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THE FUNDAMENTAL GROUP OF
THE AUTOMORPHISM GROUP OF
A NONCOMMUTATIVE TORUS**
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Abstract

Assume that each completely irrational noncommutative torus is realized as an inductive
limit of circle algebras, and that for a completely irrational noncommutative torus A, of rank
m there are a completely irrational noncommutative torus A, of rank m and a positive integer
d such that tr(A,) = % -tr(Ap). It is proved that the set of all C*-algebras of sections of
locally trivial C*-algebra bundles over S? with fibres A, has a group structure, denoted by
75 (Aut(Ay,)), which is isomorphic to Z if 3d > 1 and {0} if Ad > 1.

Let B.q be a cd-homogeneous C*-algebra over S? x T2 of which no non-trivial matrix
algebra can be factored out. The spherical noncommutative torus Szd is defined by twisting

c* ('1/1'5 X Z™~2) in Bog ® C*(Z™~?) by a totally skew multiplier p on T2 x Z™~2. 1t is shown
that S¢% ® My is isomorphic to C(S2) ® C*(T? x Z™~2, p) ® M.4(C) ® Mpeo if and only if
the set of prime factors of cd is a subset of the set of prime factors of p.
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§1. Introduction

Given a locally compact abelian group G and a multiplier p on G, one can associate to
them the twisted group C*-algebra C*(G, p), which is the universal object for unitary p-
representations of G. C*(Z™, p) is said to be a noncommutative torus of rank m and denoted
by A,. The multiplier p determines a subgroup S, of G, called its symmetry group, and
the multiplier p is called totally skew if the symmetry group S, is trivial. And A, is called
completely irrational if p is totally skew (see [1, 13, 18]). It was shown in [1] that if G is a
locally compact abelian group and p is a totally skew multiplier on G, then C*(G,p) is a
simple C*-algebra.
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The noncommutative torus A, is the universal object for unitary p-representations of
7™, A, is realized as C*(u1, - ,Um | wju; = e?™0iiy u;), where u; are unitaries and
0;; are real numbers for 1 < 7,5 < m. Bocal®l showed that the set of W—tuples
(012,013, -+ ,0m—1)m) of coefficients appearing in completely irrational noncommutative
tori of rank m which are isomorphic to inductive limits of circle algebras has Lebesgue
measure 1 in [0,1) 5= for each m, where the term “ circle algebra” denotes a C*-algebra
which is a finite direct sum of algebras of the form C(T') ® M,(C).

We will assume that each completely irrational noncommutative torus appearing in this

¢

paper is an inductive limit of circle algebras.

The noncommutative torus A, of rank m is obtained by an iteration of m — 1 crossed
products by actions of Z, the first action on C(T') (see [10]). When A, is not simple, by a
change of basis, A, is obtained by an iteration of m — 2 crossed products by actions of Z,
the first action on a rational rotation algebra A%. Since the fibre My(C) of Aﬁ is a factor
of the fibre of A,, A, can be obtained by an iteration of m — 2 crossed products by actions
of Z, the first action on A%, where the actions of Z on the fibre My(C) of Aé are triviall4.

The definition of spherical noncommutative torus was introduced in [4, Definition 1.1].
Let B.q be a cd-homogeneous C*-algebra over S? x T2 whose cd-homogeneous C*-subalgebra
restricted to the subspace T? of S2 x T? is realized as A 1 ® M.(C). The crossed product
Beq Xas L Xqay +++ Xa,, L is said to be a spherical noncommutative torus of rank m, and
denoted by S;j;d, where the actions a; of Z on the fibre M.4(C) of B.q and C(S?) are trivial
and C(T?) X oy Z Xa, *** Xa,, Z is a completely irrational noncommutative torus A4, of rank
m. The fibre of Sﬁ, ¢ =1, is isomorphic to the C*-algebra de = AL Xay L Xay  Xay, Ly
where the actions «; of Z on the fibre My(C) of A% are trivial. Hence the fibre of Szd is
isomorphic to de ® M.(C).

The set [M, BPU (cd)] of homotopy classes of continuous maps of a compact Hausdorff
space M into the classifying space BPU (cd) of the Lie group PU(cd) is in bijective corre-
spondence with the set of equivalence classes of principal PU(cd)-bundles over M, which
is in bijective correspondence with the set of cd-homogeneous C*-algebras over M. Thus
each cd-homogeneous C*-algebra over M is isomorphic to the C*-algebra I'(n) of sections
of a locally trivial C*-algebra bundle n with base space M, fibre M.4(C), and structure
group Aut(M.4(C)) = PU(cd) (see [9, 16] for details). So each cd-homogeneous C*-algebra
over S% x T? is realized as the C*-algebra I'(¢) of sections of a locally trivial C*-algebra
bundle ¢ over S? x T? with fibres M_.4(C). Hence the spherical noncommutative torus Sf)d is
isomorphic to the C*-algebra I'(n) of sections of a locally trivial C*-algebra bundle 7 over
52 with fibres P¢ @ M, (C).

