathcal{T}^{\infty} \cap$ Ker $\gamma^{G_F,G_+} \subseteq I$ for any closed non-trivial ideal I of $\mathcal{T}^{G_+}(G)$.

Remark. At this point, one may ask whether $K(F(G)) = \text{Ker } \gamma^{G_F,G_+}$ for a general discrete ordered group (G,G_+) . We are unable to answer this question. However, if G is amenable, then we will show that K(F(G)) is exactly equal to $\text{Ker } \gamma^{G_F,G_+}$.

Lemma 2.4.^[6,Theorem 3.5] Let G be an amenable group and (G, E) a quasi-ordered group. Let $V : E \to \mathbb{B}(H)$ be an isometric representation of E (i.e. V(e) = 1; $V(g)^*V(g) = 1$, V(g)V(h) = V(gh) for any $g, h \in G_+$; and $V(l)V(l)^* = 1$ for any $l \in E \cap E^{-1}$). Then there is a C^* -algebra morphism $\pi_V : \mathcal{T}^E(G) \to \mathbb{B}(H)$ such that

$$\pi_V(p^E u_g p^E) = V(g) \quad for \ all \ g \in G.$$

Proposition 2.2. Let G be a discrete amenable group and (G, G_+) an ordered group. Then Ker γ^{G_F,G_+} is the minimal closed non-trivial ideal of $\mathcal{T}^{G_+}(G)$.

Proof. Since $K(F(G)) \subseteq \operatorname{Ker} \gamma^{G_F,G_+}$, γ^{G_F,G_+} induces a C^* -algebra morphism $\sigma : \mathcal{T}^{G_+}(G)/K(F(G)) \to \mathcal{T}^{G_F}(G)$ such that

$$\sigma([T_g]) = p^{G_F} u_g p^{G_F} \text{ for all } g \in G.$$

On the other hand, let $V(g) = \pi(T_g)$ for $g \in G_F$, where π is the quotient map from $\mathcal{T}^{G_+}(G)$ to $\mathcal{T}^{G_+}(G)/K(F(G))$. Then since

$$G_F^0 = F(G_+) \cup (F(G_+))^{-1},$$

we know that V(e) = 1, $V(g)^*V(g) = 1$ for any $g \in G_F$ and $V(h)V(h)^* = 1$ for any $h \in G_F^0$. For any $g \in G_+$ and $h \in F(G_+)$,

$$V(g)V(h^{-1})V(h) = V(g) = V(gh^{-1})V(h).$$

Since V(h) is a unitary, we know that $V(g)V(h^{-1}) = V(gh^{-1})$. So V is an isometric representation of G_F . By Lemma 2.4, there is a C^* -algebra morphism $\pi_V : \mathcal{T}^{G_F}(G) \to \mathcal{T}^{G_+}(G)/K(F(G))$ such that $\pi_V(p^{G_F}u_gp^{G_F}) = \pi(T_g)$ for any $g \in G$. Clearly $\pi_V = \sigma^{-1}$, so $K(F(G)) = \operatorname{Ker} \gamma^{G_F,G_+}.$

§3. A Character of *K*-Groups of Toeplitz Algebras on Ordered Groups

Let G be a discrete group, (G, G_+) an ordered group. When G is a countable infinite abelian group, it is proved in [6] that if

$$K_0(\mathcal{T}^{G_+}(G)) \oplus K_1(\mathcal{T}^{G_+}(G)) \cong \mathbb{Z},$$

then $K_0(\mathcal{T}^{G_+}(G)) \cong \mathbb{Z}$ and $K_1(\mathcal{T}^{G_+}(G)) = 0$. The purpose of this section is to generalize such a result to the case when G is an amenable group. **Lemma 3.1.** Let G be a discrete group, (G, G_+) an ordered group. Then $K(\ell^2(G_+)) \subseteq \mathcal{T}^{G_+}(G)$ if and only if G admits a least positive element, where $K(\ell^2(G_+))$ is the ideal of compact operators on $\ell^2(G_+)$. When G admits a least positive element, $K(\ell^2(G_+)) = K(F(G))$.

