THE FUNDAMENTAL GROUP OF THE AUTOMORPHISM GROUP OF A NONCOMMUTATIVE TORUS**

D. H. BOO* C. G. PARK*

Abstract

Assume that each completely irrational noncommutative torus is realized as an inductive limit of circle algebras, and that for a completely irrational noncommutative torus A_{ω} of rank m there are a completely irrational noncommutative torus A_{ρ} of rank m and a positive integer d such that $\operatorname{tr}(A_{\omega}) = \frac{1}{d} \cdot \operatorname{tr}(A_{\rho})$. It is proved that the set of all C^* -algebras of sections of locally trivial C^* -algebra bundles over S^2 with fibres A_{ω} has a group structure, denoted by $\pi_1^s(\operatorname{Aut}(A_{\omega}))$, which is isomorphic to \mathbb{Z} if $\exists d > 1$ and $\{0\}$ if $\nexists d > 1$.

Let B_{cd} be a *cd*-homogeneous C^* -algebra over $S^2 \times \mathbb{T}^2$ of which no non-trivial matrix algebra can be factored out. The spherical noncommutative torus \mathbb{S}_{ρ}^{cd} is defined by twisting $C^*(\widehat{\mathbb{T}^2} \times \mathbb{Z}^{m-2})$ in $B_{cd} \otimes C^*(\mathbb{Z}^{m-2})$ by a totally skew multiplier ρ on $\widehat{\mathbb{T}^2} \times \mathbb{Z}^{m-2}$. It is shown that $\mathbb{S}_{\rho}^{cd} \otimes M_p \infty$ is isomorphic to $C(S^2) \otimes C^*(\widehat{\mathbb{T}^2} \times \mathbb{Z}^{m-2}, \rho) \otimes M_{cd}(\mathbb{C}) \otimes M_p \infty$ if and only if the set of prime factors of cd is a subset of the set of prime factors of p.

Keywords C^* -algebra bundle, Homogeneous C^* -algebra, Crossed product,

UHF-algebra, Cuntz algebra

1991 MR Subject Classification 46L05, 46L87, 55R15

Chinese Library Classification 0152.2, 0189.3⁺4 Document code A Article ID 0252-9599(2000)04-0001-12

§1. Introduction

Given a locally compact abelian group G and a multiplier ρ on G, one can associate to them the twisted group C^* -algebra $C^*(G, \rho)$, which is the universal object for unitary ρ representations of G. $C^*(\mathbb{Z}^m, \rho)$ is said to be a noncommutative torus of rank m and denoted by A_{ρ} . The multiplier ρ determines a subgroup S_{ρ} of G, called its symmetry group, and the multiplier ρ is called totally skew if the symmetry group S_{ρ} is trivial. And A_{ρ} is called completely irrational if ρ is totally skew (see [1, 13, 18]). It was shown in [1] that if G is a locally compact abelian group and ρ is a totally skew multiplier on G, then $C^*(G, \rho)$ is a simple C^* -algebra.

Manuscript received November 2, 1999.

^{*}Department of Mathematics, Chungnam National University, TaeJon 305-764, Korea.

E-mail: dhboo@math.chungnam.ac.kr and cgpark@math.chungnam.ac.kr

^{**}Project supported by the grant No. 1999-2-102-001-3 from the Interdisciplinary Research Program Year of the KOSEF.

The noncommutative torus A_{ρ} is the universal object for unitary ρ -representations of \mathbb{Z}^m , A_{ρ} is realized as $C^*(u_1, \dots, u_m \mid u_i u_j = e^{2\pi i \theta_{ji}} u_j u_i)$, where u_i are unitaries and θ_{ji} are real numbers for $1 \leq i, j \leq m$. Boca^[3] showed that the set of $\frac{m(m-1)}{2}$ -tuples $(\theta_{12}, \theta_{13}, \dots, \theta_{(m-1)m})$ of coefficients appearing in completely irrational noncommutative tori of rank m which are isomorphic to inductive limits of circle algebras has Lebesgue measure 1 in $[0, 1)^{\frac{m(m-1)}{2}}$ for each m, where the term "circle algebra" denotes a C^* -algebra which is a finite direct sum of algebras of the form $C(\mathbb{T}^1) \otimes M_q(\mathbb{C})$.

We will assume that each completely irrational noncommutative torus appearing in this paper is an inductive limit of circle algebras.

The noncommutative torus A_{ρ} of rank m is obtained by an iteration of m-1 crossed products by actions of \mathbb{Z} , the first action on $C(\mathbb{T}^1)$ (see [10]). When A_{ρ} is not simple, by a change of basis, A_{ρ} is obtained by an iteration of m-2 crossed products by actions of \mathbb{Z} , the first action on a rational rotation algebra $A_{\frac{1}{d}}$. Since the fibre $M_d(\mathbb{C})$ of $A_{\frac{1}{d}}$ is a factor of the fibre of A_{ρ} , A_{ρ} can be obtained by an iteration of m-2 crossed products by actions of \mathbb{Z} , the first action on $A_{\frac{1}{d}}$, where the actions of \mathbb{Z} on the fibre $M_d(\mathbb{C})$ of $A_{\frac{1}{d}}$ are trivial^[4].

The definition of spherical noncommutative torus was introduced in [4, Definition 1.1]. Let B_{cd} be a cd-homogeneous C^* -algebra over $S^2 \times \mathbb{T}^2$ whose cd-homogeneous C^* -subalgebra restricted to the subspace \mathbb{T}^2 of $S^2 \times \mathbb{T}^2$ is realized as $A_{\frac{1}{d}} \otimes M_c(\mathbb{C})$. The crossed product $B_{cd} \times_{\alpha_3} \mathbb{Z} \times_{\alpha_4} \cdots \times_{\alpha_m} \mathbb{Z}$ is said to be a spherical noncommutative torus of rank m, and denoted by \mathbb{S}_{ρ}^{cd} , where the actions α_i of \mathbb{Z} on the fibre $M_{cd}(\mathbb{C})$ of B_{cd} and $C(S^2)$ are trivial and $C(\mathbb{T}^2) \times_{\alpha_3} \mathbb{Z} \times_{\alpha_4} \cdots \times_{\alpha_m} \mathbb{Z}$ is a completely irrational noncommutative torus A_{ρ} of rank m. The fibre of \mathbb{S}_{ρ}^d , c = 1, is isomorphic to the C^* -algebra $P_{\rho}^d := A_{\frac{1}{d}} \times_{\alpha_3} \mathbb{Z} \times_{\alpha_4} \cdots \times_{\alpha_m} \mathbb{Z}$, where the actions α_i of \mathbb{Z} on the fibre $M_d(\mathbb{C})$ of $A_{\frac{1}{d}}$ are trivial. Hence the fibre of \mathbb{S}_{ρ}^{cd} is isomorphic to $P_{\rho}^d \otimes M_c(\mathbb{C})$.

The set [M, BPU(cd)] of homotopy classes of continuous maps of a compact Hausdorff space M into the classifying space BPU(cd) of the Lie group PU(cd) is in bijective correspondence with the set of equivalence classes of principal PU(cd)-bundles over M, which is in bijective correspondence with the set of cd-homogeneous C^* -algebras over M. Thus each cd-homogeneous C^* -algebra over M is isomorphic to the C^* -algebra $\Gamma(\eta)$ of sections of a locally trivial C^* -algebra bundle η with base space M, fibre $M_{cd}(\mathbb{C})$, and structure group $\operatorname{Aut}(M_{cd}(\mathbb{C})) \cong PU(cd)$ (see [9, 16] for details). So each cd-homogeneous C^* -algebra over $S^2 \times \mathbb{T}^2$ is realized as the C^* -algebra $\Gamma(\zeta)$ of sections of a locally trivial C^* -algebra bundle ζ over $S^2 \times \mathbb{T}^2$ with fibres $M_{cd}(\mathbb{C})$. Hence the spherical noncommutative torus \mathbb{S}^{cd}_{ρ} is isomorphic to the C^* -algebra $\Gamma(\eta)$ of sections of a locally trivial C^* -algebra bundle η over S^2 with fibres $P_{\rho}^d \otimes M_c(\mathbb{C})$.

