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Abstract

The existence, partial regularity and uniqueness of weak solution to the initial boundary

value problem for the unsaturated Landau-Lifschitz systems are given.
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§1. Introduction

Let Ω ⊂ Rn (n = 1, 2) be a bounded smooth domain. Consider the following nonho-

mogeneous initial-boundary value problem for the unsaturated Landau-Lifshitz systems of

ferromagnetic spin chain with Gilbert damping constant α1 > 0,

ut = −α1u× (u×△u) + α2u×△u, in Ω×R+, (1.1)

u|∂Ω×R+ = ψ(x), u|Ω×{t=0} = u0(x), (1.2)

where α2 is the exchange constant, u = (u1, u2, u3), u0(x) is smooth and satisfies the unsat-

urated condition, i.e., |u0(x)| ̸≡ constant, and
∫
Ω
|∇u0|2 < +∞, u0(x)|∂Ω = ψ(x). Denote

φ(x) = |u0(x)|. We assume 0 < m = min
Ω
φ < M = max

Ω
φ. Throughout this paper we

assume △φ ≤ 0.

System (1.1) describes the motion of unsaturated ferromagnetic spin chain without ap-

plied magnetic field. The magnitude of the spin is finite, i.e., |u| = φ(x). (1.1) is implied

by the conservation of energy and magnitude of u, and is a version which gives rise to a

continuous wave theory.

For the saturated problem, i.e., |u0| ≡ constant (cf. |u0| = 1), a lot of works contributed to

the study of solutions to the Landau-Lifshitz systems of 1-dimensional motion spin chain have

been made by mathematicians (see [10, 11]). For the initial problem and the homogeneous

boundary problem, we refer to [3, 9, 10–13].
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In 1993, Guo and Hong[9] established the global existence and partial regularity theorems

concerning the weak solutions of (1.1) (φ ≡ 1) on a 2-dimensional Riemannian manifold

(without boundary) and revealed the links between the solutions and the harmonic maps.

They found that the solutions have the same regularity as that of the harmonic map heat

flow of [4]. Recently, Chen, Ding and Guo[3] proved that any weak solution with finite energy

is partial regular and is unique.

The first work concerning the nonhomogeneous boundary value problem for the saturated

Landau-Lifshitz systems was done recently by Guo and Ding[8]. In that paper, the authors

dealt with this problem by some detailed analyses on the asymptotic behavior of a penalty

problem to conclude that there exists unique weak solution, which is “almost smooth” (see

[3]) when dimΩ = 2 and is globally smooth when the initial data is “energy small” or

dimΩ = 1. The idea comes from the corresponding one in studying the asymptotics of the

Ginzburg-Landau functionals due to Bethuel-Brezis-Hélein[1,2]. The uniqueness was also

obtained .

In physics there are a lot of unsaturated problems. On the other hand, the unsaturated

initial condition is more natural than the saturated one. For these reasons we are motivated

to discuss Problem (1.1)–(1.2)

Our main results are Theorem 4.1, Theorem 4.2 and Theorem 5.1.

§2. Preliminaries

In this section, we give two equations equivalent to Equation (1.1) and construct a penalty

problem related to these equations. And then we discuss the solution of the penalty problem.

Similarly to [9], we have the following two lemmas

Lemma 2.1. Let u be a solution of (1.1)–(1.2) in the classical sense. We have

|u(x, t)| = φ(x), ∀ (x, t) ∈ Ω×R+. (2.1)

Lemma 2.2 In the classical sense, u is a solution of (1.1)–(1.2) if and only if u is a

solution of one of the following equations subject to Condition (1.2):

ut = α1(φ
2△u+ u|∇u|2)− α1

2
u△φ2 + α2u×△u (2.2)

or equivalently

α1φ
2

α1
2φ2 + α2

2
ut −

α2

α1
2φ2 + α2

2
u× ut = φ2△u+ u|∇u|2 − 1

2
u△φ2. (2.3)

By Lemma 2.2, it is natural to consider the following penalty problem

α1φ
2

α1
2φ2 + α2

2
ut −

α2

α1
2φ2 + α2

2
u× ut = φ2△u+

1

ε2
u(φ2 − |u|2) (2.4)

accompanied by Condition (1.2).

In the sequel, we denote by ν and τ the unit outer normal vector and the unit tangential

vector to ∂Ω such that (ν, τ) is directed. We also use the following notations: Ω(t) = Ω×{t},
Ωt = Ω× (0, t), Br(x) = B(x, r).

Similarly to [8], we have the following three lemmas
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Lemma 2.3. For any given ε > 0, Problem (2.4)–(1.2) admits a global smooth solution

uε satisfying

|uε| ≤ φ, on Ω× [0, T ], (2.5)

and there are constants C1 > 0 independent of ε and C2 > 0 such that∫ T

0

∫
∂Ω

∣∣∣∂uε
∂ν

∣∣∣2 ≤ C1, (2.6)

∥uε∥W 2,1
2 (ΩT ) ≤ C2. (2.7)

Lemma 2.4. For any given T > 0, there exists a global weak solution u of (2.3)–(1.2) in

V , where

V =
{
u
∣∣∣ |u(x, t)| = φ(x) a.e. (x, t) ∈ Ω× [0, T ], u is measurable and∫ T

0

∫
Ω

|ut|2dxdt+ esssup
0≤t≤T

∫
Ω

|∇u(·, t)|2dx <∞
}
,

and the following identity holds for any weak solution u :∫ T

0

∫
Ω

α1

α2
1φ

2 + α2
2

|ut|2 +
1

2

∫
Ω(T )

|∇u|2 =
1

2

∫
Ω

|∇u0|2. (2.8)

Lemma 2.5. Let uε be the solution of (2.4)–(1.2). Then we have a subsequence, denoted

by uεn , and a weak solution u of (2.3)–(1.2), such that

uεnt → ut strongly in L2(0, T ;L2(Ω)), (2.9)

∇uεn → ∇u strongly in L2(Ω), ∀t > 0. (2.10)

§3. Estimates Uniformly in ε

In this section we shall give some uniform estimates for the solutions of (2.2)–(1.2).