Proof. " \Longrightarrow ". Suppose that $K(\ell^2(G_+)) \subseteq \mathcal{T}^{G_+}(G)$. Then since the quotient map $\pi : \mathcal{T}^{G_+}(G) \to \mathcal{T}^{G_+}(G)/K(\ell^2(G_+))$ is not faithful, by Lemma 2.1 we know that there exists $g \in G_+ \setminus \{e\}$ such that $1 - T_g T_{g^{-1}} \in K(\ell^2(G_+))$. So the subset $F_g = \{h \in G_+ \mid h \leq g\}$ is finite, therefore G admits a least positive element.

" \Leftarrow ". For any $T \in \mathbb{B}(\ell^2(G_+))$, if $TT_g = T_gT$ and $TT_{g^{-1}} = T_{g^{-1}}T$ for any $g \in G_+$, then $T = \lambda$ for some $\lambda \in C$, so $\mathcal{T}^{G_+}(G)$ is irreducible. Suppose now that G admits a least positive element g_0 . Then $1 - T_{g_0}T_{g_0^{-1}} \in K(\ell^2(G_+))$, so $K(\ell^2(G_+)) \subseteq \mathcal{T}^{G_+}(G)$ since $\mathcal{T}^{G_+}(G)$ is irreducible.

Let g_0 be the least positive element in G. Then $g_0^{-1}g \in G_+$ for any $g \in G_+ \setminus \{e\}$, so $g_0^{-1} = (g_0^{-1}g)g^{-1} \in G_g$ for any $g \in G_+ \setminus \{e\}$, i.e., $g_0 \in F(G_+)$. Since K(F(G)) is irreducible (because $\mathcal{T}^{G_+}(G)$ is), we know that $K(\ell^2(G_+)) \subseteq K(F(G))$. By Proposition 2.1 we know that

$$K(\ell^2(G_+)) = K(F(G)).$$

Lemma 3.2. Let G be an amenable discrete group, (G, G_+) an ordered group. Let $E = G \times \mathbb{Z}$, $E_+ = G_+ \times \mathbb{Z}$. Then $\mathcal{T}^{E_+}(E) \cong \mathcal{T}^{G_+}(G) \otimes C(T)$, where T is the unit circle in C.

Proof. For any $n \in \mathbb{Z}$, let $\chi_n \in C(T)$, $\chi_n(e^{i\theta}) = e^{in\theta}$ for $\theta \in [0, 2\pi]$. For any $h = (g, n) \in E_+$, let $V(h) = T_g \otimes \chi_n \in \mathcal{T}^{G_+}(G) \otimes C(T)$. Then V is an isometric representation of E_+ . By Lemma 2.4, there is a C^{*}-algebra morphism $\pi_V : \mathcal{T}^{E_+}(E) \to \mathcal{T}^{G_+}(G) \otimes C(T)$ such that

$$\pi_V(p^{E_+}u_{(g,n)}p^{E_+}) = T_g \otimes \chi_n \text{ for all } (g,n) \in E.$$

On the other hand, by Lemma 2.4 and [1, Lemma 1.2], we know that there are C^* -algebra morphisms $\rho : \mathcal{T}^{G_+}(G) \to \mathcal{T}^{E_+}(E)$ and $\lambda : C(T) \to \mathcal{T}^{E_+}(E)$ such that

$$\rho(T_g) = p^{E_+} u_{(g,0)} p^{E_+} \text{ for any } g \in G, \quad \lambda(\chi_n) = p^{E_+} u_{(e,n)} p^{E_+} \text{ for any } n \in Z.$$

It is easy to show that for any $g \in G$ and $n \in \mathbb{Z}$,

$$\rho(T_g)\lambda(\chi_n) = \lambda(\chi_n)\rho(T_g).$$

Since C(T) is nuclear, by [3, Corollary T.6.9], we know that there is a C^* -algebra morphism $\rho \otimes \lambda : \mathcal{T}^{G_+}(G) \otimes C(T) \to \mathcal{T}^{E_+}(E)$ such that

$$(\rho \otimes \lambda) (T_g \otimes \chi_n) = p^{E_+} u_{(g,0)} p^{E_+} \cdot p^{E_+} u_{(e,n)} p^{E_+} = p^{E_+} u_{(g,n)} p^{E_+}$$

for any $g \in G$ and $n \in \mathbb{Z}$. Clearly, $\rho \otimes \lambda = (\pi_V)^{-1}$, so

$$\mathcal{T}^{E_+}(E) \cong \mathcal{T}^{G_+}(G) \otimes C(T).$$

Theorem 3.1.^[6,Theorem 2.2] Let G be a countable infinite discrete amenable group, (G, G_+) an ordered group. If $K_0(\mathcal{T}^{G_+}(G)) \oplus K_1(\mathcal{T}^{G_+}(G)) \cong \mathbb{Z}$, then

$$K_0(\mathcal{T}^{G_+}(G)) \cong \mathbb{Z}$$
 and $K_1(\mathcal{T}^{G_+}(G)) = 0.$