We are going to show that $\mathbb{S}_{\rho}^{cd} \otimes M_{p^{\infty}}$ is isomorphic to $C(S^2) \otimes C^*(\widehat{\mathbb{T}^2} \times \mathbb{Z}^{m-2}, \rho) \otimes M_{cd}(\mathbb{C}) \otimes M_{p^{\infty}}$ if and only if the set of prime factors of cd is a subset of the set of prime factors of p, that $\mathcal{O}_{2u} \otimes \mathbb{S}_{\rho}^{cd}$ is isomorphic to $\mathcal{O}_{2u} \otimes C(S^2) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C})$ if and only if cd and 2u-1 are relatively prime, and that $\mathcal{O}_{\infty} \otimes \mathbb{S}_{\rho}^{cd}$ is not isomorphic to $\mathcal{O}_{\infty} \otimes C(S^2) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C})$ if cd > 1, where \mathcal{O}_u and \mathcal{O}_{∞} denote the Cuntz algebra and the generalized Cuntz algebra, respectively.

The automorphism group of a completely irrational noncommutative torus was investigated in [12]. It is shown that for some completely irrational noncommutative torus A_{ω} , the group $\overline{\text{Inn}}(A_{\omega})$ (resp. $\overline{\text{Inn}}(M_c(A_{\omega}))$) of approximate inner automorphisms of A_{ω} (resp. $M_c(A_{\omega})$) is not arcwise connected.

§2. Spherical Noncommutative Tori

It was shown in [16, Proposition 2.10] that every *d*-homogeneous C^* -algebra over S^2 is isomorphic to one of the following C^* -subalgebras $B_{\frac{1}{d}}$, $l \in \mathbb{Z}_d$, of $C(e_+^2 \amalg e_-^2, M_d(\mathbb{C}))$, given as follows: if $f \in B_{\frac{1}{d}}$, then the following condition is satisfied

$$f_{+}(z) = U(z)^{l} f_{-}(z) U(z)^{-1}$$

for all $z \in S^1$, where e_+^2 (resp. e_-^2) denotes the 2-dimensional northern (resp. southern) hemisphere, and

$$U(z) = \begin{pmatrix} 1 & \dots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & 1 & 0 \\ 0 & \dots & 0 & z \end{pmatrix}.$$

Since

$$[S^2, BPU(d)] \cong [S^1, PU(d)] \cong [\mathbb{T}^2, BPU(d)] \cong \mathbb{Z}_d,$$

one can construct *d*-homogeneous C^* -algebras over \mathbb{T}^2 . It was shown in [5, Proposition 1] that every *d*-homogeneous C^* -algebra over \mathbb{T}^2 is isomorphic to one of the following C^* -subalgebras $A_{\frac{l}{d}}$, $l \in \mathbb{Z}_d$, of $C(\mathbb{T}^1 \times [0,1], M_d(\mathbb{C}))$, given as follows: if $f \in A_{\frac{l}{d}}$, then the following condition is satisfied

$$f(z,1) = U(z)^l f(z,0) U(z)^{-1}$$

for all $z \in \mathbb{T}^1$, where U(z) is the unitary given above.

Note that $A_{\frac{l}{d}}$ is called a rational rotation algebra when (d, l) = 1.

Proposition 2.1.^[4, Proposition 2.3] Let B_{cd} be a cd-homogeneous C^* -algebra over $S^2 \times \mathbb{T}^2$ whose cd-homogeneous C^* -subalgebra restricted to the subspace \mathbb{T}^2 of $S^2 \times \mathbb{T}^2$ is realized as $A_{\frac{1}{d}} \otimes M_c(\mathbb{C}), \ (d,l) = 1$. Then B_{cd} is isomorphic to one of $B_{\frac{k}{c}} \otimes A_{\frac{1}{d}}, \ kd \in \mathbb{Z}_{cd}, \ or \ one \ of$ the following C^* -subalgebras $D_{cd,k}, \ k \in \mathbb{Z}, \ of \ C((e_+^2 \amalg e_-^2) \times \mathbb{T}^1 \times [0,1], M_{cd}(\mathbb{C})), \ consisting$ of those functions f that satisfy

$$(f|_{e_+^2 \amalg e_-^2})_+(z) = U(z)^k (f|_{e_+^2 \amalg e_-^2})_-(z)U(z)^{-k},$$

$$(f|_{\mathbb{T}^1 \times [0,1]})(w,1) = U(w)^{cl} (f|_{\mathbb{T}^1 \times [0,1]})(w,0)U(w)^{-cl}$$

for all $(z,w) \in S^1 \times \mathbb{T}^1$, where $U(z), U(w) \in PU(cd)$ are the unitaries given above.

Lemma 2.1. Let $B_{\frac{1}{d}}$ be a d-homogeneous C^* -algebra over S^2 of which no non-trivial matrix algebra can be factored out. Then $[1_{B_{\frac{1}{d}}}] \in K_0(B_{\frac{1}{d}}) \cong \mathbb{Z}^2$ is primitive.

Proof. It was shown in [4, Lemma 3.1] that $B_{\frac{l}{d}}$ is stably isomorphic to $C(S^2) \otimes M_d(\mathbb{C})$. So $K_0(B_{\frac{l}{d}}) \cong K_0(C(S^2)) \cong \mathbb{Z} \oplus \mathbb{Z}$. Since

$$[S^2, BPU(d)] \cong [S^1, PU(d)] \cong [\mathbb{T}^2, BPU(d)] \cong \mathbb{Z}_d,$$

 $B_{\frac{l}{d}}$ corresponds to $A_{\frac{l}{d}}$ with respect to the conditions on sections over the boundaries S^1 of $e_+^2 \amalg e_-^2$ and $S^1 \times [0,1]$. The proof of the Elliott theorem given in [10, Theorem 2.2] implies that for a rational rotation algebra $A_{\frac{l}{2}}$ the canonical embedding of $C(\mathbb{T}^1)$ into $A_{\frac{1}{d}}$ induces an isomorphism of $K_0(C(\mathbb{T}^2))$ into $K_0(A_{\frac{1}{d}})$ such that the primitive element $[1_{C(\mathbb{T}^2)}] \in K_0(C(\mathbb{T}^2))$ corresponds to the primitive element $[1_{A_{\frac{1}{d}}}] \in K_0(A_{\frac{1}{d}})$. The canonical embedding of $C(\mathbb{T}^1)$ into $A_{\frac{1}{d}}$ which induces the isomorphism of $K_0(C(\mathbb{T}^2))$ into $K_0(A_{\frac{1}{d}})$ corresponds to the embedding ϕ of $C(S^1)$ into $B_{\frac{1}{d}}$. The canonical embedding ϕ of $C(S^1)$ into $B_{\frac{1}{d}}$. The canonical embedding ϕ of $C(S^1)$ into $B_{\frac{1}{d}}$ induces an isomorphism μ of $K_0(C(S^2))$ into $K_0(B_{\frac{1}{d}})$, where $S^1 = \partial e_{\pm}^2$. The unit $1_{C(S^1)}$ corresponds to the unit $1_{C(S^2)}$ under the canonical embedding ψ of $C(S^1)$ into $C(S^2)$. $[1_{C(S^1)}] \in K_0(C(S^1)) \cong \mathbb{Z}$ corresponds to $[1_{C(S^2)}] \in K_0(C(S^2)) \cong \mathbb{Z}^2$, primitive in $K_0(C(S^2))$ (see [15]). In the commutative diagram

$$\begin{array}{ccc} K_0(C(S^1)) & \stackrel{\psi_*}{\longrightarrow} & K_0(C(S^2)) \\ (\text{identity})_* & & & & \downarrow \mu(\cong) \\ & & & & & K_0(C(S^1)) & \stackrel{\phi_*}{\longrightarrow} & K_0(B_{\frac{l}{d}}), \end{array}$$

 $\mu([1_{C(S^2)}]) = \phi_* \circ (\text{identity})_* \circ \psi_*^{-1}([1_{C(S^2)}]) = [1_{B_{\frac{l}{d}}}]. \text{ So } [1_{B_{\frac{l}{d}}}] \text{ is the image of the primitive element } [1_{C(S^2)}] \in K_0(C(S^2)) \text{ under the isomorphism } \mu. \text{ Hence } [1_{B_{\frac{l}{d}}}] \in K_0(B_{\frac{l}{d}}) \cong \mathbb{Z}^2 \text{ is primitive.}$

The proof given in Lemma 2.1 implies that the canonical embedding of $C(S^1)$ into $B_{\frac{1}{d}}$ induces an isomorphism of $K_0(C(S^2))$ into $K_0(B_{\frac{1}{d}})$ such that the class $[1_{C(S^2)}]$ of the unit $1_{C(S^2)}$ corresponds to the class $[1_{B_{\frac{1}{d}}}]$ of the unit $1_{B_{\frac{1}{d}}}$.

Proposition 2.2. Let B_{cd} be a cd-homogeneous C^* -algebra over $S^2 \times \mathbb{T}^2$ defined above. Assume that no non-trivial matrix algebra can be factored out of B_{cd} . Then $K_0(B_{cd}) \cong K_1(B_{cd}) \cong \mathbb{Z}^4$, and $[1_{B_{cd}}] \in K_0(B_{cd})$ is primitive.

