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Abstract

The author discusses the braiding structures of the generalized smash product bialgebra
and the cobraiding structures of the generalized smash coproduct bialgebra. It is pointed out

that doublecrossed product determined by a cocycle is the generalized smash product and that
doublecocrossed coproduct determined by a weak R-matrix is the generalized smash coproduct.
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§1. Preliminaries

Throughout the paper all spaces are over a fixed ground field K. If C is a coalgebra,

then we always denote the comultiplication and counit by △ and ε respectively. Set △(c) =∑
c1 ⊗ c2 for c ∈ C. If M is a right (left) C -comodule, then we use ρ for the structure map

of M , and set ρ(m) =
∑

m(0) ⊗m(1) (ρ(m) =
∑

m(−1) ⊗ m(0)) for m ∈ M . Let H be a

bialgebra. Denote left H-module category by HM and left H-comodule category by HM .

If M and N are in HM , then M ⊗N is also a left H-module by pull-back along △, i.e.,

h · (m⊗ n) =
∑

h1m⊗ h2n for h ∈ H, m ∈ M, n ∈ N.

Dually if M and N are in HM , then M ⊗ N is also a left H -comodule by pull-out along

the multiplication of H, i.e.,

ρ(m⊗ n) =
∑

m(−1)n(−1) ⊗m(0) ⊗ n(0) for m ∈ M, n ∈ N.

For any left H-module algebra A, we have Smash product A#H, which is an associative

algebra with the identity 1#1. Also jA : A 7−→ A#H ( jA(a) = a#1 ) and iH : H 7−→ A#H

(iH(h) = 1#h) are algebra embeddings. Similarly, for any left H-comodule coalgebra C, we

also have Smash coproduct C ⋄H with coproduct

△(c ⋄ h) =
∑

(c1 ⋄ c2(−1)
h1)⊗ (c2(0) ⋄ h2).
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Also πC : C ⋄H 7−→ C (πC(c ⋄ h) = cε(h)) and πH : C ⋄H 7−→ H (πC(c ⋄ h) = ε(c)h) are

coalgebra surjective maps.

Let A and H be bialgebras. A bilinear form τ : A⊗H 7−→ K is called a skew pairing[5]

if the following equalities hold:

(Sp1) τ(ab, h) =
∑

τ(a, h1)τ(b, h2),

(Sp2) τ(a, hg) =
∑

τ(a1, g)τ(a2, h),

(Sp3) τ(1, h) = ε(h),

(Sp4) τ(a, 1) = ε(a),

where a, b ∈ A, h, g ∈ H. If τ is invertible (in (A⊗H)∗), then (Sp3) and (Sp4) follow from

(Sp1) and (Sp2). Also if τ is invertible, then τ−1 also satisfies the following equalities:

(Sp1′) τ−1(ab, h) =
∑

τ−1(a, h2)τ
−1(b, h1),

(Sp2′) τ−1(a, hg) =
∑

τ−1(a1, h)τ
−1(a2, g),

(Sp3′) τ−1(1, h) = ε(h),

(Sp4′) τ−1(a, 1) = ε(a),

where a, b ∈ A, h, g ∈ H. If A has an antipode s (H has a pode s), then τ is invertible

with τ−1(a, h) = τ(s(a), h) (τ−1(a, h) = τ(a, s(h))). Clearly (H, τ) is a coquasitriangular

bialgebra if τ is a skew pairing of (H,H) such that gh =
∑

τ(h1, g1)h2g2τ
−1(h3, g3). Let

τ be an invertible skew pairing of (A,H). Then we have a bialgebra A ◃▹τ H with the

comultiplication of the tensor coproduct and with the multiplication (a ◃▹ h)(b ◃▹ g) =∑
τ(b1, h1)ab2 ◃▹ h2gτ

−1(b3, h3), where a, b ∈ A, h, g ∈ H. All coquasitriangular structures

of A ◃▹τ H are given in [3].