First, it follows from [8] that the following lemma holds.

Lemma 3.1. For any given T > 0, there is a constant C > 0 independent of ε and T

such that for the solution, uε, of (2.4)–(1.2) obtained in Lemma 2.4, we have

sup
t∈[0,T ]

∥∇uε(·, t)∥L∞(Ω) ≤ Cε−1. (3.1)

Also from the argument in [8], one has

Lemma 3.2. There are constants λ0 > 0, µ0 > 0 independent of ε and t such that if

1

ε2

∫
Ω∩B2l

φ2(1− |uε/φ|2)2 ≤ µ0 (3.2)

for l/ε ≥ λ0, 0 < l ≤ 1, then

|uε| ≥
m

2
, ∀x ∈ Ω ∩Bl, (3.3)

where Bl is any sphere in R2 with radius l.

Then we can prove
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Lemma 3.3.[2,Lemma IV.2] There exists a positive integer N independent of ε and t such

that CardJ ≤ N and

|uε| ≥
m

2
on Ω\

∪
j∈J

B(xj , λ0ε). (3.4)

Moreover, we can choose (see [2, Section IV.2]) J ′ : J ′ ⊂ J and λ ≥ λ0 such that
|xi − xj | ≥ 8λε, i ̸= j, i, j ∈ J ′,∪
j∈J

B(xj , λ0ε) ⊂
∪

j∈J ′
B(xj , λε),

|uε| ≥ m
2 on Ω\

∪
j∈J′

B(xj , λε).
(3.5)

In the following of this section, we want to derive some estimates uniformly in ε for the

solution of (2.4)–(1.2). We call B(xj , λε), j ∈ J ′ bad disks.

Lemma 3.4. Let x0 ∈ Ω, Pr = Br(x0)× [t0, t0 + r2]. If |uε| ≥ α0 > 0 on Pr, then there

exists a constant C > 0 independent of ε such that
∫
Pr

|D2uε|2 ≤ C.

Proof. The proof can be done by modifying the proof of Lemma 2.4 in [8].

Lemma 3.5. Let |uε| ≥ α0 > 0 on Qr,s = Br(x0)× [t0 − s, t0 + s]. Then for any q > 2,

there is a constant Cq > 0 independent of ε such that

∥uε∥W 2,1
q (Qr/2,s/2)

≤ Cq. (3.6)

Proof. First of all, we have from Lemma 3.4 that ∥∇uε∥Lq(Qr,s) ≤ Cq. Moreover we

have for Ψ = 1
ε2

(1− |uε/φ|2),

α1ε
2

α2
1φ

2 + α2
2

Ψt − ε2φ2△Ψ+ 2α0
2Ψ ≤ 2|∇uε|2, in Qr,s. (3.7)

Take cut-off function ξ(x) ∈ C∞
0 (Br(x0)), ξ ≡ 1 in Br/2(x0), η(t) ∈ C∞

0 ([t0 − s, t0 + s]),

η ≡ 1 in [t0 − s/2, t0 + s/2], |∇ξ| ≤ C/r, |ηt| ≤ C/s, 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1. Multiply (3.7)

by ξ2(x)η2(t)Ψq−1 and integrate it over Qr,s to give

1

2
ε2(q − 1)

∫
Qr,s

ξ2η2φ2Ψq−2|∇Ψ|2 + 2α0
2

∫
Qr,s

ξ2η2Ψq

≤ σ

∫
Qr,s

ξ2η2Ψq + Cσ

∫
Qr,s

ξ2η2|∇uε|2q

+

∫
Qr,s

2α1ε
2

q(α2
1φ

2 + α2
2)
ξ2η|ηt|Ψq +

2ε2

q − 1

∫
Qr,s

η2|∇(ξφ)|2Ψq.

Set σ = α0
2 in above inequality. We have

α2
0

∫
Qr,s

ξ2η2Ψq ≤ C

∫
Qr,s

ξ2η2|∇uε|2q +
2ε2

q − 1

∫
Qr,s

η2|∇(ξφ)|2Ψq

+ 2

∫
Qr,s

α1ε
2

q(α2
1φ

2 + α2
2)
ξ2η|ηt|Ψq.

Hence

α0
2

∫
Qr,s

ξ2η2Ψq ≤ Cq + Cε2
∫
Qr,s\Qr/2,s/2

( 1

r2
Ψq +

1

s
Ψq

)
.

Fixing r, s and taking ε small enough such that Cε2

r2 ≤ 1
4α0

2, Cε2

s ≤ 1
4α0

2, we obtain

α0
2
∫
Qr,s

ξ2η2Ψq ≤ Cq +
α0

2

2

∫
Qr,s\Qr/2,s/2

Ψq.
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It follows from hole-filling method that∫
Qr/2,s/2

Ψq ≤ Cq, ∀q > 2, (3.8)

and it is concluded from (3.8) and Lq theory of parabolic systems that (3.6) holds.