We are going to show that S @ My~ is isomorphic to C(S?) ®C*(T2 x Zm2% p) ®
M:q(C) ® My if and only if the set of prime factors of cd is a subset of the set of prime
factors of p, that Oy, ®Sf,d is isomorphic to Os, ® C(S?) ®A,®M.4(C) if and only if cd and
2u—1 are relatively prime, and that (’)OO®SZd is not isomorphic to Os ®C(S?)® A, M.4(C)
if cd > 1, where O, and O, denote the Cuntz algebra and the generalized Cuntz algebra,
respectively.

The automorphism group of a completely irrational noncommutative torus was investi-
gated in [12]. It is shown that for some completely irrational noncommutative torus A,
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the group Inn(A4,) (resp. Inn(M.(Ay))) of approximate inner automorphisms of A, (resp.
M.(A,)) is not arcwise connected.

§2. Spherical Noncommutative Tori

It was shown in [16, Proposition 2.10] that every d-homogeneous C*-algebra over S? is
isomorphic to one of the following C*-subalgebras B%7 l € Zg, of C(e2 L2, My(C)), given
as follows: if f € B L then the following condition is satisfied

f+(2) = U () f-(2)U(2)""
for all z € S*, where €% (resp. e2) denotes the 2-dimensional northern (resp. southern)
hemisphere, and

1 0 0
g [
() 0 1 0
0 0 =z

Since
[S%, BPU(d)] = [S*, PU(d)] = [T?, BPU(d)] = Z4,

one can construct d-homogeneous C*-algebras over T?. It was shown in [5, Proposition
1] that every d-homogeneous C*-algebra over T? is isomorphic to one of the following C*-
subalgebras A1, | € Zq, of C(T! x [0,1], M4(C)), given as follows: if f € Ay, then the
following condition is satisfied

f(z1) =U() f(z,0U(z)"
for all z € T!, where U(z) is the unitary given above.

Note that A, is called a rational rotation algebra when (d,l) = 1.

Proposition 2.1.l4 Proposition 2.3 101 B 1 be ¢ cd-homogeneous C*-algebra over S? x T?
whose cd-homogeneous C*-subalgebra restricted to the subspace T2 of S? x T? is realized as
Aé ® M.(C), (d,l) = 1. Then B4 is isomorphic to one of B% ® A§7 kd € Zcq, or one of
the following C*-subalgebras Deq i, k € Z, of C((e3 e ) x T' x [0,1], Mca(C)), consisting
of those functions f that satisfy

(f'eiﬂez)+(z) = U(Z)k(f|eiﬂe%)*(Z)U(Z)_ka
(flrrxio,) (w, 1) = U(w) (Flra o) (w, 0)U (w) ™
for all (z,w) € S* x T, where U(z),U(w) € PU(cd) are the unitaries given above.

Lemma 2.1. Let Bé be a d-homogeneous C*-algebra over S? of which no non-trivial
matriz algebra can be factored out. Then [135} € Ko(Bé) =~ 72 is primitive.
Proof. It was shown in [4, Lemma 3.1] that B is stably isomorphic to C(S?) @ My(C).
So Ko(By) = Ko(C(S?) 2 Z & 7Z. Since
[S?, BPU(d)] = [S*, PU(d)] = [T?, BPU(d)] = Za,
B L corresponds to A L with respect to the conditions on sections over the boundaries S*

of e Me2 and S* x [0,1]. The proof of the Elliott theorem given in [10, Theorem 2.2]
implies that for a rational rotation algebra A L the canonical embedding of C(T!) into
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Ay induces an isomorphism of Ko(C(T?)) into Ko(A 1) such that the primitive element
[Lo(r2)] € Ko(C(T?)) corresponds to the primitive element [1Az | € Ko(Ay). The canonical

embedding of C(T!) into Ay which induces the isomorphism of Ko(C(T?)) into KO(Aé)
corresponds to the embeddlng ¢ of C(S') into Bé. The canonical embedding ¢ of C(S?!)
into By induces an isomorphism s of Ko(C(S?)) into Ko(By), where Sl = 0e3. The
unit 1¢(g1y corresponds to the unit 1¢(g2) under the canonical embedding ¢ of C(S 1) into
C(S?). [Lesny] € Ko(C(SY)) = Z corresponds to [Lo(s2)] € Ko(C(S?)) = Z2, primitive in
Ko(C(S?)) (see [15]).In the commutative diagram

Ko(C(SY) —2s Ko(C(52)

(identity). l lu(%)

Ko(C(SY) —*—  Ko(B),

([1o(s2)]) = ¢x o (identity). o ([1o(s2))) = 15, ]- S [1Bl ] is the image of the primitive
element [1o(s2)] € Ko(C(S?)) under the 1somorpﬁism L. Hence lp,] € KO(B%) ~ 72 is
primitive. ’

The proof given in Lemma 2.1 implies that the canonical embedding of C(S*) into B L
induces an isomorphism of K(C(S?)) into KO(BLd) such that the class [1¢(s2)] of the unit
Lo (s2y corresponds to the class [1g, | of the unit 15, .