Proof. Let $E = G \times \mathbb{Z}$, $E_+ = G_+ \times \mathbb{Z}$, and (E, E_{lex}) be the lexico-ordered group. By

Lemma 3.1 and Lemma 3.2, we have the following short exact sequence of C^* -algebras

$$0 \longrightarrow K(\ell^2(E_+)) \xrightarrow{i} \mathcal{T}^{E_{\text{lex}}}(E) \xrightarrow{\sigma} \mathcal{T}^{G_+}(G) \otimes C(T) \longrightarrow 0$$

where i is the inclusion map and

$$\sigma(p^{E_{\text{lex}}}u_{(g,n)}p^{E_{\text{lex}}}) = T_g \otimes \chi_n \quad \text{for any} \ (g,n) \in E$$

So we have the following periodic six-term exact sequence of K-groups

Since

$$K_0(\mathcal{T}^{G_+}(G) \otimes C(T)) \cong K_1(\mathcal{T}^{G_+}(G) \otimes C(T)) \cong K_0(\mathcal{T}^{G_+}(G)) \oplus K_1(\mathcal{T}^{G_+}(G)) \cong \mathbb{Z},$$

and $\mathcal{T}^{E_{\text{lex}}}(E)$ contains a Fredholm operator of index one (which implies that the index map in the exact sequence is an isomorphism), we know that

$$K_0(\mathcal{T}^{E_{\text{lex}}}(E)) \cong \mathbb{Z}, \qquad K_1(\mathcal{T}^{E_{\text{lex}}}(E)) = 0.$$

Let $V : E_{\text{lex}} \to \mathcal{T}^{G_+}(G)$, $V(g, n) = T_g$ for any $(g, n) \in E_{\text{lex}}$. Then V is an isometric representation of E_{lex} . So there is a C^* -algebra morphism $\rho : \mathcal{T}^{E_{\text{lex}}}(E) \to \mathcal{T}^{G_+}(G)$ such that

$$\rho(p^{E_{\text{lex}}}u_{(g,n)}p^{E_{\text{lex}}}) = T_g \quad \text{for any} \ (g,n) \in E.$$

Similarly, there is a C^* -algebra morphism $\theta : \mathcal{T}^{G_+}(G) \to \mathcal{T}^{E_{\text{lex}}}(E)$ such that

$$\theta(T_g) = p^{E_{\text{lex}}} u_{(g,0)} p^{E_{\text{lex}}}$$

Since $\mathcal{T}^{G_+}(G)$ is generated by $\{T_g \mid g \in G_+\}$, we know that $\rho \circ \theta = id_{\mathcal{T}^{G_+}(G)}$, so

$$\rho_* \circ \theta_* = id_{K_1(\mathcal{T}^{G_+}(G))}$$

It follows that the map

$$\rho_*: K_1(\mathcal{T}^{E_{\text{lex}}}(E)) \to K_1(\mathcal{T}^{G_+}(G))$$

is onto, therefore $K_1(\mathcal{T}^{G_+}(G)) = 0$.

References

- [1] Murphy, G., Ordered groups and Toeplitz algebras [J], J. Operator Theory, 18(1987), 303–326.
- [2] Nica, A., C*-algebras generated by isometries and Wiener-Hopf operators [J], J. Operator Theory, 27 (1992), 17–52.
- [3] Wegge-Olsen, N., K-theory and C*-algebra [M], Oxford University Press Inc., New York, 1993.
- [4] Xu, Q., The natural morphisms between Toeplitz algebras on discrete groups [J], J. London Math. Soc. (to appear).
- [5] Xu, Q. & Chen, X., A note on Toeplitz operators on discrete groups [J], Proc. Amer. Math. Soc., 126 (1998), 3625–3631.
- [6] Xu, Q. & Chen, X., Toeplitz C*-algebras on ordered groups and their ideals of finite elements [J], Proc. Amer. Math. Soc., 127(1999), 553-561.