Corollary 3.1. Under the assumption of Lemma 3.5, we have for any γ ∈ (0, 1),

∥∇uε∥L∞(Qr,s) ≤ C, (3.9)

∥uε∥C1+γ,(1+γ)/2(Qr,s) ≤ C, (3.10)

with C independent of ε.

§4. Smooth Solution and “Almost Smooth” Solution

In this section, we shall prove the following claims. For small initial data, there exists a

global smooth solution for Problem (1.1)–(1.2). For general initial data with finite energy,

the weak solution of (2.3)–(1.2) obtained in Section 2 is “almost smooth”, i.e., it is smooth

away from a set consisting of at most finitely many points and thus also solves (1.1)-(1.2).

Theorem 4.1. Let µ0 be determined in Lemma 3.2 and
∫
Ω
|∇u0|2 ≤ µ0/2. Then for any

given T > 0, Problem (1.1)–(1.2) has a smooth solution.

Proof. It suffices to prove this theorem for Problem (2.3)–(1.2).

For any t > 0 it follows from (2.11) that

sup
0≤t≤T

1

ε2

∫
Ω

φ2(1− |uε/φ|2)2 ≤ 2

∫
Ω

|∇u0|2. (4.1)

From this inequality we infer from Lemma 3.2 that |uε| ≥ m
2 , on ΩT = Ω × [0, T ]. From

Section 3, this implies for any γ ∈ (0, 1), ∥uε∥C1+γ,(1+γ)/2(ΩT ) ≤ C with C independent

of ε. Then Problem (2.3)–(1.2) admits a solution in C1+γ,(1+γ)/2(ΩT ). The conclusion of

Theorem 4.1 follows from Schauder’s method.

In the following, let
∫
Ω
|∇u0|2 <∞. We have

Theorem 4.2. Let u be the weak solution of (2.3)–(1.2) obtained in Lemma 2.4. Then,

u is smooth away from a set A where A is a set in Ω× [0,∞) consisting of at most finitely

many points. Moreover, u also solves (1.1)–(1.2).

According to the proof of Theorem 4.1, it suffices to give C1+γ,(1+γ)/2 estimates uniformly

in ε for uε on the compact subset of (Ω× [0,∞)\A).
Lemma 4.1. There exists T̃1 > 0 independent of ε such that

|uε| ≥
m

2
, on Ω× [0, T̃1]. (4.2)

Proof. For any x0 ∈ Ω, let ξ be the standard cut-off function on B2R(x0) such that

0 ≤ ξ ≤ 1, ξ ≡ 1 on BR(x0). Test (2.4) by ξ
2φ−2uεt to give for any β > 0,∫ t

0

∫
Ω

α1

α2
1φ

2 + α2
2

ξ2|uεt|2 + sup
0≤τ≤t

[1
2

∫
Ω(τ)

ξ2|∇uε|2 +
1

4ε2

∫
Ω(τ)

ξ2φ2(1− |uε/φ|2)2
]

≤ 1

2

∫
Ω

ξ2|∇u0|2 + β

∫ t

0

∫
Ω

ξ2|uεt|2 + Cβ

∫ t

0

∫
Ω

|∇ξ|2|∇uε|2.
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Suitably taking β in above inequality, we have

sup
0≤τ≤t

[1
2

∫
Ω(τ)

ξ2|∇uε|2 +
1

4ε2

∫
Ω(τ)

ξ2φ2(1− |uε/φ|2)2
]

≤ 1

2

∫
Ω

ξ2|∇u0|2 + C

∫ t

0

∫
Ω

|∇ξ|2|∇uε|2 ≤ 1

2

∫
Ω

ξ2|∇u0|2 +
4Ct

R2

∫
Ω

|∇u0|2.
(4.3)

Fixing R = R0 > 0, t = T̃1 > 0 in (4.3) such that

1

2

∫
B2R0

|∇u0|2 ≤ µ0/4,
4CT̃1
R0

∫
Ω

|∇u0|2 ≤ µ0/4,

we deduce

sup
0≤t≤T̃1

1

ε2

∫
BR0 (x0)

φ2(1− |uε/φ|2)2 ≤ µ0/2.

It follows from this and Lemma 3.2 that |uε| ≥ m
2 , on BR0(x0)× [0, T̃1]. This implies the

desired result.

Now we define T1 ≥ T̃1 by

T1 = inf { T | T > 0, there is x0 ∈ Ω such that lim inf
ε→0

|uε(x0, T )| = 0 }. (4.4)

From the definition of T1 we know that there is no bad disk on Ω(t) if 0 ≤ t < T1 and for

any 0 ≤ T < T1 there holds ∥uε∥C1+γ,(1+γ)/2(Ω×[0,T ]) ≤ C.

Denote the bad disks on Ω(T1) by {B(xεi , λε) × {T1}}, i = 1, · · · , Ñ1, where Ñ1 ≤ N ,

N is determined by Lemma 3.3. Passing to a subsequence, we assume xεni → a1j , j =

1, · · · , N1, N1 ≤ Ñ1, a
1
l ̸= a1k (l ̸= k).

At this time, on any compact subset of Ω× [0, T1]\
N1∪
j=1

({a1j}×{T1}), we have |uεn | ≥ m/2

if n is large enough. Therefore the conclusion of Corollary 3.1 holds on such compact subset.

