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Abstract

The Yang-Mills-Higgs field generalizes the Yang-Mills field. The authors establish the local
existence and uniqueness of the weak solution to the heat flow for the Yang-Mills-Higgs field

in a vector bundle over a compact Riemannian 4-manifold, and show that the weak solution is
gauge-equivalent to a smooth solution and there are at most finite singularities at the maximum
existing time.
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§1. Introduction

Let (M, g) be a four dimensional Riemannian manifold and let P be a principal bundle
with compact Lie structure group G over M . The Yang-Mills functional is defined by

YM(D) =

∫
M

|F |2 dM,

where F denotes the curvature of a connection D and dM is the volume form induced by
the metric g on M . All integrals on M in this paper will be with the volume form dM , so
we will not write it explicitly.

Donaldson[3] and K. Uhlenbeck[18,19] obtained many important results about Yang-Mills
equations (see also [5] and [7]). In physics, Yang-Mills fields represent forces. If they interact
with a second type of field – the field of a particle, one can view the Yang-Mills functional
as a special case of a more general Yang-Mills-Higgs functional.

Let V be a finite dimensional vector space and G ⊂ GL(V ). The Yang-Mills-Higgs
functional is defined through a section u of a vector bundle η = P ×G V in the following:

YMH(u,D) =
1

2

∫
M

|F |2 + |Du|2 + λ

4

(
1− |u|2

)2
, (1.1)
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where D is a connection or covariant directive on Γ(η) compatible with the structure group
G, F is the curvature of D, Du is the covariant derivative of u, and λ ≥ 0 is a constant[8].
A pair u ∈ Γ(η) and D is a solution to the Yang-Mills-Higgs equations if and only if

D∗F = −J, D∗Du =
λ

2
u(1− |u|2), (1.2)

where if G = SO(r) or SU(r), then Lemma 2.1 shows

J = J(u,D) =
1

2
(Du⊗u∗ − u⊗(Du)∗) ∈ Ω1(Adη).

Let G be the group of gauge transformations of Γ(η). Then S ∈ G acts on a connection
D and section u as follows

D̃ = S∗D := S−1 ◦D ◦ S, ũ := S−1u. (1.3)

The system (1.2) is not elliptic since it is invariant under the above gauge transformation
(1.3). There exist many related results about Yang-Mills-Higgs equations in four dimension
(e.g., see [1] and [12]).

On the other hand, the heat flow for Yang-Mills equation in four dimension has played
an important role for Yang-Mills theory. Atiyah and Bott suggested the heat flow for Yang-
Mills. The first contribution was made by Donaldson[4] in the case of a holomorphic vector
bundle. Generally, Yang-Mills flow in a G-bundle over a 4-manifold may blow up in a
finite time. Struwe[16] and Schlatter[13] established global existence and uniqueness of weak
solutions to the Yang-Mills flow in a principal G bundle over a compact 4-manifold with
G ⊂ SO(r). For Yang-Mills flows in higher dimensions, see [2].

In this paper, we consider a heat flow for the Yang-Mills-Higgs field. A pair (u(t), D(t))
is said to be a solution to the Yang-Mills-Higgs flow if it satisfies

∂D

∂t
= −D∗F − J,

∂u

∂t
= −D∗Du+

λ

2
u(1− |u|2) (1.4)

with initial conditions

D(0) = D0, u(0) = u0, (1.5)

where D0 and u0 are given.
Fix a connection Dref : Γ(η) → Ω1(η) := Γ(η⊗Λ1(M)); then any connection D can be

expressed as D = Dref + A with A ∈ Ω1(Adη), a one form on M with values in the Lie
algebra g of G (see Section 2 for the definitions and notations). Hence if we fix Dref, we can
think D = Dref +A as a one form A.

Definition 1.1. A family of (u(t), A(t)) is a weak solution to (1.4) on [0, T ) if

A ∈ L2
(
[0, T );L2

(
Ω1(Adη)

))
, u ∈ L2

(
[0, T );H1,2

(
Ω0(η)

))
,

F ∈ L∞ (
[0, T );L2

(
Ω2(Adη)

))
, ∂tu ∈ L2

(
[0, T ), L2

(
Ω0(η)

))
,

such that for all a ∈ C∞ (
[0, T ); Ω1(Adη)

)
vanishing near t = 0 and t = T , and ϕ ∈

C∞ (
[0, T ); Ω0(η)

)∫ T

0

{(
A,

∂a

∂t

)
− (F,Da)− (J, a)

}
dt = 0, (1.6)∫ T

0

{(∂u
∂t
, ϕ

)
+ (Du,Dϕ)− λ

2

(
u(1− |u|2), ϕ

)}
dt = 0. (1.7)

We say that a connection D is irreducible if for all s ∈ H1,2
(
Ω0(Adη)

)
there is a constant

C = C(D), such that

∥s∥H1,2 ≤ C ∥Ds∥L2 . (1.8)
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The main result of this paper is
Theorem A. (i) For any H1,2 connection D0 and H1,2 section u ∈ Γ(η), there is a T > 0

and a weak solution (D,u) = (Dref +A, u) to (1.4) and (1.5) for 0 ≤ t < T such that

A ∈ C0
(
[0, T );L2

(
Ω1(Adη)

))
∩H1,2

(
[0, T );L2

(
Ω1(Adη)

))
,

u ∈ C0
(
[0, T );H1,2

(
Ω0(η)

))
∩H1,2

(
[0, T );L2

(
Ω0(η)

))
,

F ∈ C0
(
[0, T );L2

(
Ω2(Adη)

))
.