Let A and H be bialgebras. In [2], an invertible element R =
∑

R′ ⊗ R′′ in A ⊗ H is

called a weak R-matrix of (A,H) if the following equalities hold:

(WR1) (△⊗ 1)R =
∑

R′ ⊗ r′ ⊗R′′r′′,

(WR2) (1⊗△)R =
∑

R′r′ ⊗ r′′ ⊗R′′,

where r =
∑

r′ ⊗ r′′ = R. If R is a weak R-matrix of (A,H), clearly (ε ⊗ 1)R = 1H and

(1 ⊗ ε)R = 1A. R−1 has also similar properties. In fact, the notation of weak R-matrix is

dual notation of skew pairing. Clearly (H,R) is a quasitriangular bialgebra if R is a weak

R-matrix of (H,H) such that △cop(h) = R△ (h)R−1 for any h ∈ H. For any weak R-matrix

of (A,H), a doublecrossed coproduct A ◃▹R H is defined as follows: A ◃▹R H = A ⊗H as

algebras, and the coproduct is given by

△(a ◃▹ h) =
∑

a1 ◃▹ R′′h1(R
−1)′′ ⊗R′a2(R

−1)′ ◃▹ h2,

where a ∈ A, h ∈ H. Then A ◃▹R H is a bialgebra. In [2], it has been proved that a

doublecrossed coproduct of Aϕ ◃▹ψ H is quasitriangular if and only if both A and H are

quasitriangular and there exists a weak R-matrix R of (A,H) such that Aϕ ◃▹ψ H = A ◃▹R H

as bialgebras. Furthermore, all quasitriangular structures of A ◃▹R H are given.

§2. Generalized Smash Product and Coproduct

In this section, necessary and sufficient conditions that a generalized smash product ad-

mits a bialgebra structure with tensor coproduct are given. The coquasitriangular structure

of the generalized smash product is discussed. Some important examples of the generalized

smash product is investigated. Similarly the generalized smash coproduct is considered.

Theorem 2.1. Let H be a bialgebra.
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(1) Let A be a left H-module algebra and X a left H-comodule algebra. Define the general-

ized smash product A#X as follows: A#X = A⊗X as vector spaces, and the multiplication

is defined by

(a#x)(b#y) =
∑

a(x(−1) · b)#x(0)y,

where a, b ∈ A, x, y ∈ X. Then A#X is an associative algebra with the identity 1#1.

(2) Furthermore, if both A and X are bialgebas, then A#X is a bialgebra with the comul-

tiplication of tensor coproduct if and only if the map f : a#x 7−→
∑

x(−1) · a # x(0)

from A#X to A#X is a coalgebra map. Also iA : A 7−→ A#X (a 7−→ a#x) and

iX : X 7−→ A#X (x 7−→ 1#x) are bialgebra injections. If A and X are Hopf algebras,

then A#X is also a Hopf algebra with the antipode s(a#x) =
∑

(1#s(x))(s(a)#1).

Proof. (1) For a, b, c ∈ A, x, y, z ∈ X,

((a#x)(b#y))(c#z) =
(∑

a(x(−1) · b)#x(0)y
)
(c#z)

=
∑

a(x(−2) · b)(x(−1)y(−1) · c)#x(0)y(0)z

=
∑

a(x(−1) · (b(y(−1) · c)))#x(0)y(0)z

= (a#x)
(∑

b(y(−1) · c)#y(0)z
)

= (a#x)((b#y)(c#z)),

so A#X is associative. Clearly 1#1 is the identity.

(2)

△((a#x)(b#y)) = △
(∑

a(x(−1) · b)#x(0)y
)

=
∑

(a1(x(−1) · b)1#x(0)1
y1)⊗

∑
a2(x(−1) · b)2#x(0)2

y2,

△(a#x)△ (b#y) =
(∑

a1#x1 ⊗ a2#x2

)(∑
b1#y1 ⊗ b2#y2

)
=

∑
(a1#x1)(b1#y1)⊗ (a2#x2)(b2#y2)

=
∑

a1(x1(−1)
· b1)#x1(0)y1 ⊗ a2(x2(−1)

· b2)#x2(0)y2.

So △((a#x)(b#y)) = △(a#x)△ (b#y) if and only if∑
(x(−1) · b)1#x(0)1

⊗ (x(−1) · b)2#x(0)2
=

∑
(x1(−1)

· b1)#x1(0) ⊗ (x2(−1)
· b2)#x2(0) .