Now we work starting from t = T1. We first prove

Lemma 4.2. For the function Ψ defined in (3.7) we have

Ψ ∈ L∞
loc

(
Ω× [0, T1]

\ N1∪
j=1

({a1j} × {T1})
)
. (4.5)

Proof. The interior estimates and the estimates near the boundary are done in the

following one step. Denote

K = B2r(x0)× [0, T1] ⊂ Ω× [0, T1]\
N1∪
j=1

({a1j} × {T1}), x0 ∈ Ω,

K̃ = (B2r(x0) ∩ Ω)× [0, T1]\
N1∪
j=1

({a1j} × {T1}), x0 ∈ ∂Ω.

Again denote by ξ the standard cut-off function of B2r(x0). Then we get

α1εn
2

α2
1φ

2 + α2
2

∂

∂t
(ξΨ)− εn

2φ2△(ξΨ) +
m2

2
ξΨ

≤ 2ξ|∇uεn |2 − 2εn
2φ2∇ξ · ∇Ψ− εn

2φ2Ψ△ξ. (4.6)
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It follows from above that on the compact subsets K and K̃, the right-hand side of (4.6)

is bounded uniformly in n. Then Lemma 4.2 follows from the maximum principle (see also

the proof of Step A.5 of [1]).

Lemma 4.3. There exists T̃2 > T1 independent of εn such that on any compact subset

M of Ω× [T1, T̃2]\
N1∪
j=1

({a1j} × [T1, T̃2]),

|uεn | ≥
m

2
, on M. (4.7)

Proof. For any x0 ∈ Ω\
N1∪
j=1

{a1j}, take R > 0 so small that B2R(x0) doesn’t contain a1j

(1 ≤ j ≤ N1). Let ξ(x) be the cut-off function of B2R(x0) and define

Eξ(u) =
1

2

∫
Ω

ξ2|∇u|2 + 1

4ε2

∫
Ω

ξ2φ2(1− |u/φ|2)2.

It follows from simple computations that for t > T1,

Eξ(uεn(x, t)) ≤ Eξ(uεn(x, T1)) + C

∫ t

T1

∫
Ω

|∇ξ|2|∇uεn |2

≤ 1

2

∫
B2R(x0)×{T1}

ξ2|∇uεn |2 +
1

4εn
2

∫
B2R(x0)×{T1}

ξ2φ2
(
1−

∣∣∣uεn
φ

∣∣∣2)2

+
C

R2

∫ t

T1

∫
B2R(x0)

|∇uεn |2.

Hence we have from this inequality, the following fact∫ t

0

∫
Ω

α1

α2
1φ

2 + α2
2

|uεt|2 +
∫
Ω(t)

|∇uε|2 +
1

4ε2

∫
Ω(t)

φ−2(|uε|2 − |φ|2)2 =
1

2

∫
Ω

|∇u0|2

and Lemma 2.5 and Lemma 4.2 that Eξ(uεn(x, t)) ≤ CR2 + o(1) + C(t−T1)
R2 .

Now the desired conclusion follows from Lemma 3.2 if one fixes R = R0, t = T̃2 > T1

such that CR0
2 + o(1) + C(T̃2−T1)

R0
2 ≤ µ0

16 .

As before, we define T2 > T1 by

T2 = inf
{
T
∣∣∣T > T1, there is x0 ∈ Ω\

N1∪
j=1

{a1j} such that lim inf
ε→0

|uε(x0, T )| = 0
}
. (4.8)

Denote the bad disks on Ω(T2) by B(xεk, λε), k = 1, · · · , Ñ2, Ñ2 ≤ N . Passing to a further

subsequence, still denoted by uεn , we assume xεnk → a2l , l = 1, · · · , N2 ≤ Ñ2 with a
2
l different

from each other. On the compact subset of Ω×[T1, T2]\
( N1∪

j=1

{a1j}×[T1, T2]∪
N2∪
l=1

{a2l }×{T2}
)
,

repeating above proof, we obtain

Lemma 4.4. For any γ ∈ (0, 1) and any compact subset M of

Ω× [T1, T2]\
( N1∪

j=1

{a1j} × [T1, T2] ∪
N2∪
l=1

{a2l } × {T2}
)
,

we have for some constant C > 0 independent of n that ∥uεn∥C1+γ,(1+γ)/2(M) ≤ C.

Summing up, we have proved

Proposition 4.1. There exist T1 < T2 < · · · < TL and aij ∈ Ω, j = 1, · · · , Ni,

i = 1, · · · , L, Ni ≤ N , such that, ∀γ ∈ (0, 1), we have for some sequence {uεn} uεn →
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u, in C
1+γ,(1+γ)/2
loc (Ω × [o,∞)\B), where B =

L∪
i=1

Ni∪
j=1

({aij} × [Ti,∞)), u is a solution of

(2.3)–(1.2).

In what follows, we claim that L in Proposition 4.1 has a uniform bound.

Lemma 4.5. Let u be the solution obtained in Lemma 2.4 and T1, · · · , TL be determined

in Proposition 4.1. Then∫
Ω(Ti)

|∇u|2 ≤
∫
Ω

|∇u0|2 − (N1 + · · ·+Ni)
µ0

2
, i = 1, · · · , L. (4.9)

Proof. We first prove this inequality for i = 1. Let

E(u,Ω) =
1

2

∫
Ω

|∇u|2 + 1

4ε2

∫
Ω

φ2(1− |u/φ|2)2.