Proposition 2.2. Let B4 be a dcd—homogeneous dC*—algebm over S? x T? defined above.
Assume that no non-trivial matriz algebra can be factored out of Beq. Then Ko(Beq) =
K1(Bea) 274, and [1p,,] € Ko(Bea) is primitive.

Proof. It was shown in [4, Lemma 3.1] that B4 is stably isomorphic to C(S? x T?) ®
M_.4(C). So Ko(Bea) = Ko(C(S? x T?)) = Z* and K1 (Beq) = K1(C (5% x T?)) = 74

First, assume that Beg is isomorphic to Bx ® Ar. By Lemma 2.1, lp,] € KO(B%) = 72
is primitive. And by the Elliott theorem[!0: Theoerm 2.2 /13, 1 ¢ KO(A%)C% 72 is primitive.
Since [1B§®A§] € KO(B% ®A%) is the image of [15, |®[1a G]l € KO(B%)@)KO(A%), which is

primitive, under the isomorphism of Ky(Br)® KO(C ) D Ig'l(BE) ® K, (Aé) into Ko(Bx ®

L
Aé)’ 1B, @A, ] is primitive. ’

Next, zcmssu;ne that B.q is isomorphic to D4 k. By the same reasoning as the proof given
in Lemma 2.1, the canonical embedding ¢ of C(S! x T!) into B4 induces an isomorphism
pof Ko(C(S? x T?)) = Z ® Z* into Ko(Bea) = Z & Z3. The unit 1o (s1x71) corresponds
to the unit 1o (g2x72) under the canonical embedding ¥ of C(S' x T') into C(S? x T?).
[10(51 ><’JI‘1)] S Ko(C(Sl XTl)) > Z@Z corresponds to [1C(S2><’[[‘2)] c K0(0(52 XTQ)) > 773,
primitive in Ko(C(S% x T?)) (see [15]). In the commutative diagram

Ko(C(ST x TY)) —2— Ko(C(S? x T2))

(identity)*J( lu(E)

Ko(CO(S* x TY)) BN Ko(Bea),

w([leszxm2y]) = ¢4 o (identity). o ¢ e (s2x1)]) = [B.,]. So [lp,] is the image of
the primitive element [lo(s2xr2)] € Ko(C(S? x T?)) under the isomorphism y. Hence
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[15.,] € Ko(Bcq) is primitive.

Therefore, Ko(Beq) = K1(Beq) 2 Z*, and [1p,,] € Ko(Beq) is primitive.

We are going to show that [lgzd] € Ko(S¢?) is primitive.

Theorem 2.1. Let Szd be a spherical noncommutative torus of rank m. Assume that no
non-trivial matriz algebra can be factored out of B.y. Then KO(SZd) = Kl(Sgd) ~ 72", and
[lsea] € Ko(S5?) is primitive.

Proof. It was shown in [4, Theorem 3.4] that S¢% is stably isomorphic to C(S%) ® 4, ®
M,4(C). By the Elliott theorem[10> Theorem 2.2}

Ko(S5) = Ko(C(S?) @ Ay)
= Ko(C(5%)) ® Ko(A,) ® K1(C(S?)) @ Ki(4,)
~7207" o {0yez* =72".

Similarly, one can obtain that K;(S?) = Z*". So it is enough to show that [1§2d] € Ko(Sgh)
is primitive. The proof is by induction on m. Assume that m = 2. We have obtained the
result in Proposition 2.2.

So assume that the result is true for all spherical noncommutative tori of rank m =7 — 1.
Write S; = C*(S;—1,u;), where S; = C*(Beg, us, - -.,u;). Then the inductive hypothesis
applies to S;_1. Also, we can think of S; as the crossed product by an action « of Z on

Si_1, where the generator of Z corresponds to u;, which acts on C*(ué,ud, - ,u;_1) by

conjugation (sending u; to uiujufl = eQﬂeifuj,j # 1,2, and sending u‘} to um?u;l =
e?™id0siyd, j = 1,2), and which acts trivially on C(5?) @ Mc4(C). Note that this action is
homotopic to the trivial action, since we can homotope 6;; to 0. Hence Z acts trivially on
the K-theory of S;_;. The Pimsner-Voiculescu exact sequence for a crossed product gives

an exact sequence
Ko(Si—1) /2% Ko(Si—1) = Ko(Si) — Ki1(Si—1) —=5 K1(Si—1)

and similarly for K7, where the map @ is induced by inclusion. Since a, = 1 and since the
K-groups of S;_; are free abelian, this reduces a split short exact sequence
P
{O} — Ko(Si_1) — Ko(Sl) — Kl(Si_1) — {O}

and similarly for K;. So Ko(S;) and K (S;) are free abelian of rank 2 - 201 = 2¢. Further-
more, since the inclusion S;_1 — S; sends 1s, , to ls,, [1s,] is the image of [Is, ,], which
is primitive in K(S;—1) by inductive hypothesis. Hence the image is primitive, since the
Pimsner-Voiculescu exact sequence is a split short exact sequence of torsion-free groups.