Similarly ε((a#x)(b#y)) = ε(a#x)ε(b#y) if and only if ε(x)ε(b) = ε(x(−1) · b)ε(x(0)). The

other statements can easily be got.

Remark 2.1. In [4] and [7], the concept of the generalized smash product has appeared.

For simplicity, we give the following definition.

Definition 2.1. Let H be a bialgebra. A#X is called the generalized smash product

associated to H if X is a left H comodule algebra and A is a left module algebra. In

addition, A#X is called the generalized smash product bialgebra associated to H if A#X is

a bialgebra with the comultiplication of tensor coproduct, i.e., (2) in Theorem 2.1 holds.

Proposition 2.1. Let A and H be bialgebras, τ an invertible skew pairing of A ⊗ H.

Let A ◃▹τ H be a doublecrossed product which is a bialgebra with tensor coproduct and the

product defined by (a ◃▹ h)(b ◃▹ g) =
∑

τ(b1, h1)ab2 ◃▹ h2gτ
−1(b3, h3). If H is a Hopf algebra

with invertible antipode s, then A ◃▹τ H is the generalized smash product.
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Proof. For any h, g ∈ H and a ∈ A, define

ρ(h) =
∑

(s−1(h3)⊗ h1)⊗ h2 ∈ (Hop ⊗H)⊗H,

(h⊗ g) · a =
∑

τ(a1, g)a2τ(a3, h).

One can directly verify that H is a left Hop ⊗H comodule algebra and A is a left Hop ⊗H

module algebra. So one can from the generalized smash product A#H according to Theorem

2.1. Furthermore,

(a#h)(b#h) =
∑

a(h−1 · b)#h(0)g

=
∑

a((s−1(h3)⊗ h1) · b)#h2g

=
∑

aτ(b1, h1)b2τ(b3, s
−1(h3))#h2g

=
∑

τ(b1, h1)ab2#h2gτ
−1(b3, h3).

= (a ◃▹ h)(b ◃▹ g).

Therefore, A ◃▹τ H is the same as A#H as bialgebras.

Proposition 2.2. Let H be a finite dimension Hopf algebra. Then the Drinfeld double

D(H) is the generalized smash product.

Proof. For any h, g, k ∈ H and h∗ ∈ H∗, define

ρ(h) =
∑

(s−1(h3)⊗ h1)⊗ h2 ∈ (Hop ⊗H)⊗H,

⟨(h⊗ g) · h∗, k⟩ = ⟨h∗, hkg⟩.

One can directly verify that H is a left Hop⊗H comodule algebra and (H∗)cop is a left Hop⊗
H module algebra. So one can from the generalized smash product H∗cop#H according to

Theorem 2.1. Furthermore,

(h∗#h)(g∗#g) =
∑

h∗((s−1(h3)⊗ h1) · g∗)#h2g

=
∑

h∗⟨g∗, s−1(h3)⊗ h1⟩#h2g

= (h∗ ◃▹ h)(g∗ ◃▹ g).

Hence D(H) is actually the generalized smash product.

Remark 2.2. Let A be a bialgebra and H a Hopf algebra. Let A be an H bimodule

algebra, i.e., A is an H bimodule, and A is a left H module algebra and a right H module

algebra. In [8], the authors constructed an algebra A⋆H which is equal to A⊗H as vector

space and which has the mutiplication

(a⊗ h)(b⊗ g) =
∑

a(h1 ⇀ b ↼ s(h3))⊗ h2l,

where a, b ∈ A and h, g ∈ H, s is the antipode of H. If one defines

ρ(h) =
∑

(s(h3)⊗ h1)⊗ h2 ∈ (Hop ⊗H)⊗H,

(h⊗ g) ⇀ a = g ⇀ a ↼ h,

where a ∈ A and h ∈ H, then H is a left Hop⊗H comodule algebra and A is a left Hop⊗H

module algebra. Clearly the generalized smash product A#H is the same as A ⋆ H.

Lemma 2.1. Let H be a Hopf algebra, A#X the generalized smash product bialgebra

associated to H. Let B be a bialgebra. If α : A 7−→ B and β : X 7−→ B are bialgebra maps,
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then there exists a unique bialgebra map F : A#X 7−→ B such that FiA = α and FiX = β

if and only if
∑

α(x(−1) · a)β(x(0)) = β(x)α(a).