We have for any δ > 0 and n large enough

1

2

∫
Ω(T1)\

N1∪
j=1

B(a1
j ,δ)

|∇uεn |2 +
1

4εn2

∫
Ω(T1)\

N1∪
i=1

∪
j∈Λ1

i

B(xεn
j ,2λεn)

φ2(1− |uεn/φ|2)2

+
1

4εn2

N1∑
i=1

∑
j∈Λ1

i

∫
B(xεn

j ,2λεn)

φ2(1− |uεn/φ|2)2

≤ E(uεn ,Ω(T1)) ≤
1

2

∫
Ω

|∇u0|2,

where Λ1
i = {j, xεnj → a1i , n→ ∞}.

From the definition of bad disk, we have 1
εn2

∫
B(xεn

j ,λεn)
φ2(1 − |uεn/φ|2)2 ≥ µ0. This

implies ∫
Ω(T1)\

N1∪
j=1

B(a1
j ,δ)

|∇uεn |2 ≤
∫
Ω

|∇u0|2 −N1
µ0

2
.

Sending εn → 0, we get∫
Ω(T1)\

N1∪
j=1

B(a1
j ,δ)

|∇u|2 ≤
∫
Ω

|∇u0|2 −N1
µ0

2
.

Thus it follows by sending δ → 0 in above inequality that∫
Ω(T1)

|∇u|2 ≤
∫
Ω

|∇u0|2 −N1
µ0

2
,

i.e., (4.9) holds for i = 1.

Next, suppose (4.9) is true for i = k. Then one can prove that it is also true for i = k+1

since E(u(x, t),Ω) is nonincreasing in t. Lemma 4.5 follows.

Now we are in a position to prove Theorem 4.2.

In fact, from Lemma 4.5 we know, every singular point results in a deduction from the

energy of u0 by at least the quantity µ0/2. However, since
∫
Ω
|∇u0|2 < ∞, we conclude

that the total number of singular points must be less than or equal to N0 = [ 2
µ0

∫
Ω
|∇u0|2].

Consequently, in Proposition 4.1 the real singular set consists of at most finitely many points

but other than lines which is denoted by B in Proposition 4.1.

On any compact subset K of Ω× [0,∞)\A, |uεn | ≥ m/2 when n ≥ NK where Nk is deter-

mined by K and independent of n. Therefore, on such a K we have a uniform C1+γ,(1+γ)/2
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estimate for uεn and get a solution u ∈ C1+γ,(1+γ)/2(K) for (2.3)-(1.2). Theorem 4.2 follows

from this and the Schauder’s method.

Remark. Let Ω ∈ R1. Then there exists at least one smooth solution to the Problem

(1.1)–(1.2).

§5. The Uniqueness

On the uniqueness, we have

Theorem 5.1. Let Ω ⊂ Rn (n = 1, 2) be a bounded smooth domain and u, v are two

weak solutions of (2.3) satisfying the energy inequality∫ t

0

∫
Ω

α1

α2
1φ

2 + α2
2

|ut|2 +
1

2

∫
Ω

|∇u(·, t)|2 ≤ 1

2

∫
Ω

|∇u0|2, ∀t > 0, (5.1)

with the same initial-boundary condition (1.2). Then u = v in ΩT for any T ∈ (0,∞).

The proof of this theorem depends on the following lemma.

Lemma 5.1. Suppose that
∫
Ω
|∇u0|2 < ∞ and u is a weak solution of (2.3)–(1.2) satis-

fying (5.1). Then there is t1 > 0 depending on u0 such that

∇u ∈ L2((0, t1),W
1,4/3(Ω)). (5.2)

Moreover, if u ∈ L2((0, t1),W
2,4/3(Ω)) is a solution of (2.3)–(1.2), then

∇u ∈ L4((0, t1),W
1,4/3(Ω)). (5.3)

In order to prove this lemma, we list some known lemmas without proving.

Lemma 5.2 (Hodge Decomposition).[6] Let W be in ΛlLp(Ω). Then, there exists

an (l − 1)-form A and an (l + 1)-form B, such that

W = dA+ δB + h, δA = dB = 0, ∥A∥W 1,p + ∥B∥W 1,p ≤ C(p,Ω)∥W∥Lp , (5.4)

where the differential forms A and B belong to W 1,p(Ω), h is a smooth harmonic form, d

and δ are the differential and co-differential operators.

Lemma 5.3.[7] If the matrix H = (hij(x))1≤i,j≤n ∈ W 1,1(B) and max
1≤i,j≤n

∥hi,j∥ <

π1/2/4, where B is a unit ball in R2 with center at origin, then there exists a vector

bl = (bl1, · · · , bln) ∈ L∞(B) such that

dblk
dz̄

=
n∑

j=1

hijb
l
j , ∥bl − el∥L∞ ≤ 1

3
, (5.5)

where el = (el1, · · · , eln) =
n∑

j=1

mljb
j and eli = δlj.

Lemma 5.4. Assume that Ω is a bounded open set in Rn and u and v are in W 1,2(Ω).

Also assume that u|∂Ω and v|∂Ω are in W 1,2(∂Ω). Then uxivxj −uxjvxi belongs to the Hardy

space H1(Ω) and

∥uxivxj − uxjvxi∥H1(Ω) ≤ C(∥∇u∥2L2(Ω) + ∥∇v∥2L2(Ω)), (5.6)

where C is a constant depending on Ω.

