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Abstract

Some kinds of the self-similar sets with overlapping structures are studied by introducing
the graph-directed constructions satisfying the open set condition that coincide with these sets.
In this way, the dimensions and the measures are obtained.
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§1. Introduction

The self-similar sets (SSS) is one of the most important fractal classes, but the most prop-

erties such as dimensions, measures · · · have been established upon the open set condition

(OSC). It is a difficult problem to determine the structure and only a few results are known

when this condition is absent. On the other hand, for the graph-directed sets (GDS), a

generalization of SSS, if the OSC is satisfied, then analogous properties of the self-similar

sets will hold still. The main purpose of this paper is to obtain graph-directed set with OSC

starting from some kinds of self-similar set with overlapping satisfying certain arithmatical

properties. In this way, we will determine completely the structure of this kind SSS with

overlapping.

1.1. Self-Similar Set with Overlaps

Let {Sj}mj=1 be a family of contracting similarities on Rd, which we call iterated function

system (IFS).

By [4], there exists a unique compact set K, such that

K =
m∪
j=1

Sj(K).
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The set K is called the self-similar set (SSS) of the IFS, and it is called also invariant set

or attractor of the IFS.

If there is an open set V with
m∪
j=1

Sj(V ) ⊆ V,

where the left side is a disjoint union, then we say the IFS satisfies the open set condition

(OSC). Under OSC, the dimensions and measures of the SSS are determined completely

(see [4]).

A closed set D satisfying
m∪
j=1

Sj(D) ⊆ D (1.1)

is called a basic domain of the IFS. If the left side of (1.1) is a non-overlapping union, that

is, their interiors are disjoint, then the IFS satisfies OSC with open set D◦, the interior of

D. Otherwise we will say that the self-similar set generated by the IFS has overlaps. The

structure of the self-similar set with overlaps is an interesting but difficult subject in fractal

geometry (see for example [5,6,8,12])).

Example 1.1. Let {Sj}3j=1 be an IFS on R defined by

S1(x) =
x

3
, S2(x) =

x

3
+ λ, S3(x) =

x

3
+

2

3
,

where λ ∈ [0, 1/3].

We denote by Cλ the SSS of the IFS and we call it the λ-Cantor set with parameter λ

(see [12]).

When λ = 0, Cλ is the classical middle-third Cantor set; when λ = 1/3, Cλ is the interval

[0, 1]. For λ ∈ (0, 1
3 ), Cλ is a SSS with overlaps. This setting has been studied in details in

[6] and [12].

It is known that for λ = 2/5, Cλ satisfies OSC (see [12]). This means that a SSS with

overlaps may satisfy OSC still.

Example 1.2. Suppose 1/3 < β < 2/5 is a positive number. Let {Sj}3j=1 be an IFS on

R defined by

S1(x) = βx, S2(x) = β(x+ 1), S3(x) = β(x+ 3)

and let Kβ denote the SSS of IFS. Then

Kβ =
{∑

n≥1

anβ
n : for each n, an ∈ {0, 1, 3}

}
.

The set Kβ does not satisfy OSC, it is introduced by Keane (see [5]). The problem to

determine the structure is called the 0,1,3 problem (for the details, see [5,11,14] and [7]).

1.2. Graph-Directed Sets (GDS)

The graph-directed set is a natural generalization of self-similar set (see [2, 9, 1,10, 3]).

In this paper we adopt the terminologies in [3].

Let V be a finite set with q elements that we call the vertices and we label {1, 2, · · · , q},
and let E be a set of directed edges with each edge starting and ending at a vertex so that
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(V, E) is a directed graph. A pair of vertices may be joined by several edges and we also

allow edges starting and ending at the same vertex. We write Ei,j for the set of edges from

vertex i to vertex j, and Ek
i,j for the set of sequences of k edges (e1, e2, · · · , ek) which form

a directed path from vertex i to j. For each edge e ∈ E , let Fe : R → R be a contracting

similarity of ratio re with 0 < re < 1. Then (see [3] for example), there is a unique family

of non-empty compact sets K1, · · · ,Kq such that

Ki =

q∪
j=1

∪
e∈Ei,j

Fe(Kj). (1.2)

The sets K1, · · · ,Kq are called the GDS determined by (V, E , Fe).