Therefore, Ko(S5%) = K (S57) = 7*" | and [1S;,;d] € Ko(S5%) is primitive.

Corollary 2.1. Let p be a positive integer. Assume that no non-trivial matriz algebra can
be factored out of B.q. Then Sf,d ® M, (C) is not isomorphic to A® My,(C) for a C*-algebra
A if s is greater than 1. In particular, no non-trivial matriz algebra can be factored out of
Szd, Pg, or A,.

Proof. Assume that S5 ® M, (C) is isomorphic to A ® M,(C). Then the unit lgea @ I
corresponds to the unit 14 ® I,,. So

[1Sgd ® Ip] = [114 ® IS;D]~
Thus there is a projection e € S¢* such that pllsea]l = (sp)le]. But Ko(Sgh) = 72" s
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torsion-free, so [lgca] = sle]. This contradicts Theorem 2.1.

Therefore, Sg‘i ® M,(C) is not isomorphic to A ® M,,(C).

We have obtained that [1g] € Ko(S5%) is primitive. This result is very useful for inves-
tigating the bundle structure of the tensor products of spherical noncommutative tori with
U H F-algebras and Cuntz algebras.

§3. Tensor Products of Spherical Noncommutative
Tori with UHF-Algebras and Cuntz Algebras

In this section, assume no non-trivial matrix algebra can be factored out of B.4. Using
the fact that [IS;:)d] € Ko(S%) is primitive, we are going to show that the tensor product of

the spherical noncommutative torus Sf)d with a U H F-algebra My~ of type p* is isomorphic
to C(S?) @ A, ® M.q4(C) ® My if and only if the set of prime factors of cd is a subset of
the set of prime factors of p.

Theorem 3.1. S¢ @ My is isomorphic to C(S?) ® A, @ Mca(C) @ My if and only if
the set of prime factors of cd is a subset of the set of prime factors of p.

Proof. Assume that the set of prime factors of cd is a subset of the set of prime factors
of p. To show that Szd ® Mpeo is isomorphic to C(5%) ® A, ® M.q(C) ® Mpe, it is enough
to show that Sf,d @ M{cqy= is isomorphic to C(5?) ® A, ® M.q(C) @ M(.4)=. But there exist
the C*-algebra homomorphisms which are the canonical inclusions

Sﬁd ® Micq)i (C) — c(*) Ap ® Mea(C) ® Micqy: (C),

0(52) (24 Ap ® M(Cd)'i ((C) — S/c)d ® M(Cd)'i ((C) :

Set — C(S%) ® Ap ® Meq(C) < S5 @ Meg(C) = C(S?) ® Ap & Mcay2(C) < -+ - .
The inductive limit of the odd terms

- = 850 @ Mieay (C) = S5 @ Megys+1(C) — -
is S;d ® Mcqy, and the inductive limit of the even terms
= C(S?) ® Ay @ Meqys(C) = C(S?) @ Ay @ M(egye+1(C) = -+

is C(5?) ® Ay ® Mcgy. Thus by the Elliott theorem![!!: Theorem 2.1} 'ged @ Nf o is iso-
morphic to C(5%) @ A, @ Mgy

Conversely, assume that S5 @ My is isomorphic to C(S?) ® A, ® Mcq(C) @ Mpe. Then
the unit lggd @ 1ns,00 corresponds to the unit los2yga, ® 1Moo @ Leg- So

[1S;d ® 1ar,ee ] = [lo(s2ypa, @ 1nyee @ Ledl,
(o ® Tagyee] = [Toge] @ [Lagy ],
[Loszyea, © Imye @ Led] = cd([lo(s2ya,] @ [La,])-
Under the assumption that the unit lggd ® 1,0 corresponds to the unit 1o(s2)ga, ® 1a,e @
I.q, if there is a prime factor g of cd such that g { p, then [15/,..] # g[es] for a projection ey
in Mpe. So there is a projection e € S such that [lsca] = gle]. This contradicts Theorem
2.1. Thus the set of prime factors of cd is a subset of the set of prime factors of p.
Therefore, S¢% ® Mye is isomorphic to C(S?) ® A, ® Mcq(C) ® My if and only if the set
of prime factors of cd is a subset of the set of prime factors of p.
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In particular, Szd ® My~ has the trivial bundle structure if the set of prime factors of cd
is a subset of the set of prime factors of p.