Proof. It follows from the condition that u and v can be extended to a larger domain

Ω′ such that Ω ⊂⊂ Ω′ and u, v ∈ W 1,2(Ω′). Then the conclusion follows from [5].

Proof of (5.2). From (5.1) we find that as t→ 0,∫
Ω

|∇u(·, t)|2 ≤
∫
Ω

|∇u0|2. (5.7)
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Due to the boundedness of ∥∇u(·, t)∥L2(Ω), we may choose a subsequence tν → 0 as

ν → ∞, such that

∇u(·, tν) → ω weakly in L2(Ω). (5.8)

We have ω = ∇u0 since for t > 0,

∥u(·, t)− u(·, 0)∥L2(Ω) ≤
∫
Ω

∣∣∣ ∫ t

0

∂u

∂τ
(x, τ)dτ

∣∣∣2 ≤ Ct,

and therefore, as t→ 0,

u(·, t) → u0 strongly in L2(Ω); ∇u(·, t) → ω weakly in L2(Ω).

Moreover, from the latest relations we not only know that any weakly convergent subse-

quence of ∇u(·, t) must converge weakly in L2(Ω) to ∇u0, but also conclude that ∇u(·, t)
(not only a subsequence) weakly converges to ∇u0 as t tends to 0. Further, one can prove

∇u(·, t) → ∇u0 strongly in L2(Ω). (5.9)

In fact it follows from (5.7) that∫
Ω

|∇u(x, t)−∇u0(x)|2 =

∫
Ω

|∇u|2 +
∫
Ω

|∇u0|2 − 2

∫
Ω

⟨∇u,∇u0⟩

≤ 2

∫
Ω

|∇u0|2 − 2

∫
Ω

⟨∇u,∇u0⟩ → 0 as t→ 0.

So for ε > 0 ( ε will be determined later in getting (5.25) ) there is t1 = t1(ε) > 0 such that∫
Ω

|∇u(·, t)−∇u0|2 <
ε

2
, ∀t ∈ (0, t1). (5.10)

In the following, we consider u is defined on (Ω ∩ B) × R+ where B is a unit ball in R2

with center at ∂Ω. We want to prove

Claim.

∇u ∈ L2((0, t1);W
1,4/3(Ω ∩B)). (5.11)

Proof of Claim. For any z0 = (x0, t0) ∈ (Ω ∩ B) × (0, t1), denote Ir = (t0 − r2, t0),

Ωr = Ω∩Br(x0) and Pr = {(x, t) | x ∈ Ωr, t ∈ Ir}. Since
∫
Ω
|∇u0|2 <∞, for given ε > 0 in

(5.10), there is r0 = r0(ε, z0) > 0, such that Pr0 ⊂ (Ω ∩ B) × (0, t1) and
∫
Br0

|∇u0|2 < ε/2

which combined with (5.10) gives∫
Br0

|∇u(·, t)|2 ≤
∫
Ω

|∇u(·, t)−∇u0|2 +
∫
Br0

|∇u0|2 ≤ ε, ∀t ∈ (0, t1). (5.12)

Let

fk =
1

4

[ α1

α2
1φ

2 + α2
2

ukt − α2φ
−2

α2
1φ

2 + α2
2

(u× ut)
k +

1

2

uk

φ2
△φ2

]
,

Hkj = uk
∂uj

∂z
− uj

∂uk

∂z
.

From Equation (2.3) and the fact |u| = φ, one may have

∂2uk

∂z∂z
=

1

4
△uk = fk − 1

φ2

⟨∂u
∂z
,
∂u

∂z

⟩
uk

= Fk − 1

φ2

⟨(
uk
∂u

∂z
− u

∂uk

∂z

)
,
∂u

∂z

⟩
= Fk − 1

φ2

3∑
j=1

Hkj
∂uj

∂z
, (5.13)
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where Fk = fk − 1
2φ2 ⟨∂u

k

∂z ,
∂φ2

∂z ⟩.
Consider the following 1-form

wkj = ukduj − ujduk ∈ L∞((0, t1), L
2(Ωr0)), (5.14)

w̃kj = ukd(ξuj)− ujd(ξuk) ∈ L∞((0, t1), L
2(Ωr0)), (5.15)

where ξ is a cut-off function such that ξ = 1 on B 2r0
3
(x0) , ξ = 0 on R2\Br0(x0) and

|∇ξ| ≤ 4/r0.

Obviously wkj = w̃kj , on Ω 2r0
3

× (0, t1).

By Lemma 5.2, there exist Akj(·, t) ∈ W 1,2, Bkj(·, t) ∈ Λ2W 1,2 and smooth harmonic

form hkj such that δAkj = dBkj = 0,

w̃kj = dAkj + δBkj + hkj for a.e. t ∈ (0, t1), (5.16)

∥Akj∥W 1,2 + ∥Bkj∥W 1,2 ≤ C∥w̃kj∥L2 ≤ C∥∇u∥L2 ≤ C.

From (5.16), (5.13) and (2.3)

△Akj = δw̃kj = δwkj = uk△uj − uj△uk = 4ukfj − 4ujfk, on P r0
2
.