Proof. Define F : A#X 7−→ B by F (a#x) = α(a)β(b), where a ∈ A, x ∈ X. It is very

easy to check that F is a bialgebra map if and only if∑
α(x(−1) · a)β(x(0)) = β(x)α(a).

Theorem 2.2. Let A#X be the generalized smash product bialgebra associated to H. If

(A#X,σ) is a coquasitriangular bialgebra, then A and X are coquasitriangular bialgebras,

and there exists an invertible skew pairing τ of (A,X) such that A#X is the same as A ◃▹τ X

as bialgebras.

Proof. Since A and X are subbialgebras of A#X, A and X are coquasitriangular bial-

gebras. For a, b ∈ A and x, y ∈ X, by definition we have∑
σ(a1#x1, b1#y1)(a2#x2)(b2#y2) = (b1#y1)(a1#x1)σ(a2#x2, b2#y2).

Letting b = 1 and x = 1, we have∑
σ(a1#1, 1#y1)(a2#y2) = (1#y1)(a1#1)σ(a2#1, 1#y2).

So

(1#y)(a#1) =
∑

σ(a1#1, 1#y1)(a2#y2)σ
−1(a3#1, 1#y3).

Define τ(a, x) = σ(a#1, 1#x) for a ∈ A and x ∈ X. Clearly τ is an invertible skew pairing

of (A,X) and

(a#x)(b#y) =
∑

τ(b1, x1)ab2#x2yτ
−1(b3, x3).

Remark 2.3. In [3], the author has proved the following fact: If (A, ζ) and (X, η)

are coquasitriangular bialgebras, then A ◃▹τ X is also a coquasitriangular bialgebra with

braiding

σ(a ◃▹ x, b ◃▹ y) =
∑

τ(a1, y1)ζ(a2, b1)η(x1, y2)τ
−1(b2, x2).

Also all braidings are given.

Now we turn to the discussion on the generalized smash coproduct. Let H be a bialgebra,

C a left H comodule coalgebra, X a left module coalgebra. If we set C ⋄ X = C ⊗ X as

vector spaces and define

△(c ⋄ x) =
∑

(c1 ⋄ c2(−1)
· x1)⊗ (c2(0) ⋄ x2), ε(c ⋄ x) = ε(c)ε(x),

where c ∈ C, x ∈ X, then (C ⋄X,△, ε) is a coalgebra. In fact,

(1⊗△)△ (c ⋄ x) = (1⊗△)
∑

(c1 ⋄ c2(−1)
· x1)⊗ (c2(0) ⋄ x2)

=
∑

(c1 ⋄ c2(−1)
c3(−2)

· x1)⊗ (c2(0) ⋄ c3(−1)
· x2)⊗ (c3(0) ⋄ x3)

=
∑

(c1 ⋄ c2(−1)
· (c3(−2)

· x1)1 ⊗ (c2(0) ⋄ (c3(−2)
· x1)2 ⊗ (c3(0) ⋄ x3)

=
∑

△(c1 ⋄ c2(−1)
· x1)⊗ (c2(0) ⋄ x2)

= (△⊗ 1)△ (c ⋄ x).

Therefore (C ⋄ X,△, ε) is a coalgebra. We call C ⋄ X the generalized smash coproduct

associated to H. The following theorem gives necessary and sufficient conditions for C ⋄X
to be a bialgebra.
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Theorem 2.3. Let H be a bialgebra, C ⋄X the generalized smash coproduct associated

to H. Assume that both C and X are bialgebras. Then the following are equivalent:

(1) C ⋄X is a bialgebra whose multiplication is tensor product.

(2) The following equalities hold:

(i)
∑

(ab)(−1) · xy ⊗ (ab)(0) =
∑

(a(−1) · x)(b(−1) · y)⊗ a(0)b(0),

(ii)
∑

1(−1) · 1X ⊗ 1(0) = 1X ⊗ 1C ,

where ρ (1C) =
∑

1(−1) ⊗ 1(0), a, b ∈ C, x, y ∈ X.