Let us study the tensor products of spherical noncommutative tori with (even) Cuntz
algebras.

The Cuntz algebra O,,2 < u < 00, is the universal C*-algebra generated by w isometries
81y, 8y, 1., sjs; =1 for all j, with the relation s1s7 + -+ + sus;, = 1. Cuntz!™8! proved
that O, is simple and the K-theory of O, is Ko(O,) = Z/(u — 1)Z and K;(O,) = 0. He
proved that Ky(O,) is generated by the class of the unit.

Proposition 3.1. Let S,C)d be a spherical noncommutative torus with fibres de‘ ® M.(C)
for a positive integer cd greater than 1. Let u be a positive integer such that cd and v — 1
are not relatively prime. Then O, ® S;d is mot isomorphic to O, ® C(S?) ® A, ® M.q(C).

Proof. Let p be a prime such that p | ¢d and p | w — 1. Suppose that O, ® Szd is
isomorphic to O, ® C(S?) @ A, ® M.q(C). Then the unit lo,gset corresponds to the unit
1(9u®0(52)®Ap ® I.q. So [1(9“@5;(1] = [1Ou®0(52)®Ap ® 14 = Cd[10u®C(SZ)®AP]~ Hence there
is a projection e in O, ®S¢? such that [lo,gse] = cdle]. But [1p,gs:] = [10,] @ [1gca] and
[1p,] is a generator of Ko(O,) = Z/(u — 1)Z (see [8]). But p | u— 1. [1p,] # ple.] for a
projection e, in O,. So [1Szd] = ple] for a projection €’ in S¢. This contradicts Theorem
2.1. Hence cd and u — 1 are relatively prime.

Therefore, O, ® Sf)d is not isomorphic to O, ® C(5?) ® A, ® M.q(C) if cd and v — 1 are
not relatively prime.

The following result is useful for understanding the bundle structure of O, ® Szd.

Proposition 3.2.[19 Theorem 721 fo4 A gnd B be unital simple inductive limits of even
Cuntz algebras. If a : Ko(A) — Ko(B) is an isomorphism of abelian groups satisfying
a([14]) = [1B], then there is an isomorphism ¢ : A — B which induces c.

Corollary 3.1.

(1) Let p be an odd integer such that p and 2u — 1 are relatively prime. Then Ogy is
isomorphic to Ogy—_1)p+1 @ Mp. That is, Oy is isomorphic to Oz @ Mpes.

(2) Ogy is isomorphic to Oy @ Mg,y

Theorem 3.2. Let Szd be a spherical noncommutative torus with fibres P;f ® M.(C).
Then Ogy @ S;d is isomorphic to Oz, @ C(S?) @ A, @ M.q(C) if and only if cd and 2u — 1
are relatively prime.

Proof. Assume that cd and 2u — 1 are relatively prime. Let c¢d = p2 for some odd
integer p. Then p and 2u — 1 are relatively prime. Then by Corollary 3.1 Oy, is isomorphic
to Oz ® Mpee, and O, is isomorphic to Oz, @ Mgy = Oz @ M(ay)e @ M(gvye =
Oay @ M(gvye=. So Oy, is isomorphic to Oy @ My @ M(gvyee = Ozy @ Mcqy>. Thus by
Theorem 3.1 Oz, ® S;d is isomorphic to Oay & M(cqy ® S;d, which in turn is isomorphic
t0 Ozy @ Micay= © C(S?) ® A, ® Meg(C). Thus Oy, © S5% is isomorphic to Og, © C(S?) ®
Ap ® M q(C).

The converse was proved in Proposition 3.1.

Therefore, O, ® Sf)d is isomorphic to Oy, ® C(S?) ® A, ® M:q(C) if and only if ¢d and
2u — 1 are relatively prime.

Cuntz® computed the K-theory of the generalized Cuntz algebra O, generated by a
sequence of isometries with mutually orthogonal ranges, Ky(Os) = Z and K;(O) = 0.
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He proved that Ky(Oy) is generated by the class of the unit.

Proposition 3.2. Let S;d be a spherical noncommutative torus with fibres Pg ® M.(C).
Then O ® S§* is not isomorphic to Os @ C(S?) @ Ay @ Mea(C) if cd > 1.

Proof. Suppose O, ® S;d is isomorphic to Oy ® C(S?) ® A, ® M.4(C). The unit
1@()0@5201 corresponds to the unit lp_gc(s2)0a, ® led- By the same trick as in the proof
of Proposition 3.1, one can show that [lp_ gsc| = cde] for a projection e € Ox @ Sed.
[1(900@5;(1] =[lo ] ® [lggd] and [1lp_] is a primitive element of K¢(Ox) = Z (see [8]). So
[1S;,;d] = cd[¢/] for a projection e’ € S¢%. This contradicts Theorem 2.1.