Proof. It was shown in [4, Lemma 3.1] that B_{cd} is stably isomorphic to $C(S^2 \times \mathbb{T}^2) \otimes M_{cd}(\mathbb{C})$. So $K_0(B_{cd}) \cong K_0(C(S^2 \times \mathbb{T}^2)) \cong \mathbb{Z}^4$ and $K_1(B_{cd}) \cong K_1(C(S^2 \times \mathbb{T}^2)) \cong \mathbb{Z}^4$.

First, assume that B_{cd} is isomorphic to $B_{\frac{k}{c}} \otimes A_{\frac{l}{d}}$. By Lemma 2.1, $[1_{B_{\frac{k}{c}}}] \in K_0(B_{\frac{k}{c}}) \cong \mathbb{Z}^2$ is primitive. And by the Elliott theorem^[10, Theoerm 2.2], $[1_{A_{\frac{l}{d}}}] \in K_0(A_{\frac{l}{d}}) \cong \mathbb{Z}^2$ is primitive. Since $[1_{B_{\frac{k}{c}} \otimes A_{\frac{l}{d}}}] \in K_0(B_{\frac{k}{c}} \otimes A_{\frac{l}{d}})$ is the image of $[1_{B_{\frac{k}{c}}}] \otimes [1_{A_{\frac{l}{d}}}] \in K_0(B_{\frac{k}{c}}) \otimes K_0(A_{\frac{l}{d}})$, which is primitive, under the isomorphism of $K_0(B_{\frac{k}{c}}) \otimes K_0(A_{\frac{l}{d}}) \oplus K_1(B_{\frac{k}{c}}) \otimes K_1(A_{\frac{l}{d}})$ into $K_0(B_{\frac{k}{c}} \otimes A_{\frac{l}{d}})$, $[1_{B_{\frac{k}{c}} \otimes A_{\frac{l}{d}}}]$ is primitive.

Next, assume that B_{cd} is isomorphic to $D_{cd,k}$. By the same reasoning as the proof given in Lemma 2.1, the canonical embedding ϕ of $C(S^1 \times \mathbb{T}^1)$ into B_{cd} induces an isomorphism μ of $K_0(C(S^2 \times \mathbb{T}^2)) \cong \mathbb{Z} \oplus \mathbb{Z}^3$ into $K_0(B_{cd}) \cong \mathbb{Z} \oplus \mathbb{Z}^3$. The unit $1_{C(S^1 \times \mathbb{T}^1)}$ corresponds to the unit $1_{C(S^2 \times \mathbb{T}^2)}$ under the canonical embedding ψ of $C(S^1 \times \mathbb{T}^1)$ into $C(S^2 \times \mathbb{T}^2)$. $[1_{C(S^1 \times \mathbb{T}^1)}] \in K_0(C(S^1 \times \mathbb{T}^1)) \cong \mathbb{Z} \oplus \mathbb{Z}$ corresponds to $[1_{C(S^2 \times \mathbb{T}^2)}] \in K_0(C(S^2 \times \mathbb{T}^2)) \cong \mathbb{Z} \oplus \mathbb{Z}^3$, primitive in $K_0(C(S^2 \times \mathbb{T}^2))$ (see [15]). In the commutative diagram

 $\mu([1_{C(S^2 \times \mathbb{T}^2)}]) = \phi_* \circ (\text{identity})_* \circ \psi_*^{-1}([1_{C(S^2 \times \mathbb{T}^2)}]) = [1_{B_{cd}}]. \text{ So } [1_{B_{cd}}] \text{ is the image of the primitive element } [1_{C(S^2 \times \mathbb{T}^2)}] \in K_0(C(S^2 \times \mathbb{T}^2)) \text{ under the isomorphism } \mu. \text{ Hence}$

 $[1_{B_{cd}}] \in K_0(B_{cd})$ is primitive.

Therefore, $K_0(B_{cd}) \cong K_1(B_{cd}) \cong \mathbb{Z}^4$, and $[1_{B_{cd}}] \in K_0(B_{cd})$ is primitive.

We are going to show that $[1_{\mathbb{S}_{\rho}^{cd}}] \in K_0(\mathbb{S}_{\rho}^{cd})$ is primitive.

Theorem 2.1. Let \mathbb{S}_{ρ}^{cd} be a spherical noncommutative torus of rank m. Assume that no non-trivial matrix algebra can be factored out of B_{cd} . Then $K_0(\mathbb{S}_{\rho}^{cd}) \cong K_1(\mathbb{S}_{\rho}^{cd}) \cong \mathbb{Z}^{2^m}$, and $[1_{\mathbb{S}_{\rho}^{cd}}] \in K_0(\mathbb{S}_{\rho}^{cd})$ is primitive.

Proof. It was shown in [4, Theorem 3.4] that \mathbb{S}_{ρ}^{cd} is stably isomorphic to $C(S^2) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C})$. By the Elliott theorem^[10, Theorem 2.2],

$$K_0(\mathbb{S}_{\rho}^{cd}) \cong K_0(C(S^2) \otimes A_{\rho})$$

$$\cong K_0(C(S^2)) \otimes K_0(A_{\rho}) \oplus K_1(C(S^2)) \otimes K_1(A_{\rho})$$

$$\cong \mathbb{Z}^2 \otimes \mathbb{Z}^{2^{m-1}} \oplus \{0\} \otimes \mathbb{Z}^{2^{m-1}} \cong \mathbb{Z}^{2^m}.$$

Similarly, one can obtain that $K_1(\mathbb{S}_{\rho}^{cd}) \cong \mathbb{Z}^{2^m}$. So it is enough to show that $[1_{\mathbb{S}_{\rho}^{cd}}] \in K_0(\mathbb{S}_{\rho}^{cd})$ is primitive. The proof is by induction on m. Assume that m = 2. We have obtained the result in Proposition 2.2.

So assume that the result is true for all spherical noncommutative tori of rank m = i - 1. Write $\mathbb{S}_i = C^*(\mathbb{S}_{i-1}, u_i)$, where $\mathbb{S}_i = C^*(B_{cd}, u_3, \ldots, u_i)$. Then the inductive hypothesis applies to \mathbb{S}_{i-1} . Also, we can think of \mathbb{S}_i as the crossed product by an action α of \mathbb{Z} on \mathbb{S}_{i-1} , where the generator of \mathbb{Z} corresponds to u_i , which acts on $C^*(u_1^d, u_2^d, \cdots, u_{i-1})$ by conjugation (sending u_j to $u_i u_j u_i^{-1} = e^{2\pi i \theta_{ji}} u_j, j \neq 1, 2$, and sending u_j^d to $u_i u_j^d u_i^{-1} = e^{2\pi i d\theta_{ji}} u_j^d, j = 1, 2$), and which acts trivially on $C(S^2) \otimes M_{cd}(\mathbb{C})$. Note that this action is homotopic to the trivial action, since we can homotope θ_{ji} to 0. Hence \mathbb{Z} acts trivially on the K-theory of \mathbb{S}_{i-1} . The Pimsner-Voiculescu exact sequence for a crossed product gives an exact sequence

$$K_0(\mathbb{S}_{i-1}) \xrightarrow{1-\alpha_*} K_0(\mathbb{S}_{i-1}) \xrightarrow{\Phi} K_0(\mathbb{S}_i) \to K_1(\mathbb{S}_{i-1}) \xrightarrow{1-\alpha_*} K_1(\mathbb{S}_{i-1})$$

and similarly for K_1 , where the map Φ is induced by inclusion. Since $\alpha_* = 1$ and since the *K*-groups of \mathbb{S}_{i-1} are free abelian, this reduces a split short exact sequence

$$\{0\} \to K_0(\mathbb{S}_{i-1}) \xrightarrow{\Phi} K_0(\mathbb{S}_i) \to K_1(\mathbb{S}_{i-1}) \to \{0\}$$

and similarly for K_1 . So $K_0(\mathbb{S}_i)$ and $K_1(\mathbb{S}_i)$ are free abelian of rank $2 \cdot 2^{i-1} = 2^i$. Furthermore, since the inclusion $\mathbb{S}_{i-1} \to \mathbb{S}_i$ sends $1_{\mathbb{S}_{i-1}}$ to $1_{\mathbb{S}_i}$, $[1_{\mathbb{S}_i}]$ is the image of $[1_{\mathbb{S}_{i-1}}]$, which is primitive in $K_0(\mathbb{S}_{i-1})$ by inductive hypothesis. Hence the image is primitive, since the Pimsner-Voiculescu exact sequence is a split short exact sequence of torsion-free groups.