(3) The following equalities hold:

(i)
∑

a(−1) · xy ⊗ a(0) =
∑

(a(−1) · x)(1(−1) · y)⊗ a(0)1(0),

(ii)
∑

(ab)(−1) · x⊗ (ab)(0) =
∑

(a(−1) · x)(b(−1) · 1)⊗ a(0)b(0),

(iii)
∑

1(−1) · 1X ⊗ 1(0) = 1X ⊗ 1C ,

where ρ (1C) =
∑

1(−1) ⊗ 1(0), a, b ∈ C, x, y ∈ X.

(4) The following equalities hold:

(i)
∑

a(−1) · xy ⊗ a(0) =
∑

(1(−1) · x)(a(−1) · y)⊗ 1(0)a(0),

(ii)
∑

(ab)(−1) · x⊗ (ab)(0) =
∑

(a(−1) · 1)(b(−1) · x)⊗ a(0)b(0),

(iii)
∑

1(−1) · 1X ⊗ 1(0) = 1X ⊗ 1C ,

where ρ (1C) =
∑

1(−1) ⊗ 1(0), a, b ∈ C, x, y ∈ X.

Proof. (1) =⇒ (2) Since 1C ⋄ 1X is the identity of C ⋄X,

△(1C ⋄ 1X) = (1C ⋄ 1X)⊗ (1C ⋄ 1X) =
∑

(1C ⋄ 1(−1) · 1X)⊗ (1(0) ⋄ 1X).

Hence
∑

1(−1) · 1X ⊗ 1(0) = 1X ⊗ 1C , where ρ (1C) =
∑

1(−1) ⊗ 1(0). Since

△((a#x)(b#y)) = △(ab#xy)

=
∑

(a1b1 ⋄ (a2b2)(−1) · x1y1)⊗ ((a2b2)(0) ⋄ x2y2)

= △(a#x)△ (b#y)

=
∑

(a1 ⋄ a2(−1)
· x1)⊗ (a2(0) ⋄ x2)(b1 ⋄ b2(−1)

· y1)⊗ (b2(0) ⋄ y2)

=
∑

(a1b1 ⋄ (a2(−1)
· x1)(b2(−1) · y1)⊗ ((a2(0)b2(0) ⋄ x2y2),

we have ∑
(a1b1 ⋄ (a2b2)(−1) · x1y1)⊗ ((a2b2)(0) ⋄ x2y2)

=
∑

(a1b1 ⋄ (a2(−1)
· x1)(b2(−1) · y1)⊗ ((a2(0)b2(0) ⋄ x2y2).

Applying ε⊗ 1⊗ 1⊗ ε, we have∑
(ab)(−1) · xy ⊗ (ab)(0) =

∑
(a(−1) · x)(b(−1) · y)⊗ a(0)b(0).

So (2) holds.

(2) =⇒ (1) We can reverse the procedure above.

(2) =⇒ (3) Clearly.

(3) =⇒ (2)∑
(ab)(−1) · xy ⊗ (ab)(0) =

∑
(a(−1) · xy)(b(−1) · 1X)⊗ a(0)b(0)

=
∑

(a(−1) · x)(1(−1) · y)(b(−1) · 1X)⊗ a(0)1(0)b(0)

=
∑

(a(−1) · x)(b(−1) · y)⊗ a(0)b(0).
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(2) ⇐⇒ (4) Similarly.

We call C ⋄X the generalized smash coproduct bialgebra if C ⋄X is a bialgebra whose

multiplication is tensor product, i.e., one of the equivalent conditions holds. Let C ⋄X be

the generalized smash coproduct bialgebra. Define

ΠC : C ⋄X 7−→ C by ΠC(c ⋄ x) = cε(x)

and

ΠX : C ⋄X 7−→ X by ΠC(c ⋄ x) = ε(c)x.

Clearly ΠC and ΠX are bialgebra surjections.

Proposition 2.3. Let A and H be bialgebras, R =
∑

R
′⊗R′′ a weak R-Matrix of (A,H).

Then doublecrossed coproduct A ◃▹R H is the generalized smash coproduct.