Therefore, Ous ® S5 is not isomorphic to Ou ® C(5?) ® A, @ M4(C).

§4. Completely Irrational Noncommutative Tori

It was proved in [2, Theorem 1.5] that every completely irrational noncommutative torus
has real rank 0, where the “ real rank 0” means that the set of invertible self-adjoint elements
is dense in the set of self-adjoint elements. Combining [4, Theorem 3.4] and [6, Corollary
3.3] yields that the simple C*-algebra de has real rank 0 since the completely irrational
noncommutative torus A, has real rank 0. The Lin and Rgrdam theorem[17> Proposition 3] gayg
that the simple C*-algebra Pg is an inductive limit of circle algebras, since P;f ®RK(H) =
A, ® K(H) is an inductive limit of circle algebras!!”> Proposition 2] - Combining the Elliott
classification theorem [11, Theorem 7.1] and [14, Theorem 1.3] yields that the completely
irrational noncommutative torus A, and the simple C*-algebra P;l induced from A, are
isomorphic if the ranges of the traces equal.

Lemma 4.1. tr(Ko(Plj'l)) = 2 - tr(Ko(4,)).

Proof. P;jl has a matrix representation induced from the matrix representation of the
rational rotation subalgebra A L The diagonal entries of the matrix representation are in
A,, and so the range of the trace of Ko(Plf) is Z+ 3(Z + Za + ZB + -+ + Zy), where
tr(Ko(Ap)) = Z+ Zd+ Za + LS + - - - + Zv, and hence tr(Ko(P2)) = § - tr(Ko(4,)).

Theorem 4.1. Let A, be a completely irrational noncommutative torus of rank m with
tr(Ko(Ay)) = 2 - tr(Ko(A,)) for a completely irrational noncommutative torus A, of rank
m. Then A, is isomorphic to Pg.

Proof. One can assume that

! 1
tr(KO(Aw)):Z—&—Za—&-Za—l—-“—i—Zﬁ:ZE—&-Za—i—-“—i—Zﬁ

1 1
= E(Z +Zd+ Zda+ - - + Zdp) = h tr(Ko(Ap))-
One can divide the proof into three cases according to where the rational number é comes

from.

Case 1. The case that é is one of 0;; or é can be obtained by a change of basis for
Z™ to be é = 0;;. By a change of basis for Z"t™, one can easily obtain that there is a
completely irrational noncommutative torus A, with 6;; = é for some 4, j, and tr(Ko(4,)) =
tr(Ko(A,).

Case 2. The case that é is one of the products of 6;;. By replacing a suitable product of
real numbers appearing in the product giving é with é, one can replace A, with A, up to
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isomorphism (by the Elliott classification theorem and the Ji and Xia result) with 6;; = é
for some 4, j and tr(Ko(A4,)) = tr(Ko(A,)).

Case 3. The case that é is a Z-linear combination of the products of 6;;. Combining
the two results given above yields that A, can be replaced with A, with 0;; = é for some

i,7, and tr(Ko(A,)) = tr(Ko(A,)). So one can assume that A, = A,. Hence

tr(Ko(PL)) = = - tr(Ko(A,)) = tr(Ko(AL)).

IS

By the Elliott classification theorem(!: Theorem 7.1 and the Ji and Xia’s result!t4 Theorem 1.3]

P;jl is isomorphic to A,,.

§5. Sectional C*-Algebras with Fibres a
Completely Irrational Noncommutative Torus

We are going to show that the set of all spherical noncommutative tori with fibres
A, ® M.(C) is in bijective correspondence with the set of all C*-algebras of sections of
locally trivial C*-algebra bundles over S? with fibres A, ® M.(C) for a completely irrational
noncommutative torus A,,.

Let A, be a noncommutative torus of rank m with g\w =~ T! and fibres My(C) ® A, for
a completely irrational noncommutative torus A, (see [18]). By the definition of A4, C(T*)
and A, split. Since [T*, BPU(d)] = {0}, C(T*) and My(C) split. And My(C) and A, also
split. But by Corollary 2.1, A, has a non-trivial bundle structure if d > 1. This implies
that a C*-subalgebra of A, plays a role as a base space in the bundle structure. In fact, A4,
can be obtained by an iteration of m — 2 crossed products by actions of Z, the first action
on a rational rotation algebra A L and the non-triviality of the bundle structure is given by
a non-trivial element of [T?, BPU(d)] = [T', PU(d)] & Zg, which represents Ay canonically
embedded into A, .

Let d be the biggest integer among the possible integers satisfying the condition

tr(Ko(A) = 5 - tr(Ko(A,),
ie., A, = Pg. We want to show that each C*-algebra of sections of a locally trivial C*-
algebra bundle over S$? with fibres Pl} has the trivial bundle structure.