We assume that the union in (1.2) are disjoint for all i; this separation condition may

be relaxed to an open set condition. The dimension of graph-directed set is determined in

terms of associated q × q matrices M (s) with (i, j)-th entry given by

M
(s)
i,j =

∑
e∈Ei,j

rse.

The matrix M (s) is called the Perron-Frobenius matrix.

Theorem A.[1,10] Let the GDS {Ki}1≤i≤q satisfy OSC.

Let ρ(M (s)) be the largest eigenvalue of M (s) and α be the unique non-negative real number

such that ρ(M (α)) = 1. Then

dimH Ki = α, 1 ≤ i ≤ q.

Theorem B.[3] Let {Ki}1≤i≤q be graph-directed sets (even without OSC and assuming

the maps are conformal), then

dimH Ki = dimP Ki = dimB Ki, 1 ≤ i ≤ q.

That is, all graph-directed sets are regular sets.

1.3. Main Results

As we mentioned above, it is difficult to study the structure and properties of a self-similar

set with overlapping. On the other hand, that of graph-directed sets with OSC are clear

by Theorems A and B. The main purpose of this paper is to obtain the graph-directed set

with OSC starting from some kinds of self-similar set with overlapping.

An algebraic integer β is called a Pisot number if |β| > 1 and all of its conjugates are

inside the unit circle.

Suppose β = ρ−1 is a Pisot number. Put

Z[ρ] =
{ n∑

i=0

aiρ
i : ai ∈ Z, n ∈ N

}
.

Let {Sj}mj=1 be an IFS on R with

Sj(x) = ρx+ dj , (1.3)

where dj ∈ Z[ρ]. Examples 1.1 and 1.2 are included in this setting.

In general, the SSS defined by (1.3) has overlaps, but we have the following theorem that

is the main result of this paper.

Main Theorem. Let the IFS be defined as (1.1) and let K be the SSS generated by the

IFS. Then there exists a GDS with OSC, denoted by E, such that K = E.
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§2. System of First Labels

In this section, associated with a given Pisot number, we introduce a sequence of the

cylinders which constitute partitions of the interval [0, 1]. Then we introduce the first label

on the cylinders, which is the first step to construct the desired GDS.

2.1. A Property of Pisot Number

From now on, we assume that β = ρ−1 is a Pisot number. The following known result

about Pisot number will play an important role in our studies.

Proposition 2.1.[13] Suppose that β is a Pisot number. Let M, N be two positive

constants and let

ΩM,N =
{ k∑

i=0

aiβ
i : |ai| < M, ai ∈ N, k ∈ N

}
∩ [0, N ].

Then ΩM,N is a finite set.

2.2. Number System in Base β

Let β > 1 and x be a positive real number. Then the expansion of the form x =
∞∑

i=N0

aiβ
−i

is said to be a greedy expansion if∣∣∣x−
∑

N0≤i≤N

aiβ
−i
∣∣∣ < β−N

holds for every N , where ai are nonnegative integers with 0 ≤ ai < β.

When 0 ≤ x < 1, the greedy expansion is a natural generalization of binary or decimal

expansion, so we call the greedy expansion the number system in base β.

2.3. First Label on the Cylinders

2.3.1. Partitions of the unit interval [0,1] associated with ρ

Let k ∈ N. The partition of order k associated with ρ is defined by

Ik =
{ k∑

i=1

aiρ
i : 0 ≤ ai < ρ−1, ai ∈ N

}
∪ {1}.

By the definition, we see that

(1) Ik is a finite set of [0, 1] that consists of all greedy expansion with length less than or

equal to k;

(2) For any k, Ik+1 ⊂ Ik;

2.3.2. Cylinders of Order k and the First Label

Now we arrange the elements of the partition of order k by an increasing order and we

denote it by {z0 = 0, z1, · · · , zp = 1}. The intervals [zi, zi+1] (1 ≤ i ≤ p− 1) are called the

cylinders of order k (or k-cylinder) that we denote by Cρ,k. The set Cρ =
∪
k≥1

Cρ is the set of

all cylinders.