So △Akj ∈ L2(P r0
2
), and then

dAkj ∈ L2(I r0
2
,W 1,2(Ω r0

2
)) ⊂ L2(I r0

2
, L4(Ω r0

2
)). (5.17)

On the other hand, it follows from (5.16) and (5.14) that

△Bkj = dw̃kj = dwkj = duk ∧ duj , on Ω 7r0
12

× (0, t1),

where “∧” is the Wedge product in R2. Since u|∂Ω = v|∂Ω = ψ and ψ is smooth, by Lemma

5.4, for a.e. t ∈ (0, t1), we have that △Bkj ∈ H1(Ω 7r0
12

), and for any 0 < r < 7r0
12 ,

∥△Bkj(t)∥H1(Ωr) ≤ C(r)∥du(t)∥2
L2
(
Ω 7r0

12

). (5.18)

This implies that Bkj ∈ L∞((0, t1),W
2,1(Ω 7r0

12
)).

In particular

δBkj ∈ L∞(I r0
2
,W 1,1(Ω 7r0

12
)). (5.19)

Using the definition of Hkj and wkj , one may rewrite Hkj as

Hkj =
1

2
(wkj(∂x) + iwkj(∂y)),

where wkj(∂x) = uk ∂uj

∂x − uj ∂uk

∂x , wkj(∂y) = uk ∂uj

∂y − uj ∂uk

∂y .

Applying the Hodge decomposition (5.16) and noting that w̃kj = wkj on P r0
2
, one may

further rewrite Hkj as

Hkj − hkj = H1
kj +H2

kj , (5.20)

where H1
kj =

1
2 (dAkj(∂x) + idAkj(∂y)), H2

kj =
1
2 (δBkj(∂x) + iδBkj(∂y)).

(5.17) and (5.19) give that

H1
kj ∈ L2(I r0

2
, L4(Ω r0

2
)), H2

kj ∈ L∞(I r0
2
,W 1,1(Ω r0

2
)). (5.21)

Moreover, from (5.12) and (5.18) we know

∥H2
kj∥L∞

(
I r0

2
,W 1,1

(
Ω r0

2

)) ≤ Cε. (5.22)
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Using (5.20), we rewrite (5.13) as

∂2uk

∂z∂z
= Fk − 1

φ2

( 3∑
j=1

H1
kj

∂uj

∂z
+

3∑
j=1

H2
kj

∂uj

∂z
+

3∑
j=1

hkj
∂uj

∂z

)
. (5.23)

For the last term we have

sup
Ω r0

2

|hkj | ≤ C∥hkj∥
L2
(
Ω r0

2

) ≤ C[∥wkj∥L2 + ∥dAkj∥L2 + ∥δBkj∥L2 ] ≤ C,

∥∥∥hkj ∂uk
∂z

∥∥∥
L4/3

(
Ω r0

2

) ≤ C
(
sup
Ω r0

2

|hkj |
)
∥∇u∥L2 ≤ C.

Hence, it is easy to see from the definition of Fk and (5.21) that

Gk := Fk − 1

φ2

( 3∑
j=1

H1
kj

∂uj

∂z
+

3∑
j=1

hkj
∂uj

∂z

)
∈ L2(I r0

2
, L4/3(Ω r0

2
)). (5.24)

On the other hand, from (5.22), if ε is small enough, by Lemma 5.3 it is possible to

construct solutions bl ∈ L∞(Ωr0/2), l = 1, 2, 3 to the system

∂bl

∂z
= − 1

φ2

3∑
j=1

H2
kjb

l
j for each fixed t ∈ I r0

2
, (5.25)

and to have an invertible matrix M = (mij)1≤i,j≤3 ∈ L∞(Ωr0/2), such that (5.5) holds.

Then from (5.5) we get

∂uk

∂z
=

3∑
j=1

δkj
∂uj

∂z
=

3∑
j=1

ekj
∂uj

∂z
=

3∑
j=1

3∑
l=1

mkjb
l
j

∂uj

∂z
. (5.26)

Using (5.23) and (5.25) we compute

∂

∂z

( 3∑
k=1

blk
∂uk

∂z

)
=

3∑
k=1

[(∂blk
∂z

)∂uk
∂z

+ blk
∂2uk

∂z∂z

]
= − 1

φ2

3∑
k=1

3∑
j=1

H2
kjb

l
j

∂uk

∂z
+

3∑
k=1

blkGk − 1

φ2

3∑
k=1

3∑
j=1

H2
kjb

l
j

∂uj

∂z

=
3∑

k=1

blkGk, (5.27)

where we have used the fact Hkj = −Hjk. By (5.24) and the fact bl ∈ L∞(
Ω r0

2

)
for all

t ∈ I r0
2
, (5.27) leads to the result

3∑
k=1

blk
∂uk

∂z
∈ L2

(
I r0

2
,W 1,4/3

(
Ω r0

2

))
. (5.28)

(5.28) combined with (5.26) yields ∂uk

∂z ∈ L2
(
I r0

2
,W 1,4/3

(
Ω r0

2

))
, k = 1, 2, 3. Then the

Claim follows from standard covering argument. (5.2) is proved.

Next, we prove (5.3). The following lemma is regarding to the following problem

∂tu
i −G1(x, t)∆u = G2(x, t)∆u+ g(x, t), x ∈ Ω, t > 0, (5.29)

u(x, 0) = u0(x), x ∈ Ω, (5.30)

u|∂Ω = u0|∂Ω, (5.31)
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where Gi(x, t) (i = 1, 2) are matrices and g(x, t) is a vector.

Lemma 5.5. Let Ω be a two-dimensional bounded smooth domain. Suppose that in

(5.29)–(5.31)

(1) G1(x, t)∆u is strongly elliptic.