Therefore, $K_0(\mathbb{S}_{\rho}^{cd}) \cong K_1(\mathbb{S}_{\rho}^{cd}) \cong \mathbb{Z}^{2^m}$, and $[1_{\mathbb{S}_{\rho}^{cd}}] \in K_0(\mathbb{S}_{\rho}^{cd})$ is primitive.

Corollary 2.1. Let p be a positive integer. Assume that no non-trivial matrix algebra can be factored out of B_{cd} . Then $\mathbb{S}_{\rho}^{cd} \otimes M_p(\mathbb{C})$ is not isomorphic to $A \otimes M_{sp}(\mathbb{C})$ for a C^* -algebra A if s is greater than 1. In particular, no non-trivial matrix algebra can be factored out of \mathbb{S}_{ρ}^{cd} , P_{ρ}^d , or A_{ρ} .

Proof. Assume that $\mathbb{S}^{cd}_{\rho} \otimes M_p(\mathbb{C})$ is isomorphic to $A \otimes M_{sp}(\mathbb{C})$. Then the unit $\mathbb{1}_{\mathbb{S}^{cd}_{\rho}} \otimes I_p$ corresponds to the unit $\mathbb{1}_A \otimes I_{sp}$. So

$$[1_{\mathbb{S}_{\rho}^{cd}} \otimes I_p] = [1_A \otimes I_{sp}].$$

Thus there is a projection $e \in \mathbb{S}_{\rho}^{cd}$ such that $p[\mathbb{1}_{\mathbb{S}_{\rho}^{cd}}] = (sp)[e]$. But $K_0(\mathbb{S}_{\rho}^{cd}) \cong \mathbb{Z}^{2^m}$ is

torsion-free, so $[1_{\mathbb{S}_{a}^{cd}}] = s[e]$. This contradicts Theorem 2.1.

Therefore, $\mathbb{S}_{\rho}^{cd} \otimes M_p(\mathbb{C})$ is not isomorphic to $A \otimes M_{sp}(\mathbb{C})$.

We have obtained that $[1_{\mathbb{S}_{\rho}^{cd}}] \in K_0(\mathbb{S}_{\rho}^{cd})$ is primitive. This result is very useful for investigating the bundle structure of the tensor products of spherical noncommutative tori with UHF-algebras and Cuntz algebras.

§3. Tensor Products of Spherical Noncommutative Tori with *UHF*-Algebras and Cuntz Algebras

In this section, assume no non-trivial matrix algebra can be factored out of B_{cd} . Using the fact that $[1_{\mathbb{S}_{\rho}^{cd}}] \in K_0(\mathbb{S}_{\rho}^{cd})$ is primitive, we are going to show that the tensor product of the spherical noncommutative torus \mathbb{S}_{ρ}^{cd} with a UHF-algebra $M_{p^{\infty}}$ of type p^{∞} is isomorphic to $C(S^2) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C}) \otimes M_{p^{\infty}}$ if and only if the set of prime factors of cd is a subset of the set of prime factors of p.

Theorem 3.1. $\mathbb{S}^{cd}_{\rho} \otimes M_{p^{\infty}}$ is isomorphic to $C(S^2) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C}) \otimes M_{p^{\infty}}$ if and only if the set of prime factors of cd is a subset of the set of prime factors of p.

Proof. Assume that the set of prime factors of cd is a subset of the set of prime factors of p. To show that $\mathbb{S}_{\rho}^{cd} \otimes M_{p^{\infty}}$ is isomorphic to $C(S^2) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C}) \otimes M_{p^{\infty}}$, it is enough to show that $\mathbb{S}_{\rho}^{cd} \otimes M_{(cd)^{\infty}}$ is isomorphic to $C(S^2) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C}) \otimes M_{(cd)^{\infty}}$. But there exist the C^* -algebra homomorphisms which are the canonical inclusions

$$\begin{split} \mathbb{S}_{\rho}^{cd} \otimes M_{(cd)^{i}}(\mathbb{C}) &\hookrightarrow C(S^{2}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C}) \otimes M_{(cd)^{i}}(\mathbb{C}), \\ C(S^{2}) \otimes A_{\rho} \otimes M_{(cd)^{i}}(\mathbb{C}) &\hookrightarrow \mathbb{S}_{\rho}^{cd} \otimes M_{(cd)^{i}}(\mathbb{C}) : \\ \mathbb{S}_{\rho}^{cd} &\hookrightarrow C(S^{2}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C}) \hookrightarrow \mathbb{S}_{\rho}^{cd} \otimes M_{cd}(\mathbb{C}) \hookrightarrow C(S^{2}) \otimes A_{\rho} \otimes M_{(cd)^{2}}(\mathbb{C}) \hookrightarrow \cdots . \end{split}$$

The inductive limit of the odd terms

[1

$$\cdot \to \mathbb{S}_{\rho}^{cd} \otimes M_{(cd)^s}(\mathbb{C}) \to \mathbb{S}_{\rho}^{cd} \otimes M_{(cd)^{s+1}}(\mathbb{C}) \to \cdots$$

is $\mathbb{S}_{\rho}^{cd} \otimes M_{(cd)^{\infty}}$, and the inductive limit of the even terms

$$T \to C(S^2) \otimes A_{\rho} \otimes M_{(cd)^s}(\mathbb{C}) \to C(S^2) \otimes A_{\rho} \otimes M_{(cd)^{s+1}}(\mathbb{C}) \to \cdots$$

is $C(S^2) \otimes A_{\rho} \otimes M_{(cd)^{\infty}}$. Thus by the Elliott theorem^[11, Theorem 2.1], $\mathbb{S}_{\rho}^{cd} \otimes M_{(cd)^{\infty}}$ is isomorphic to $C(S^2) \otimes A_{\rho} \otimes M_{(cd)^{\infty}}$.

Conversely, assume that $\mathbb{S}_{\rho}^{cd} \otimes M_{p^{\infty}}$ is isomorphic to $C(S^2) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C}) \otimes M_{p^{\infty}}$. Then the unit $1_{\mathbb{S}_{\rho}^{cd}} \otimes 1_{M_{p^{\infty}}}$ corresponds to the unit $1_{C(S^2) \otimes A_{\rho}} \otimes 1_{M_{p^{\infty}}} \otimes I_{cd}$. So

$$\begin{split} [1_{\mathbb{S}_{\rho}^{cd}} \otimes 1_{M_{p^{\infty}}}] &= [1_{C(S^{2}) \otimes A_{\rho}} \otimes 1_{M_{p^{\infty}}} \otimes I_{cd}], \\ [1_{\mathbb{S}_{\rho}^{cd}} \otimes 1_{M_{p^{\infty}}}] &= [1_{\mathbb{S}_{\rho}^{cd}}] \otimes [1_{M_{p^{\infty}}}], \\ _{C(S^{2}) \otimes A_{\rho}} \otimes 1_{M_{p^{\infty}}} \otimes I_{cd}] &= cd([1_{C(S^{2}) \otimes A_{\rho}}] \otimes [1_{M_{p^{\infty}}}]). \end{split}$$

Under the assumption that the unit $1_{\mathbb{S}_{\rho}^{cd}} \otimes 1_{M_{p^{\infty}}}$ corresponds to the unit $1_{C(S^2)\otimes A_{\rho}} \otimes 1_{M_{p^{\infty}}} \otimes I_{cd}$, if there is a prime factor q of cd such that $q \nmid p$, then $[1_{M_{p^{\infty}}}] \neq q[e_{\infty}]$ for a projection e_{∞} in $M_{p^{\infty}}$. So there is a projection $e \in \mathbb{S}_{\rho}^{cd}$ such that $[1_{\mathbb{S}_{\rho}^{cd}}] = q[e]$. This contradicts Theorem 2.1. Thus the set of prime factors of cd is a subset of the set of prime factors of p.

Therefore, $\mathbb{S}_{\rho}^{cd} \otimes M_{p^{\infty}}$ is isomorphic to $C(S^2) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C}) \otimes M_{p^{\infty}}$ if and only if the set of prime factors of cd is a subset of the set of prime factors of p.

In particular, $\mathbb{S}_{\rho}^{cd} \otimes M_{p^{\infty}}$ has the trivial bundle structure if the set of prime factors of cd is a subset of the set of prime factors of p.

Let us study the tensor products of spherical noncommutative tori with (even) Cuntz algebras.