Lemma 5.1. Each C*-algebra T'(n) of sections of a locally trivial C*-algebra bundle n
over S* with fibres Pp1 has the trivial bundle structure.

Proof. Let P} = lim (36—91 C(TYH @ Mpi(j)((C)). The C*-algebra I'(n) is isomorphic to

an inductive limit of direct sums of p;(;)-homogeneous C*-algebras over S L' x T!, and each
C(S*x T?) is canonically embedded into I'(). So there could be a canonical homomorphism
of C(S%) ® My(C) into the C*-algebra I'(n) of sections of a locally trivial C*-algebra bundle
n over S' with fibres Pp1 such that the non-triviality can be given by a d-homogeneous
C*-algebra over S x T!. Then My(C) must be factored out of the circle algebra in each
inductive step, and so the range of the trace of P} would be the form Ltr(Ko(A)) for a simple
unital C*-algebra A, which is impossible by the assumption for the range of the trace. We
have two cases; one of them is the case that a C*-subalgebra of Pp1 plays a role as a base
space in the bundle structure, and the other is not.
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For the first case, when a C*-subalgebra of Pp1 plays a role as a base space in the bundle
structure and Pp1 is realized as a tensor product of non-trivial completely irrational non-
commutative tori, the torsion-free groups in Pp1 = A, giving simple noncommutative tori
which are given by twisting the torsion-free groups by totally skew multipliers must split, so
all factors of Pp1 must split. The relation among factors of P;} is different from the relation
between fibres M;(C) and base A, in the fibres of the non-simple noncommutative torus
A, given above, and so one can assume that all factors of Pp1 play roles as a base space in
the bundle structure. Hence Pp1 plays a role as a base space in the bundle structure, and so
I'(n) is isomorphic to C(S*) ® P,.

For the other case, since P} = lim ( 691 C(TY) ® My, ,, (C)), there is a non-trivial matrix
=

algebra M,,(C) which is embedded into P). Since [S*, BPU(p)] = {0}, C(S") and M,(C)
split, i.e., any p-homogeneous C*-algebra over S' has the trivial bundle structure. By the
same reasoning as above, M,(C) cannot be factored out of the circle algebras in all inductive
steps. But I'(n) has a locally trivial bundle structure. Hence C(S') and (M,(C) <) P}
must split, and so I'(n) has the trivial bundle structure.

Therefore, each C*-algebra I'(n) of sections of a locally trivial C*-algebra bundle 1 over
S with fibres Pp1 has the trivial bundle structure.

Compare the C*-algebra I'(n) for the second case with any C*-algebra of sections of a
locally trivial C*-algebra bundle over S® with fibres K(H).

Proposition 5.1. Fach C*-algebra T'(n) of sections of a locally trivial C*-algebra bundle
n over S? with fibres Pp1 has the trivial bundle structure.

Proof. Let P; = lim (36?1 C(TY) ® M, z.(J.)((C)). But there is a map of degree 1 from S?

to S' x T'. So each C*-algebra of sections of a locally trivial C*-algebra bundle over S2
with fibres Pp1 is induced from the C*-algebra I'(¢) of sections of a locally trivial C*-algebra
bundle ¢ over S! x T! with fibres Ppl. Consider the crossed product by the action ay of Z on
I'(¢) for a suitable irrational number 6 such that the range of the trace of Pg ® Ag is not 1 x
the range of the trace of any simple noncommutative torus of rank m + 1 for any positive
integer s greater than 1, where the action ap on C(S') ® Py is trivial and C(T") X o, Z is the
irrational rotation algebra Ay. Then I'(¢) X4, Z is obviously realized as the C*-algebra of
sections of a locally trivial C*-algebra bundle over S with fibres Pp1 ® Ap, since by Lemma
5.1 P} and C(T') split and so do P} and Ag. By Lemma 5.1, T'(¢) Xq, Z has the trivial
bundle structure. Hence each C*-algebra of sections of a locally trivial C*-algebra bundle
over 5% with fibres P} has the trivial bundle structure.

Each cd-homogeneous C*-algebra over S? x T? is realized as the C*-algebra I'(¢) of
sections of a locally trivial C*-algebra bundle ¢ over S% x T? with fibres M_.4(C), and hence
Szd is realized as the C*-algebra of sections of a locally trivial C*-algebra bundle over S?
with fibres de ® M.(C).

Theorem 5.1. The set of spherical noncommutative tori with fibres Pg ® M.(C) is in
bijective correspondence with the set of C*-algebras of sections of locally trivial C*-algebra
bundles over S* with, fibres P} @ M.(C).