(2) G1 ∈ C∞(Ω× (0, T )), G2 ∈ L∞(Ω× (0, T )), g ∈ L4(0, T ; L4/3(Ω)) and u0 ∈ H1(Ω).

Then, there exists a constant ε1 > 0 depending only on Ω and T , such that if

∥G2∥L∞(Ω×(0,T )) ≤ ε1, (5.32)

then the problem (5.29)–(5.31) has a unique solution in Ls(0, T ;W 2,4/3 (Ω)), for any s ∈
[2, 4].

The proof of this lemma can be found in [3].

Now we use Lemma 5.5 to prove (5.3).

Let u ∈ L2(0, T ;W 2,4/3) be a weak solution of (2.2)-(1.2). From (2.2), one has

∂tu−G(u)∆u = α1φ
2|∇u|2u− α1

2
u∆φ2, (5.33)

with |u| = φ, where

G(u) =

 α1φ
2 −α2u

3 α2u
2

α2u
3 α1φ

2 −α2u
1

−α2u
2 α2u

1 α1φ
2

 .

Since |u| = φ, for any ε > 0 we can decompose G(u) into the form

G(u) = G1(u) +G2(u), (5.34)

where G1(u) ∈ C∞(Ω× (0, T )), G2(u) ∈ L∞(Ω× (0, T )) with

∥G1(u)∥L∞(Ω×(0,T )) ≤ C∥u∥L∞(Ω×(0,T )), (5.35)

∥G2(u)∥L∞(Ω×(0,T )) ≤ ϵ. (5.36)

Inserting (5.34) into (5.33), one has

∂tu−G1(u)∆u = G2(u)∆u+ g(x, t), (5.37)

where g(x, t) = α1φ
2|∇u|2u− α1

2 u∆φ
2; then, (5.37) takes the same form as (5.29). Moreover,

∥g∥L4(0,T ;L4/3) ≤ C∥∇u∥L∞([0,T ],L2)∥∇u∥L2([0,T ],L4) + C.

Hence, we can see that if ϵ is sufficiently small, then the assumptions in Lemma 5.5 and (5.32)

are satisfied. Therefore, by Lemma 5.5, the problem (5.37) with the condition (1.2) admits

a unique solution v ∈ L4(0, T ;W 2,4/3) ⊂ L2(0, T ;W 2,4/3) and the solution in the space

L2(0, T ;W 2,4/3) is also unique. On the other hand, it is obvious that if u ∈ L2(0, T ;W 2,4/3) is

a weak solution of (2.3)-(1.2), then u is also a solution of (5.37) and (1.2) in L2(0, T ;W 2,4/3).

Therefore, u = v ∈ L4(0, T ;W 2,4/3). This proves (5.3).

Proof of Theorem 5.1. We may assume that ∇u ∈ L4([0, T ),W 1,4/3(Ω)) and v is the

“almost smooth” solution obtained in Theorem 4.1. We are going to show that u = v on

Ω× [0, T ]. Let w = u− v. It follows from (2.2) that w solves

wt −α1φ
2△w = α2(u×△w+w×△u)+α1[u(|∇u|2 − |∇v|2)+ |∇v|2w]− α1

2
w△φ2 (5.38)

with the condition w(x, 0) = 0, w(x, t)|∂Ω×[0,T ] = 0. Let |∇U |2 = |∇u|2 + |∇v|2. Testing

(5.38) by w and integrating it by parts, we obtain for almost every t ∈ [0, T ] that

d

dt
∥w∥2L2 +

∫
Ω

|∇w|2 ≤ C

∫
Ω

|w|2|∇U |2. (5.39)
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Using Sobolev imbedding inequality

∥w∥4L4 ≤ 4∥w∥2L2∥dw∥2L2 ,

we have ∫
M

|w|2|∇U |2 ≤ C
(∫

M

|∇U |4
)1/2(∫

M

|w|2
)1/2(∫

M

|∇w|2
)1/2

≤ 1

4

∫
M

|∇w|2 + C

∫
M

|∇U |4
∫
M

|w|2.

This combined with (5.39) implies

f ′(t) + g(t) ≤ Cp(t)f(t),

where f(t) =
∫
M

|w|2, g(t) =
∫
M

|∇w|2, p(t) =
∫
M

|∇U |4. Since u, v ∈ L4(0, T ;W 2,4/3),

p(t) ∈ L1(0, T ). We have from the Gronwall inequality that f(t) = 0 for a.e. t ∈ [0, T ], and

hence w = 0 a.e. on M × [0, T ].

Now u meets the identity∫ T

0

∫
Ω

α1

α2
1φ

2 + α2
2

∣∣∣∂u
∂t

∣∣∣2 + 1

2

∫
Ω

|∇u(·, T )|2 =
1

2

∫
Ω

|∇u0|2. (5.40)

Subtracting (5.40) from (5.1), we have∫ t

T

∫
Ω

α1

α2
1φ

2 + α2
2

∣∣∣∂u
∂t

∣∣∣2 + 1

2

∫
Ω

|∇u(·, t)|2 ≤ 1

2

∫
Ω

|∇u(·, T )|2.

Therefore, we can consider u as a solution of (2.3) on Ω × [T,∞) with initial data u(x, T )

satisfying the assumption in Theorem 5.1. Then we can repeat above argument again. The

conclusion of Theorem 5.1 can be obtained by iterating this argument.
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