The Cuntz algebra $\mathcal{O}_u, 2 \leq u < \infty$, is the universal C^* -algebra generated by u isometries s_1, \ldots, s_u , i.e., $s_j^* s_j = 1$ for all j, with the relation $s_1 s_1^* + \cdots + s_u s_u^* = 1$. Cuntz^[7,8] proved that \mathcal{O}_u is simple and the K-theory of \mathcal{O}_u is $K_0(\mathcal{O}_u) = \mathbb{Z}/(u-1)\mathbb{Z}$ and $K_1(\mathcal{O}_u) = 0$. He proved that $K_0(\mathcal{O}_u)$ is generated by the class of the unit.

Proposition 3.1. Let \mathbb{S}_{ρ}^{cd} be a spherical noncommutative torus with fibres $P_{\rho}^{d} \otimes M_{c}(\mathbb{C})$ for a positive integer cd greater than 1. Let u be a positive integer such that cd and u - 1are not relatively prime. Then $\mathcal{O}_{u} \otimes \mathbb{S}_{\rho}^{cd}$ is not isomorphic to $\mathcal{O}_{u} \otimes C(S^{2}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C})$.

Proof. Let p be a prime such that $p \mid cd$ and $p \mid u-1$. Suppose that $\mathcal{O}_u \otimes \mathbb{S}_{\rho}^{cd}$ is isomorphic to $\mathcal{O}_u \otimes C(S^2) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C})$. Then the unit $1_{\mathcal{O}_u \otimes \mathbb{S}_{\rho}^{cd}}$ corresponds to the unit $1_{\mathcal{O}_u \otimes C(S^2) \otimes A_{\rho}} \otimes I_{cd}$. So $[1_{\mathcal{O}_u \otimes \mathbb{S}_{\rho}^{cd}}] = [1_{\mathcal{O}_u \otimes C(S^2) \otimes A_{\rho}} \otimes I_{cd}] = cd[1_{\mathcal{O}_u \otimes C(S^2) \otimes A_{\rho}}]$. Hence there is a projection e in $\mathcal{O}_u \otimes \mathbb{S}_{\rho}^{cd}$ such that $[1_{\mathcal{O}_u \otimes \mathbb{S}_{\rho}^{cd}}] = cd[e]$. But $[1_{\mathcal{O}_u \otimes \mathbb{S}_{\rho}^{cd}}] = [1_{\mathcal{O}_u}] \otimes [1_{\mathbb{S}_{\rho}^{cd}}]$ and $[1_{\mathcal{O}_u}]$ is a generator of $K_0(\mathcal{O}_u) \cong \mathbb{Z}/(u-1)\mathbb{Z}$ (see [8]). But $p \mid u-1$. $[1_{\mathcal{O}_u}] \neq p[e_*]$ for a projection e_* in \mathcal{O}_u . So $[1_{\mathbb{S}_{\rho}^{cd}}] = p[e']$ for a projection e' in \mathbb{S}_{ρ}^{cd} . This contradicts Theorem 2.1. Hence cd and u-1 are relatively prime.

Therefore, $\mathcal{O}_u \otimes \mathbb{S}^{cd}_{\rho}$ is not isomorphic to $\mathcal{O}_u \otimes C(S^2) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C})$ if cd and u-1 are not relatively prime.

The following result is useful for understanding the bundle structure of $\mathcal{O}_u \otimes \mathbb{S}_o^{cd}$.

Proposition 3.2.^[19, Theorem 7.2] Let A and B be unital simple inductive limits of even Cuntz algebras. If $\alpha : K_0(A) \to K_0(B)$ is an isomorphism of abelian groups satisfying $\alpha([1_A]) = [1_B]$, then there is an isomorphism $\phi : A \to B$ which induces α .

Corollary 3.1.

(1) Let p be an odd integer such that p and 2u - 1 are relatively prime. Then \mathcal{O}_{2u} is isomorphic to $\mathcal{O}_{(2u-1)p+1} \otimes M_{p^{\infty}}$. That is, \mathcal{O}_{2u} is isomorphic to $\mathcal{O}_{2u} \otimes M_{p^{\infty}}$.

(2) \mathcal{O}_{2u} is isomorphic to $\mathcal{O}_{2u} \otimes M_{(2u)^{\infty}}$.

Theorem 3.2. Let \mathbb{S}_{ρ}^{cd} be a spherical noncommutative torus with fibres $P_{\rho}^{d} \otimes M_{c}(\mathbb{C})$. Then $\mathcal{O}_{2u} \otimes \mathbb{S}_{\rho}^{cd}$ is isomorphic to $\mathcal{O}_{2u} \otimes C(S^{2}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C})$ if and only if cd and 2u - 1 are relatively prime.

Proof. Assume that cd and 2u - 1 are relatively prime. Let $cd = p2^v$ for some odd integer p. Then p and 2u - 1 are relatively prime. Then by Corollary 3.1 \mathcal{O}_{2u} is isomorphic to $\mathcal{O}_{2u} \otimes M_{p^{\infty}}$, and \mathcal{O}_{2u} is isomorphic to $\mathcal{O}_{2u} \otimes M_{(2u)^{\infty}} \cong \mathcal{O}_{2u} \otimes M_{(2u)^{\infty}} \otimes M_{(2v)^{\infty}} \cong$ $\mathcal{O}_{2u} \otimes M_{(2v)^{\infty}}$. So \mathcal{O}_{2u} is isomorphic to $\mathcal{O}_{2u} \otimes M_{p^{\infty}} \otimes M_{(2v)^{\infty}} \cong \mathcal{O}_{2u} \otimes M_{(cd)^{\infty}}$. Thus by Theorem 3.1 $\mathcal{O}_{2u} \otimes \mathbb{S}_{\rho}^{cd}$ is isomorphic to $\mathcal{O}_{2u} \otimes M_{(cd)^{\infty}} \otimes \mathbb{S}_{\rho}^{cd}$, which in turn is isomorphic to $\mathcal{O}_{2u} \otimes M_{(cd)^{\infty}} \otimes C(S^2) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C})$. Thus $\mathcal{O}_{2u} \otimes \mathbb{S}_{\rho}^{cd}$ is isomorphic to $\mathcal{O}_{2u} \otimes C(S^2) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C})$.

The converse was proved in Proposition 3.1.

Therefore, $\mathcal{O}_{2u} \otimes \mathbb{S}_{\rho}^{cd}$ is isomorphic to $\mathcal{O}_{2u} \otimes C(S^2) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C})$ if and only if cd and 2u - 1 are relatively prime.

Cuntz^[8] computed the K-theory of the generalized Cuntz algebra \mathcal{O}_{∞} , generated by a sequence of isometries with mutually orthogonal ranges, $K_0(\mathcal{O}_{\infty}) = \mathbb{Z}$ and $K_1(\mathcal{O}_{\infty}) = 0$.

He proved that $K_0(\mathcal{O}_{\infty})$ is generated by the class of the unit.

Proposition 3.2. Let \mathbb{S}_{ρ}^{cd} be a spherical noncommutative torus with fibres $P_{\rho}^{d} \otimes M_{c}(\mathbb{C})$. Then $\mathcal{O}_{\infty} \otimes \mathbb{S}_{\rho}^{cd}$ is not isomorphic to $\mathcal{O}_{\infty} \otimes C(S^{2}) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C})$ if cd > 1.

Proof. Suppose $\mathcal{O}_{\infty} \otimes \mathbb{S}_{\rho}^{cd}$ is isomorphic to $\mathcal{O}_{\infty} \otimes C(S^2) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C})$. The unit $1_{\mathcal{O}_{\infty} \otimes \mathbb{S}_{\rho}^{cd}}$ corresponds to the unit $1_{\mathcal{O}_{\infty} \otimes C(S^2) \otimes A_{\rho}} \otimes I_{cd}$. By the same trick as in the proof of Proposition 3.1, one can show that $[1_{\mathcal{O}_{\infty} \otimes \mathbb{S}_{\rho}^{cd}}] = cd[e]$ for a projection $e \in \mathcal{O}_{\infty} \otimes \mathbb{S}_{\rho}^{cd}$. $[1_{\mathcal{O}_{\infty} \otimes \mathbb{S}_{\rho}^{cd}}] = [1_{\mathcal{O}_{\infty}}] \otimes [1_{\mathbb{S}_{\rho}^{cd}}]$ and $[1_{\mathcal{O}_{\infty}}]$ is a primitive element of $K_0(\mathcal{O}_{\infty}) \cong \mathbb{Z}$ (see [8]). So $[1_{\mathbb{S}_{\rho}^{cd}}] = cd[e']$ for a projection $e' \in \mathbb{S}_{\rho}^{cd}$. This contradicts Theorem 2.1.

Therefore, $\mathcal{O}_{\infty} \otimes \mathbb{S}^{cd}_{\rho}$ is not isomorphic to $\mathcal{O}_{\infty} \otimes C(S^2) \otimes A_{\rho} \otimes M_{cd}(\mathbb{C})$.