Let τ ∈ Cρ,k be a k-cylinder. We define the first label of τ by

Lρ,k(τ) = ρ−k|τ |,

where |τ | is the length of the interval τ . Set

Lρ = {Lρ,k(τ) : τ ∈ Cρ,k, k ∈ N}.

Then Lρ is the set of the first labels of the cylinders.
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By the definitions above, it is easy to see that:

(1) Two k-cylinders have the same first label if and only if they have the same length;

(2) Assume that τ ∈ Cρ,k and σ ∈ Cρ,n+k, then τ and σ have the same first label if and

only if |τ | = ρ−n|σ|.
(3) For any τ ∈ Cρ,k, |τ | ≤ ρk.

Proposition 2.2. With the notations and the definitions above, Lρ is a finite set.

Proof. Let τ = [zi, zi+1] ∈ Cρ,k, let zi =
k∑

i=1

aiρ
i and zi+1 =

k∑
i=1

biρ
i. Then

Lρ(τ) = ρ−k|τ | = ρ−k|zi+1 − zi|

= ρ−k
∣∣∣ k∑
i=1

aiρ
i −

k∑
i=1

biρ
i
∣∣∣

=
∣∣∣ k∑
i=1

(ai − bi)β
k−i

∣∣∣.
Noticing that |τ | ≤ ρk and |ai − bi| ≤ 2ρ−1, we have Lρ(τ) ∈ ΩM,N , by taking M = 2ρ−1,

N = 1, where ΩM,N is defined by Propsition 2.1. Therefore Lρ ⊆ ΩM,N is a finite set from

Proposition 2.3.

Let τ ∈ Cρ,k be a k-cylinder and let

O(τ) = {σ : σ ⊂ τ and σ ∈ Cρ,k+1}.

Then τ is a nonoverlapping union of the elements (k + 1-cylinders) of the set O(τ). The

elements of O(τ) are called the offspring of τ .

Proposition 2.3. Let τ ∈ Ck. Then

(1) ♯O(τ) = p := [
Lρ,k(τ)

ρ ] + 1;

(2) Let σ1, · · · , σp be the offspring of τ arranged from left to right, then

Lρ,k+1(σ1) = · · · = Lρ,k+1(σp−1) = 1, Lρ,k+1(σp) = ρ−1Lρ,k(τ)− (p− 1),

that is, the cardinality of O(τ) and the first labels of the elements of O(τ) are determined

completely by the first label of τ .

Proof. Denote by τ̄ the left endpoint of τ . Then τ̄ + |τ | is the right endpoint of τ .

Case 1. If p = 1, then by the definition of p and Lρ,k(τ), |τ | ≤ ρk+1, in this case, by the

constructions of Ik and Ik+1, the elements of Ik+1 falling in the interval τ are exactly τ̄ and

τ̄ + |τ |. Therefore O(τ) = τ and Lρ,k+1(τ) = ρ−1Lρ,k(τ).

Case 2. If p > 1, then |τ | > ρk+1. In this case, the elements of Ik+1 contained in the

interval τ are

τ̄ , τ̄ + ρk+1, · · · τ̄ + (p− 1)ρk+1, τ̄ + |τ |.

From this, we get immediately

Lρ,k+1(σ1) = · · · = Lρ,k+1(σp−1) = ρ−(k+1)|σ1| = 1,

Lρ,k+1(σp) = ρ−1Lρ,k(τ)− (p− 1).

2.4. Example

Example 2.1. Let ρ = b−1, where b > 2 is an integer. The k-cylinders of [0, 1] consist

of the intervals of length b−k, so all first labels of the k-cylinders are 1.
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Example 2.2. Let ρ =
√
5−1
2 . The length of the k-cylinders of [0, 1] is either ρk or ρk+1.

So there are two types of intervals, denoted by A and B. L(A) = ρ and L(B) = ρ2. The

offspring of A is A and B, the offspring of B is A. More precisely, we have A → A,B and

B → A.