Proof. Define

ρ(a) =
∑

(R−1)′′ ⊗R′′ ⊗R′a(R−1)′,

where a ∈ A, R is the weak R-matrix of (A,H), and R−1 is the inverse of R. We exclaim

that A is a left Hop ⊗H comodule coalgebra. For a ∈ A,∑
a(−1) ⊗△(a(0)) =

∑
(R−1)′′ ⊗R′′ ⊗△(R′a(R−1)′)

=
∑

(R−1)′′ ⊗R′′ ⊗△(R′)△ (a)△ ((R−1)′)

=
∑

(r−1)′′(R−1)′′ ⊗R′′r′′ ⊗ (R′ ⊗ r′)(a1 ⊗ a2)((R
−1)′ ⊗ (r−1)′)

=
∑

(r−1)′′(R−1)′′ ⊗R′′r′′ ⊗ (R′a1(R
−1)′ ⊗ r′a2(r

−1)′)

=
∑

(R−1)′′ · (r−1)′′ ⊗R′′r′′ ⊗ (R′a1(R
−1)′ ⊗ r′a2(r

−1)′)

=
∑

a1(−1)
a2(−1)

⊗ a1(0) ⊗ a1(0) ,

where

R =
∑

R
′
⊗R′′ = r =

∑
r
′
⊗ r′′, r−1 =

∑
(r−1)

′
⊗ (r−1)′′.

By the definition of weak R-matrix, we have∑
a(−1)ε(a(0)) =

∑
(R−1)′′ ⊗R′′ ⊗ ε(R′a(R−1)′) = ε(a)1⊗ 1.

So A is a left Hop ⊗H comodule coalgebra. For any h ⊗ g ∈ Hop ⊗H, k ∈ H, define the

action as follows

(h⊗ g) · k = gkh.

Thus H is a left Hop ⊗ H module coalgebra. Whence we can form the generalized smash

coproduct A ⋄H. Moreover

△(a ⋄ h) =
∑

(a1 ⋄ a2(−1)
· h1)⊗ (a2(0) ⋄ h2)

=
∑

(a1 ⋄ ((R−1)′′ ⊗R′′) · h1)⊗ (R′a2(R
−1)′ ⋄ h2)

=
∑

(a1 ⋄ (R−1)′′h1R
′′)⊗ (R′a2(R

−1)′ ⋄ h2)

= △(a ◃▹ h).

Therefore, A ◃▹R H = A ⋄H as bialgebras.
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Let H be a bialgebra, C ⋄X a generalized smash coproduct bialgebra associated to H. If

C and X are Hopf algebras, then it is easy to check that C ⋄X is also a Hopf algebra with

antipode

s(c ⋄ x) =
∑

(1 ⋄ s(c(−1) · x)(s(c(0)) ⋄ 1),

where c ∈ cC, x ∈ X.

Theorem 2.4. Let H be a bialgebra, C ⋄X a generalized smash coproduct bialgebra asso-

ciated to H. If (C ⋄X,R) is a quasitriangular bialgebra, then C and X are quasitriangular

bialgebras, and there exists a weak R-matrix of (C,X) such that C ⋄X = C ◃▹R X.

Proof. Since ΠC : C ⋄X 7−→ C (ΠC(c ⋄ x) = cε(x)) and ΠX : C ⋄X 7−→ X (ΠC(c ⋄ x) =
ε(c)x) are surjections, (C, (ΠC⊗ΠC)R) and (X, (ΠX⊗ΠX)R) are quasitriangular bialgebras.

By the definition,

△cop(c ⋄ x) = R△ (c ⋄ x)R−1,

this is ∑
(c2(0) ⋄ x2)⊗ (c1 ⋄ c2(−1)

· x1) = R
(∑

(c1 ⋄ c2(−1)
· x1)⊗ (c2(0) ⋄ x2)

)
R−1.

Let U = (1⊗ ε⊗ ε⊗ 1)R. Clearly U is a weak R-matrix of (C,X). Applying 1⊗ ε⊗ ε⊗ 1

on the two sides of the equality above, we have∑
c(0) ⊗ c(−1) · x = U(c⊗ x)U−1.

So
∑

c(−1)·x⊗c(0) = T (U)(x⊗c)T (U−1), where T is the usual twist map, i.e., T (c⊗x) = x⊗c.

Thus

△(c ⋄ x) =
∑

(c1 ⋄ c2(−1)
· x1)⊗ (c2(0) ⋄ x2)

=
∑

c1 ⋄ T (U)(x1 ⊗ c2)T (U
−1) ⋄ x2

= △(c ◃▹ x).
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