§4. Completely Irrational Noncommutative Tori

It was proved in [2, Theorem 1.5] that every completely irrational noncommutative torus has real rank 0, where the "real rank 0" means that the set of invertible self-adjoint elements is dense in the set of self-adjoint elements. Combining [4, Theorem 3.4] and [6, Corollary 3.3] yields that the simple C^* -algebra P_{ρ}^d has real rank 0 since the completely irrational noncommutative torus A_{ρ} has real rank 0. The Lin and Rørdam theorem^[17, Proposition 3] says that the simple C^* -algebra P_{ρ}^d is an inductive limit of circle algebras, since $P_{\rho}^d \otimes \mathcal{K}(\mathcal{H}) \cong$ $A_{\rho} \otimes \mathcal{K}(\mathcal{H})$ is an inductive limit of circle algebras^[17, Proposition 2]. Combining the Elliott classification theorem [11, Theorem 7.1] and [14, Theorem 1.3] yields that the completely irrational noncommutative torus A_{ω} and the simple C^* -algebra P_{ρ}^d induced from A_{ρ} are isomorphic if the ranges of the traces equal.

Lemma 4.1. $tr(K_0(P_{\rho}^d)) = \frac{1}{d} \cdot tr(K_0(A_{\rho})).$

Proof. P_{ρ}^{d} has a matrix representation induced from the matrix representation of the rational rotation subalgebra $A_{\frac{l}{d}}$. The diagonal entries of the matrix representation are in A_{ρ} , and so the range of the trace of $K_{0}(P_{\rho}^{d})$ is $\mathbb{Z} + \frac{1}{d}(\mathbb{Z} + \mathbb{Z}\alpha + \mathbb{Z}\beta + \cdots + \mathbb{Z}\gamma)$, where $\operatorname{tr}(K_{0}(A_{\rho})) = \mathbb{Z} + \mathbb{Z}d + \mathbb{Z}\alpha + \mathbb{Z}\beta + \cdots + \mathbb{Z}\gamma$, and hence $\operatorname{tr}(K_{0}(P_{\rho}^{d})) = \frac{1}{d} \cdot \operatorname{tr}(K_{0}(A_{\rho}))$.

Theorem 4.1. Let A_{ω} be a completely irrational noncommutative torus of rank m with $\operatorname{tr}(K_0(A_{\omega})) = \frac{1}{d} \cdot \operatorname{tr}(K_0(A_{\rho}))$ for a completely irrational noncommutative torus A_{ρ} of rank m. Then A_{ω} is isomorphic to P_{ρ}^d .

Proof. One can assume that

$$\operatorname{tr}(K_0(A_\omega)) = \mathbb{Z} + \mathbb{Z}\frac{l}{d} + \mathbb{Z}\alpha + \dots + \mathbb{Z}\beta = \mathbb{Z}\frac{1}{d} + \mathbb{Z}\alpha + \dots + \mathbb{Z}\beta$$
$$= \frac{1}{d}(\mathbb{Z} + \mathbb{Z}d + \mathbb{Z}d\alpha + \dots + \mathbb{Z}d\beta) = \frac{1}{d} \cdot \operatorname{tr}(K_0(A_\rho)).$$

One can divide the proof into three cases according to where the rational number $\frac{l}{d}$ comes from.

Case 1. The case that $\frac{l}{d}$ is one of θ_{ij} or $\frac{l}{d}$ can be obtained by a change of basis for \mathbb{Z}^m to be $\frac{l}{d} = \theta_{ij}$. By a change of basis for \mathbb{Z}^{r+m} , one can easily obtain that there is a completely irrational noncommutative torus $A_{\rho'}$ with $\theta_{ij} = \frac{l}{d}$ for some i, j, and $\operatorname{tr}(K_0(A_{\rho})) = \operatorname{tr}(K_0(A_{\rho'}))$.

Case 2. The case that $\frac{l}{d}$ is one of the products of θ_{ij} . By replacing a suitable product of real numbers appearing in the product giving $\frac{l}{d}$ with $\frac{l}{d}$, one can replace A_{ρ} with $A_{\rho'}$ up to

isomorphism (by the Elliott classification theorem and the Ji and Xia result) with $\theta_{ij} = \frac{l}{d}$ for some i, j and $\operatorname{tr}(K_0(A_{\rho})) = \operatorname{tr}(K_0(A_{\rho'}))$.

Case 3. The case that $\frac{l}{d}$ is a \mathbb{Z} -linear combination of the products of θ_{ij} . Combining the two results given above yields that A_{ρ} can be replaced with $A_{\rho'}$ with $\theta_{ij} = \frac{l}{d}$ for some i, j, and $\operatorname{tr}(K_0(A_{\rho})) = \operatorname{tr}(K_0(A_{\rho'}))$. So one can assume that $A_{\rho'} = A_{\rho}$. Hence

$$\operatorname{tr}(K_0(P_{\rho}^d)) = \frac{1}{d} \cdot \operatorname{tr}(K_0(A_{\rho})) = \operatorname{tr}(K_0(A_{\omega}))$$

By the Elliott classification theorem^[11, Theorem 7.1] and the Ji and Xia's result^[14, Theorem 1.3], P_{ρ}^{d} is isomorphic to A_{ω} .

§5. Sectional C*-Algebras with Fibres a Completely Irrational Noncommutative Torus

We are going to show that the set of all spherical noncommutative tori with fibres $A_{\omega} \otimes M_c(\mathbb{C})$ is in bijective correspondence with the set of all C^* -algebras of sections of locally trivial C^* -algebra bundles over S^2 with fibres $A_{\omega} \otimes M_c(\mathbb{C})$ for a completely irrational noncommutative torus A_{ω} .

Let A_{ω} be a noncommutative torus of rank m with $\widehat{S_{\omega}} \cong \mathbb{T}^1$ and fibres $M_d(\mathbb{C}) \otimes A_\rho$ for a completely irrational noncommutative torus A_ρ (see [18]). By the definition of A_{ω} , $C(\mathbb{T}^1)$ and A_ρ split. Since $[\mathbb{T}^1, BPU(d)] \cong \{0\}$, $C(\mathbb{T}^1)$ and $M_d(\mathbb{C})$ split. And $M_d(\mathbb{C})$ and A_ρ also split. But by Corollary 2.1, A_{ω} has a non-trivial bundle structure if d > 1. This implies that a C^* -subalgebra of A_ρ plays a role as a base space in the bundle structure. In fact, A_{ω} can be obtained by an iteration of m - 2 crossed products by actions of \mathbb{Z} , the first action on a rational rotation algebra $A_{\frac{1}{d}}$, and the non-triviality of the bundle structure is given by a non-trivial element of $[\mathbb{T}^2, BPU(d)] \cong [\mathbb{T}^1, PU(d)] \cong \mathbb{Z}_d$, which represents $A_{\frac{1}{d}}$ canonically embedded into A_{ω} .

Let d be the biggest integer among the possible integers satisfying the condition

$$\operatorname{tr}(K_0(A_{\omega})) = \frac{1}{d} \cdot \operatorname{tr}(K_0(A_{\rho})),$$

i.e., $A_{\omega} \cong P_{\rho}^d$. We want to show that each C^* -algebra of sections of a locally trivial C^* -algebra bundle over S^2 with fibres P_{ρ}^1 has the trivial bundle structure.

Lemma 5.1. Each C^* -algebra $\Gamma(\eta)$ of sections of a locally trivial C^* -algebra bundle η over S^1 with fibres P^1_{ρ} has the trivial bundle structure.

Proof. Let $P_{\rho}^{1} = \lim_{n \to \infty} \left(\bigoplus_{j=1}^{n} C(\mathbb{T}^{1}) \otimes M_{p_{i(j)}}(\mathbb{C}) \right)$. The C^{*} -algebra $\Gamma(\eta)$ is isomorphic to

an inductive limit of direct sums of $p_{i(j)}$ -homogeneous C^* -algebras over $S^1 \times \mathbb{T}^1$, and each $C(S^1 \times \mathbb{T}^1)$ is canonically embedded into $\Gamma(\eta)$. So there could be a canonical homomorphism of $C(S^1) \otimes M_d(\mathbb{C})$ into the C^* -algebra $\Gamma(\eta)$ of sections of a locally trivial C^* -algebra bundle η over S^1 with fibres P_{ρ}^1 such that the non-triviality can be given by a *d*-homogeneous C^* -algebra over $S^1 \times \mathbb{T}^1$. Then $M_d(\mathbb{C})$ must be factored out of the circle algebra in each inductive step, and so the range of the trace of P_{ρ}^1 would be the form $\frac{1}{d}\operatorname{tr}(K_0(A))$ for a simple unital C^* -algebra A, which is impossible by the assumption for the range of the trace. We have two cases; one of them is the case that a C^* -subalgebra of P_{ρ}^1 plays a role as a base space in the bundle structure, and the other is not.