§3. Graph-Directed Constructions of Self-Similar Sets

In this section, we will introduce the second labels on the set of cylinders Cρ, associated
with the given IFS (with overlapping). Then we construct a GDS with OSC that identifies

the self-similar set generated by the IFS.

3.1. Second Labels on the Set of Cylinders Cρ

In this subsection, we suppose always that the compact set K is the SSS generated by

the IFS (1.3). Set D = {d1, · · · , dm}, where dj are defined as in (1.3).

Without loss of generality we assume that 0 = d1 < d2 < · · · < dm. Then J = [0, dm

1−ρ ] is

a basic domain. We call the sets

Ji1···ik = Si1 ◦ · · ·Sik(J), 1 ≤ i1, · · · , ik ≤ m,

the k-cylinders of K and denote the set of them by CK,k. The set of all k-cylinders of K is

denoted by CK . Let N0 be the smallest integer such that ρ−N0 ≥ dm

1−ρ and let I = [0, ρ−N0 ].

We have defined the first label on Cρ in the last section, and we see that the labels only

depend on the Pisot number β = ρ−1. To establish the relations between Cρ,k and CK,k, we

need another label on Cρ that relies on closely the structure of the cylinders of K.

Definition 3.1. Suppose τ ∈ Cρ,k. The neighborhood of τ with respect to CK,k is defined

as

Nk(τ) = {δ : δ ∈ CK,k and δ ∩ τ ̸= ∅}. (3.1)

Notice that a k-cylinder of CK,k is an interval of length ρk|J |, so it is completely deter-

mined by its left endpoint. For this point, we define

N̄k(τ) = {δ̄ : δ ∈ CK,k and δ ∩ τ ̸= ∅}, (3.2)

where, as above, δ̄ is the left endpoint of the interval δ.

Let τ, σ ∈ Cρ,k. Then by (3.1) and (3.2)

Nk(τ) = Nk(σ) ⇒ N̄k(τ) = N̄k(σ).

Now we define the second label over Cρ with respect to CK . Let τ ∈ Cρ,k. The second

label of τ is defined as

Rρ,k(τ) = {ρ−k(δ̄ − τ̄) : δ ∈ Nk(τ)},

Rρ =
∪
k≥0

{Rρ,k(τ) : τ ∈ Cρ,k}.

Remark 3.1. By convention, the interval I = [0, ρ−N0 ] is defined as a 0-cylinder, and

its first label and second label are 1 and {0} respectively.

Proposition 3.1. Let ρ−1 be a Pisot number. Then ♯Rρ < ∞.
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Proof. Suppose τ ∈ Cρ,k and δ ∈ Nk(τ). By the definitions of τ̄ and δ̄, we have

τ̄ =

k−N0∑
i=1−N0

aiρ
i, ai ∈ [0, ρ−1] ∩ N,

δ̄ =
k∑

i=1

biρ
i, bi ∈ D.

For each j, dj =
deg(dj)∑
p=0

cpρ
p ∈ Z(ρ) is a polynomials of ρ. We denote by deg(dj) and H(dj)

the degree and the height of the polynomial dj (the height of a polynomial
m∑
1
ujx

j is defined

as max
1≤i≤m

|ui|), and let

s = max
1≤j≤m

{deg(dj)}, h = max
1≤j≤m

{H(dj)}.

Let

ρ−s := Rρ,k(τ) = {ρ−k−s(δ̄ − τ̄) : δ ∈ Nk(τ)}.

Let bi =
deg(bi)∑
j=0

cijρ
j , and notice that

ρ−(k+s)δ̄ =
k∑

i=1

biβ
s+k−i =

k∑
i=1

deg(bi)∑
j=1

cijβ
s+k−i−j =

s+k∑
n=1

∑
i+j=n

cijβ
k+s−n.

Since 0 ≤ j ≤ s,
∑

i+j=n

cij ≤ (s + 1)h, we get thus H(ρ−(s+k)δ̄) ≤ (s + 1)h. On the other

hand, H(ρ−(s+k)τ̄) ≤ ρ−1, we obtain

H(ρ−(s+k)(τ̄ − δ̄)) ≤ H(ρ−(s+k)δ̄) +H(ρ−(s+k)τ̄) ≤ (s+ 1)h+ ρ−1.