Proof. If cd = 1, we have obtained the result in Proposition 5.1. So assume that
ed > 1. Then one can assume that there is the matrix algebra M_.4(C) which is factored
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out of each inductive step. But M4(C) is not factored out of Pg, and so Pg is isomorphic
to A% Xag L Xay -+ Xa,, Z. By Proposition 5.1, each C*-algebra of sections of a locally
trivial C*-algebra bundle over S? with fibres C*(dZ X dZ) X o5 Z X o, * * * X a,,, Z has the trivial
bundle structure. Hence each C*-algebra of sections of a locally trivial C*-algebra bundle
over 5% with fibres P @ M.(C) is given by twisting C* (T/I‘E X Z™2) in By ® C*(Z™~2) by
the totally skew multiplier p on T2 x 72,

Therefore, the set of spherical noncommutative tori with fibres P;f ® M. (C) is in bijective
correspondence with the set of C*-algebras of sections of locally trivial C*-algebra bundles
over S? with fibres Pg ® M.(C).

The set of spherical noncommutative tori with fibres the simple C*-algebra P;l has a
group structure.

Definition 5.1. The group of spherical noncommutative tori with fibres the simple C*-
algebra Pffl s said to be the fundamental group of the automorphism group Aut(P;i), and
denoted by Wf(Aut(de)).

Theorem 5.2. 75 (Aut(P{)) = Z if d > 1, = {0} if d = 1.

Proof. By Theorem 5.1, the set of spherical noncommutative tori with fibres Pg is
in bijective correspondence with the set of C*-algebras of sections of locally trivial C*-
algebra bundles over S? with fibres P¢. So m§(Aut(Pg)) is in bijective correspondence with
{Dq | k € Z} given in the statement of Proposition 2.1. Hence 7§ (Aut(Pd)) = Z if d > 1,
~ {0} ifd=1.

Elliott and Rgrdam['? proved that Tnn(A4,,) is connected.

Question.["?! Is Inn(A,,) arcwise connected ?

It is well-known (see [21, Lemma 1.8, Lemma 3.1, Lemma 3.2]) that for a locally trivial
C*-algebra bundle over S? with fibres A,, there is a principal Aut(A,,)-bundle over S!, and
that the set of all C*-algebras of sections of locally trivial C*-algebra bundles over S? with
fibres A, is in bijective correspondence with the set of principal Aut(A,)-bundles over S*.
The set of principal Aut(A,)-bundles over S! is in bijective correspondence with (the set
of principal Inn(A,,)-bundles over S!) x GL(2™71,Z), since GL(2™ 1, Z) = Aut(K;(A,))
is discrete.

If Aut(A,) is arcwise connected, then m(Aut(A,)) is in bijective correspondence with
the set of principal Aut(A,)-bundles over S* by [20, Corollary 18.6]. This implies that if
Tnn(A,) is arcwise connected, then 7 (Inn(A,)) is in bijective correspondence with the set
of principal Inn(A,,)-bundles over S*

Theorem 5.3. Let A, be a completely irrational noncommutative torus which is isomor-
phic to P;l for an integer d greater than 1. Then Inn(A,) is not arcwise connected.

Proof. Let P be a simple C*-algebra which is given by twisting C(T?) @ C*(Z™?) in
AL ®C* (Z™=2) by the multiplier p on T2 x Z™~2, where T? is the primitive ideal space
of A;, and C*(@,res of p) = C*(’ﬁ@) Assume that H(Pg) is arcwise connected. Then
m1(Inn(Pf)) is in bijective correspondence with the set of principal Inn(P¢)-bundles over
St

The elements of 7§ (Aut(Pg)) correspond to the C*-algebras of locally trivial C*-algebra
bundles over S2? with fibres Pg. There are principal Aut(P;f)—bundles over S? corresponding
to the elements. Actually, the principal PU(d)-bundles over S? correspond to the elements



452 CHIN. ANN. OF MATH. Vol.21 Ser.B

if Inn(Py) is arcwise connected. But m;(PU(d)) = Z/dZ is in bijective correspondence with
the set of principal PU(d)-bundles over S?. This contradicts the fact that 5 (Aut(P;f)) =7
if d > 1. So Inn(Py) is not arcwise connected if d > 1.

Therefore, Inn(A,,) is not arcwise connected if A, is isomorphic to de for an integer d
greater than 1.

For the classifying space B(Aut(M.(C) ® de)) of the automorphism group Aut(M.(C) ®

d
By);

ma(B(Aut(M(Fy)))) = [$%, B(Aut(Mc(P;))] = [S*, Aut(Mc(Fy))]
= 7r1(Aut(Mc(Pg)))7

which is a non-trivial group if ed > 1. But m5(Aut(M,(Pg))) has not a group structure if
¢>1and d> 1. Assume that Inn(M.(P¢)) is arcwise connected. Then i (Inn(M.(PZ)))
] (Aut(Mc(Pg))), which is a contradiction. So H(Mc(Pf‘f)) is not arcwise connected.

We have obtained that Inn(A,, ® M.(C)) is not arcwise connected if A, is isomorphic to

1

P;l for an integer d greater than 1.
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