For the first case, when a C^* -subalgebra of P^1_{ρ} plays a role as a base space in the bundle structure and P^1_{ρ} is realized as a tensor product of non-trivial completely irrational noncommutative tori, the torsion-free groups in $P^1_{\rho} = A_{\rho}$ giving simple noncommutative tori which are given by twisting the torsion-free groups by totally skew multipliers must split, so all factors of P^1_{ρ} must split. The relation among factors of P^1_{ρ} is different from the relation between fibres $M_d(\mathbb{C})$ and base A_{ρ} in the fibres of the non-simple noncommutative torus A_{ω} given above, and so one can assume that all factors of P^1_{ρ} play roles as a base space in the bundle structure. Hence P^1_{ρ} plays a role as a base space in the bundle structure, and so $\Gamma(\eta)$ is isomorphic to $C(S^1) \otimes P^1_{\rho}$.

For the other case, since $P_{\rho}^1 = \underline{\lim} \left(\bigoplus_{j=1} C(\mathbb{T}^1) \otimes M_{p_{i(j)}}(\mathbb{C}) \right)$, there is a non-trivial matrix algebra $M_p(\mathbb{C})$ which is embedded into P_{ρ}^1 . Since $[S^1, BPU(p)] \cong \{0\}, C(S^1)$ and $M_p(\mathbb{C})$ split, i.e., any *p*-homogeneous C^* -algebra over S^1 has the trivial bundle structure. By the same reasoning as above, $M_p(\mathbb{C})$ cannot be factored out of the circle algebras in all inductive steps. But $\Gamma(\eta)$ has a locally trivial bundle structure. Hence $C(S^1)$ and $(M_p(\mathbb{C}) \hookrightarrow) P_{\rho}^1$ must split, and so $\Gamma(\eta)$ has the trivial bundle structure.

Therefore, each C^* -algebra $\Gamma(\eta)$ of sections of a locally trivial C^* -algebra bundle η over S^1 with fibres P^1_{ρ} has the trivial bundle structure.

Compare the C^* -algebra $\Gamma(\eta)$ for the second case with any C^* -algebra of sections of a locally trivial C^* -algebra bundle over S^3 with fibres $\mathcal{K}(\mathcal{H})$.

Proposition 5.1. Each C^* -algebra $\Gamma(\eta)$ of sections of a locally trivial C^* -algebra bundle η over S^2 with fibres P^1_{ρ} has the trivial bundle structure.

Proof. Let $P_{\rho}^{1} = \varinjlim \left(\bigoplus_{j=1}^{n} C(\mathbb{T}^{1}) \otimes M_{p_{i(j)}}(\mathbb{C}) \right)$. But there is a map of degree 1 from S^{2} to $S^{1} \times \mathbb{T}^{1}$. So each C^{*} -algebra of sections of a locally trivial C^{*} -algebra bundle over S^{2} with fibres P_{ρ}^{1} is induced from the C^{*} -algebra $\Gamma(\zeta)$ of sections of a locally trivial C^{*} -algebra bundle ζ over $S^{1} \times \mathbb{T}^{1}$ with fibres P_{ρ}^{1} . Consider the crossed product by the action α_{θ} of \mathbb{Z} on $\Gamma(\zeta)$ for a suitable irrational number θ such that the range of the trace of $P_{\rho}^{d} \otimes A_{\theta}$ is not $\frac{1}{s} \times$ the range of the trace of any simple noncommutative torus of rank m + 1 for any positive integer s greater than 1, where the action α_{θ} on $C(S^{1}) \otimes P_{\rho}^{1}$ is trivial and $C(\mathbb{T}^{1}) \times_{\alpha_{\theta}} \mathbb{Z}$ is the irrational rotation algebra A_{θ} . Then $\Gamma(\zeta) \times_{\alpha_{\theta}} \mathbb{Z}$ is obviously realized as the C^{*} -algebra of sections of a locally trivial C^{*} -algebra bundle over S^{1} with fibres P_{ρ}^{1} and $C(\mathbb{T}^{1})$ split and so do P_{ρ}^{1} and A_{θ} . By Lemma 5.1, $\Gamma(\zeta) \times_{\alpha_{\theta}} \mathbb{Z}$ has the trivial bundle structure. Hence each C^{*} -algebra of sections of a locally trivial C^{*} -algebra bundle over S^{2} with fibres P_{ρ}^{1} has the trivial bundle structure.

Each *cd*-homogeneous C^* -algebra over $S^2 \times \mathbb{T}^2$ is realized as the C^* -algebra $\Gamma(\zeta)$ of sections of a locally trivial C^* -algebra bundle ζ over $S^2 \times \mathbb{T}^2$ with fibres $M_{cd}(\mathbb{C})$, and hence \mathbb{S}_{ρ}^{cd} is realized as the C^* -algebra of sections of a locally trivial C^* -algebra bundle over S^2 with fibres $P_{\rho}^d \otimes M_c(\mathbb{C})$.

Theorem 5.1. The set of spherical noncommutative tori with fibres $P_{\rho}^{d} \otimes M_{c}(\mathbb{C})$ is in bijective correspondence with the set of C^{*} -algebras of sections of locally trivial C^{*} -algebra bundles over S^{2} with fibres $P_{\rho}^{d} \otimes M_{c}(\mathbb{C})$.

Proof. If cd = 1, we have obtained the result in Proposition 5.1. So assume that cd > 1. Then one can assume that there is the matrix algebra $M_{cd}(\mathbb{C})$ which is factored

out of each inductive step. But $M_d(\mathbb{C})$ is not factored out of P_{ρ}^d , and so P_{ρ}^d is isomorphic to $A_{\frac{1}{d}} \times_{\alpha_3} \mathbb{Z} \times_{\alpha_4} \cdots \times_{\alpha_m} \mathbb{Z}$. By Proposition 5.1, each C^* -algebra of sections of a locally trivial C^* -algebra bundle over S^2 with fibres $C^*(d\mathbb{Z} \times d\mathbb{Z}) \times_{\alpha_3} \mathbb{Z} \times_{\alpha_4} \cdots \times_{\alpha_m} \mathbb{Z}$ has the trivial bundle structure. Hence each C^* -algebra of sections of a locally trivial C^* -algebra bundle over S^2 with fibres $P_{\rho}^d \otimes M_c(\mathbb{C})$ is given by twisting $C^*(\widehat{\mathbb{T}^2} \times \mathbb{Z}^{m-2})$ in $B_{cd} \otimes C^*(\mathbb{Z}^{m-2})$ by the totally skew multiplier ρ on $\widehat{\mathbb{T}^2} \times \mathbb{Z}^{m-2}$.

Therefore, the set of spherical noncommutative tori with fibres $P_{\rho}^{d} \otimes M_{c}(\mathbb{C})$ is in bijective correspondence with the set of C^{*} -algebras of sections of locally trivial C^{*} -algebra bundles over S^{2} with fibres $P_{\rho}^{d} \otimes M_{c}(\mathbb{C})$.

The set of spherical noncommutative tori with fibres the simple C^* -algebra P^d_{ρ} has a group structure.

Definition 5.1. The group of spherical noncommutative tori with fibres the simple C^* algebra P^d_{ρ} is said to be the fundamental group of the automorphism group $\operatorname{Aut}(P^d_{\rho})$, and denoted by $\pi^s_1(\operatorname{Aut}(P^d_{\rho}))$.

Theorem 5.2. $\pi_1^s(\operatorname{Aut}(P_{\rho}^d)) \cong \mathbb{Z}$ if d > 1, $\cong \{0\}$ if d = 1.

Proof. By Theorem 5.1, the set of spherical noncommutative tori with fibres P_{ρ}^{d} is in bijective correspondence with the set of C^{*} -algebras of sections of locally trivial C^{*} algebra bundles over S^{2} with fibres P_{ρ}^{d} . So $\pi_{1}^{s}(\operatorname{Aut}(P_{\rho}^{d}))$ is in bijective correspondence with $\{D_{d,k} \mid k \in \mathbb{Z}\}$ given in the statement of Proposition 2.1. Hence $\pi_{1}^{s}(\operatorname{Aut}(P_{\rho}^{d})) \cong \mathbb{Z}$ if d > 1, $\cong \{0\}$ if d = 1.