On the other hand, δ ∩ τ ̸= ∅, thus

|τ̄ − δ̄| ≤ max{|τ |, |δ|} ≤ ρk−N0 ,

so

ρ−k−s|τ̄ − δ̄| ≤ ρ−N0−s.

Let M = (s+ 1)h+ ρ−1 and N = ρ−N0−s. Then for each k ∈ N,

Rρ,k(τ) ⊂ ρsΩM,N (= {ρsx : x ∈ ΩM,N}),

which yields

Rρ ⊂ 2ρ
sΩM,N ,

where 2A denotes the collection of all subsets of A as usual. By Proposition 2.1, ♯ΩM,N < ∞,

from which follows our conclusion.

3.2. The Graph-Directed Structure of K

Let δ = Si1···in(J) ∈ CK , and let 1 ≤ l ≤ m. Define δl := Si1···in(Sl(J)). By the definition,

we see that δl ⊂ δ and δl ∈ CK,n+1.

By the above definition, we get easily:

Lemma 3.1. Let δ, δ′ ∈ CK , and g be an affine map such that g(δ) = δ′. Then g(δl) = δ′l.
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Let τ1 ∈ Cρ,k1 , and τ2 ∈ Cρ,k2 be two cylinders of Cρ with Lρ,k1(τ1) = Lρ,k2(τ2). Then

by Proposition 2.3, we have ♯O(τ1) = ♯O(τ2) = p and Lρ,k1+1(σ
(1)
i ) = Lρ,k2+1(σ

(2)
i ), where

{σ(1)
i }1≤i≤p and {σ(2)

i }1≤i≤p are respectively the offsprings (arranged from left to right) of

τ1 and τ2.

Proposition 3.2. Let τ1 ∈ Cρ,k1 and τ2 ∈ Cρ,k2 with L(τ1) = L(τ2) and R(τ1) = R(τ2).

Then for 1 ≤ j ≤ p,

Rρ,k1+1(σ
(1)
j ) = Rρ,k2+1(σ

(2)
j ),

where the notations are as above.

Proof. Suppose that g is the affine mapping such that τ2 = g(τ1). Then σ
(2)
j =

g(σ
(1)
j ), 1 ≤ j ≤ p, and it is easy to see that

Nk1+1(σ
(1)
j ) = {δl : 1 ≤ l ≤ m, δ ∈ Nk1(τ1) and δl ∩ σ

(1)
j ̸= ∅}.

So by Lemma 3.1,

Nk2+1(σ
(2)
j ) = {δ′l : 1 ≤ l ≤ m, δ′ ∈ Nk2(τ2) and δ′l ∩ σ

(2)
j ̸= ∅}

= {g(δl) : 1 ≤ l ≤ m, δ ∈ Nk1(τ1) and δl ∩ σ
(1)
j ̸= ∅}

= {g(δl) : δl ∈ Nk1+1(σ
(1)
j )},

which yields R(σ
(1)
j ) = R(σ

(2)
j ).

3.3. The Graph-Directed Construction of K

In this subsection, we are going to define a GDS with OSC which coincides with K.

(1) Definition of V.
Let τ ∈ Cρ,k. Define

Vk(τ) = (Lk(τ), Rk(τ)),

V = {V (τ) : τ ∈ C} ⊂ L ×R.

Then V is a finite set because both L and R are finite sets by Propositions 2.3 and 3.2.

(2) Definition of E .
Let α = (α1, α2), β = (β1, β2) ∈ V. Let τ ∈ Cρ,k such that Vk(τ) = α and let β(τ) :=

{σ ∈ O(τ); V (σ) = β}. Define

Eα,β := {(α, σ)}σ∈β(τ),

E :=
∪

(α,β)∈V×V

Eα,β .

Notice that the above definition is independent of the choice of τ .

(3) Definition of F .

Keep the notations of (1) and (2). Suppose σ ∈ α(τ). Define

Fα,σ(x) := ρx+ ρ−k(σ̄ − τ̄).

Geometrically, Fα,σ(x) is the contracting similarity with contraction ratio ρ which maps the

interval τ onto its subinterval σ. Moreover, these similarity mappings satisfy OSC. Thus in

this way, for any directed edge e ∈ E , Fe is well defined.

By (1),(2) and (3), we define a graph-directed set (V, E , F ) with OSC.
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We note that, to reconstruct K by the GDE above, the cylinders that do not meet K

have no contribution, and these cylinders should be deleted. This fact is equivalent to that

we should delete the verties of V of which the second label is empty. We put so

V∗ = {(γ1, γ2) ∈ V : γ2 ̸= ∅}.

By restricting (V, E , F ) over V∗ and F , we get a new GDS (V∗, E∗, F ∗). More precisely, the

GDS is written as

Ei =

♯V∗∪
j=1

∪
e∈E∗

i,j

F ∗
e (Ej).

As we pointed out, these GDS’s E1, · · · , E♯E∗ satisfy OSC.

Denote by E the GDS corresponding to the vertex γ = (1, {0}).
Theorem 3.1. With the above notations, we have K = E.

Proof. Let S([0, 1]) :=
∪

1≤i≤m

Si([0, 1]) and T ([0, 1]) :=
∪

α∈V∗

∪
e∈E∗

γ,α

F ∗
e ([0, 1]). Denote by

Sk and T k the k-th iterations of S and T respectively. Then by [3],

K(k) := Sk([0, 1])
dH→ K,

E(k) := T k([0, 1])
dH→ E,

where dH denotes the Hausdorff metric.

Notice that K(k) and E(k) consist of the union of k-cylindes of CK,k and Cρ,k respectively.

By a simple calculation from the definitions of E, E(k), K, K(k), we have for any k ∈ N

dH(K,E) ≤ dH(K,K(k)) + dH(K(k), E(k)) + dH(E(k), E) ≤ 3ρk.

Thus dH(K,E) = 0 which yields K = E.

§4. Examples

In the last section, for a kind of IFS with overlapping, we proved that the SSS generated

by the IFS is a GDS with OSC, and moreover we gave in fact the algorithm to get the GDS.

In this section, we give some examples.

4.1. λ-Cantor Sets

Suppose Cλ is the λ-Cantor set in Example 1.1. Then by Theorem 3.1, we

have

Theorem 4.1. If λ is a rational number or a Pisot number, then Cλ is a GDS with

OSC.

Let λ = 2
9 . It is easy to calculate that there are four types of cylinders of [0, 1], whose

labels are A = {1, {0}}, B = {1, {0, 2
3}}, C = {1, {−1

3}}, D = {1, ∅} respectively. So V =

{A,B,C,D}. By an easy calculation we get

A → B,C,A; B → B,C,B; C → C,A,D; D → D,D,D,

and by this we get the set E . By deleting the empty element D we finally get V∗ = {A,B,C}
and E∗ is

A → B,C,A; B → B,C,B; C → C,A.
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The Perron-Frobenius matrix of the graph is

M =

 1 1 1
0 2 1
1 0 1


and the maximum eigenvalue of M is 3+

√
5

2 , so the dimension of this λ-Cantor set is

dimC2/9 =
log 3+

√
5

2

log 3
.

4.2. {0, 1, 3}-Problem

Suppose Kβ is defined in Example 1.2. Then by Theorem 3.1, we have

Theorem 4.2. If β−1 is a Pisot number, then Kβ is a GDS with OSC.

For β such that 1 = 2β + 2β2, using the above algorithm we obtain a 36× 36 matrix M

(also see [7]) and

dimH Kβ =
log ρ(M)

− log β
.

Remark 4.1. It was shown (see [5]) that for β such that 1 = 2β + 2β2 + · · ·+ 2βn,

dimH Kβ < 1.

This leads us to ask the following question.

Open Question. Let 1/3 < β < 2/5 and β−1 be a Pisot number. Is the Hausdorff

dimension of Kβ always strictly less than 1?
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