Elliott and Rørdam^[12] proved that $\overline{\text{Inn}}(A_{\omega})$ is connected.

Question.^[12] Is $\overline{\text{Inn}}(A_{\omega})$ arcwise connected ?

It is well-known (see [21, Lemma 1.8, Lemma 3.1, Lemma 3.2]) that for a locally trivial C^* -algebra bundle over S^2 with fibres A_{ω} there is a principal $\operatorname{Aut}(A_{\omega})$ -bundle over S^1 , and that the set of all C^* -algebras of sections of locally trivial C^* -algebra bundles over S^2 with fibres A_{ω} is in bijective correspondence with the set of principal $\operatorname{Aut}(A_{\omega})$ -bundles over S^1 . The set of principal $\operatorname{Aut}(A_{\omega})$ -bundles over S^1 is in bijective correspondence with (the set of principal $\operatorname{Aut}(A_{\omega})$ -bundles over S^1) $\times GL(2^{m-1},\mathbb{Z})$, since $GL(2^{m-1},\mathbb{Z}) \cong \operatorname{Aut}(K_1(A_{\omega}))$ is discrete.

If $\operatorname{Aut}(A_{\omega})$ is arcwise connected, then $\pi_1(\operatorname{Aut}(A_{\omega}))$ is in bijective correspondence with the set of principal $\operatorname{Aut}(A_{\omega})$ -bundles over S^1 by [20, Corollary 18.6]. This implies that if $\overline{\operatorname{Inn}}(A_{\omega})$ is arcwise connected, then $\pi_1(\overline{\operatorname{Inn}}(A_{\omega}))$ is in bijective correspondence with the set of principal $\overline{\operatorname{Inn}}(A_{\omega})$ -bundles over S^1

Theorem 5.3. Let A_{ω} be a completely irrational noncommutative torus which is isomorphic to P_{ρ}^{d} for an integer d greater than 1. Then $\overline{\text{Inn}}(A_{\omega})$ is not arcwise connected.

Proof. Let P_{ρ}^{d} be a simple C^{*} -algebra which is given by twisting $C(\mathbb{T}^{2}) \otimes C^{*}(\mathbb{Z}^{m-2})$ in $A_{\frac{i}{d}} \otimes C^{*}(\mathbb{Z}^{m-2})$ by the multiplier ρ on $\widehat{\mathbb{T}^{2}} \times \mathbb{Z}^{m-2}$, where \mathbb{T}^{2} is the primitive ideal space of $A_{\frac{i}{d}}$, and $C^{*}(\widehat{\mathbb{T}^{2}}, \operatorname{res} \operatorname{of} \rho) \cong C^{*}(\widehat{\mathbb{T}^{2}})$. Assume that $\overline{\operatorname{Inn}}(P_{\rho}^{d})$ is arcwise connected. Then $\pi_{1}(\overline{\operatorname{Inn}}(P_{\rho}^{d}))$ is in bijective correspondence with the set of principal $\overline{\operatorname{Inn}}(P_{\rho}^{d})$ -bundles over S^{1} .

The elements of $\pi_1^s(\operatorname{Aut}(P_{\rho}^d))$ correspond to the C^* -algebras of locally trivial C^* -algebra bundles over S^2 with fibres P_{ρ}^d . There are principal $\operatorname{Aut}(P_{\rho}^d)$ -bundles over S^2 corresponding to the elements. Actually, the principal PU(d)-bundles over S^2 correspond to the elements if $\overline{\text{Inn}}(P_{\rho}^{d})$ is arcwise connected. But $\pi_{1}(PU(d)) = \mathbb{Z}/d\mathbb{Z}$ is in bijective correspondence with the set of principal PU(d)-bundles over S^{2} . This contradicts the fact that $\pi_{1}^{s}(\text{Aut}(P_{\rho}^{d})) \cong \mathbb{Z}$ if d > 1. So $\overline{\text{Inn}}(P_{\rho}^{d})$ is not arcwise connected if d > 1.

Therefore, $\overline{\text{Inn}}(A_{\omega})$ is not arcwise connected if A_{ω} is isomorphic to P_{ρ}^{d} for an integer d greater than 1.

For the classifying space $B(\operatorname{Aut}(M_c(\mathbb{C}) \otimes P_{\rho}^d))$ of the automorphism group $\operatorname{Aut}(M_c(\mathbb{C}) \otimes P_{\rho}^d)$,

$$\pi_2(B(\operatorname{Aut}(M_c(P_{\rho}^d)))) = [S^2, B(\operatorname{Aut}(M_c(P_{\rho}^d)))] = [S^1, \operatorname{Aut}(M_c(P_{\rho}^d))]$$
$$= \pi_1(\operatorname{Aut}(M_c(P_{\rho}^d))),$$

which is a non-trivial group if cd > 1. But $\pi_1^s(\operatorname{Aut}(M_c(P_{\rho}^d)))$ has not a group structure if c > 1 and d > 1. Assume that $\overline{\operatorname{Inn}}(M_c(P_{\rho}^d))$ is arcwise connected. Then $\pi_1(\overline{\operatorname{Inn}}(M_c(P_{\rho}^d))) \cong \pi_1^s(\operatorname{Aut}(M_c(P_{\rho}^d)))$, which is a contradiction. So $\overline{\operatorname{Inn}}(M_c(P_{\rho}^d))$ is not arcwise connected.

We have obtained that $\overline{\text{Inn}}(A_{\omega} \otimes M_c(\mathbb{C}))$ is not arcwise connected if A_{ω} is isomorphic to P_{ρ}^d for an integer d greater than 1.

References

- Baggett, L. & Kleppner, A., Multiplier representations of abelian groups [J], J. Funct. Anal., 14(1973), 299–324.
- [2] Blackadar, B., Kumjian, A. & Rørdam, M., Approximately central matrix units and the structure of non-commutative tori [J], K-Theory, 6(1992), 267–284.
- [3] Boca, F., The structure of higher-dimensional noncommutative tori and metric Diophantine approximation [J], J. Reine Angew. Math., 492(1997), 179–219.
- [4] Boo, D., Kang, P. & Park, C., The sectional C*-algebras over a torus with fibres a non-commutative torus [J], Far East J. Math. Sci., 1(1999), 561–579.
- [5] Brabanter, M., The classification of rational rotation C*-algebras [J], Arch. Math., 43(1984), 79–83.
- [6] Brown, L. & Pedersen, G., C*-algebras of real rank zero [J], J. Funct. Anal., 99(1991), 131-149.
- [7] Cuntz, J., Simple C*-algebras generated by isometries [J], Comm. Math. Phys., 57(1977), 173–185.
- [8] Cuntz, J., K-theory for certain C*-algebras [J], Ann. Math., 113(1981), 181–197.
- [9] Disney, S. & Raeburn, I., Homogeneous C*-algebras whose spectra are tori [J], J. Austral. Math. Soc. (Series A), 38(1985), 9–39.
- [10] Elliott, G. A., On the K-theory of the C*-algebra generated by a projective representation of a torsion-free discrete abelian group [A], Operator Algebras and Group Representations [C], (G. Arsene et al.,) vol.1, Pitman, London, 1984, 157–184.
- [11] Elliott, G. A., On the classification of C*-algebras of real rank zero [J], J. Reine Angew. Math., 443 (1993), 179–219.
- [12] Elliott, G. A. & Rørdam, M., The automorphism group of the irrational rotation C*-algebra [J], Comm. Math. Phys., 155(1993), 3–26.
- [13] Green, P., The local structure of twisted covariance algebras [J], Acta. Math., 140(1978), 191–250.
- [14] Ji, R. & Xia, J., On the classification of commutator ideals [J], J. Funct. Anal., 78(1988), 208–232.
- [15] Karoubi, M., K-Theory [M], Springer-Verlag, Berlin, Heidelberg and New York, 1978.
- [16] Krauss, F. & Lawson, T. C., Examples of homogeneous C*-algebras [J], Memoirs A.M.S., 148(1974), 153–164.
- [17] Lin, H. & Rørdam, M., Extensions of inductive limits of circle algebras [J], J. London Math. Soc., 51 (1995), 603–613.
- [18] Poguntke, D., The structure of twisted convolution C*-algebras on abelian groups [J], J. Operator Theory, 38(1997), 3–18.
- [19] Rørdam, M., Classification of inductive limits of Cuntz algebras [J], J. Reine Angew. Math., XL: 2 (1988), 257–338.
- [20] Steenrod, N., The topology of fibre bundles [M], Princeton Univ. Press, Princeton, 1951.
- [21] Thomsen, K., Inductive limits of homogeneous C*-algebras [J], Proc. London Math. Soc., 55(1987), 157–180.