Moreover, D and u are gauge-equivalent to a smooth solution to (1.4) in the following sense:

There are solutions D̂ = Dref + Â and û to (1.4) with

Â ∈ C0
(
[0, T );L2

(
Ω1(Adη)

))
, û ∈ C0

(
[0, T );H1,2

(
Ω0(η)

))
,

and they are smooth for 0 < t < T . Furthermore, there is a sequence of smooth gauge
transformations Ŝk and a sequence tk ↘ 0 such that Ŝk → Ŝ0 in H1,2, Ŝ∗

k(D̂)(tk) → D0 in

H1,2, Ŝ−1
k û(tk) → u0 in H1,2, and D = Ŝ∗

0 (D̂), u = Ŝ−1
0 û. Finally, D and u are smooth if

D0 and u0 are smooth.
(ii) If D(t) is irreducible in the sense of (1.8) for all t, then D is unique.
(iii) The maximal existence time T , if it is finite, is characterised by

T = sup
{
t̄ > 0; ∃R > 0 : sup

x0∈M, 0≤t≤t̄

(∫
BR(x0)

|F (t)|2 + |Du(t)|2
)
< ϵ0

}
,

where ϵ0 = ϵ0(η) > 0. At t̄1 = T , energy concentrates in at most finite many points x̄j1,
j = 1, · · · , l1, in the sense that

∀R > 0 : lim sup
t↗t̄1

∫
BR(x0)

(|F (t)|2 + |Du|2) ≥ ϵ0.

We will present the long time behavior and the blow up phenomenon in [6], the part II
of this article.

§2. Preliminaries

Let (M, g) be a 4-dimensional compact Riemannian manifold and let (P,M, π) be a
principal G bundle with a compact Lie group G. Let V be an r dimensional (complex or
real) vector space and G has a representation ρ : G→ GL(V ). Then π : η := P ×ρ V →M
is a rank r vector bundle (real or complex) associated with P . Our main interset is in the
cases that the structure group G is either SO(r) or SU(r), then V = Rr or Cr and η has a
Riemannian or Hermitian structure, denoted by ⟨·, ·⟩, which is invariant under G.

Let T ∗M be the cotangent bundle of M and Λp(M) the p-form bundles on M such that
T ∗M = Λ1(M). We have the associated bundle η⊗Λp(M). Let Ωp(η) = Γ(η⊗Λp(M)),
in particular Γ(η) = Ω0(η). Let g be the Lie algebra of G and Ad : G → GL(g) be
the adjoint representation and ad η := P ×Ad g → M the associated vector bundle. Let
Ωp(Adη) = Γ(Adη⊗Λp(M)). All connections here are considered compatible with the
structure group G. For any x ∈ M , π−1(x) ⊂ η is the fibre on x. The gauge group G
of η consists of maps S : η → η keeping fibres and satisfying, for any two u, v ∈ Ω0(η),
⟨Su, Sv⟩ = ⟨u, v⟩ . Thus G is the set of sections of the bundle Aut(η). Each fibre of Aut(η)
is isomorphic to G. Hence with the usual exp : g → G we have exp : Ω0(Adη) → G.

If S ∈ G, then S(x) is an orthonormal or unitary matrix. A p-form a ∈ Ωp(Adη) has
values in anti-symmetric or anti-hermitian matrix. Thus a can be written as

a(x) =
∑

Ai1,··· ,ip(x)dx
i1∧· · ·∧dxip ,
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where Ai1,··· ,ik ’s are entries of an anti-symmetric or anti-hermitian matrix.
If D : Ω0(η) → Ω1(η) is a Riemannian or unitary connection of η, i.e.,

d ⟨u, v⟩ = ⟨Du, v⟩+ ⟨u, Dv⟩ , ∀u, v ∈ Ω0(η),

then it induces D : Ωp−1(η) → Ωp(η), for any p > 0, by combination of D on sections of η
and the exterior differential on forms. There is another extension of D, ∇ : Ωp−1(η) → Γ(η⊗
Λp−1(M)⊗T ∗M), by using D on the sections of η and the Levi-Civita connection of (M, g) on
the forms. Let P : Γ(η⊗Λp−1(M)⊗T ∗M) → Γ(η⊗Λp(M)) be the projection with D = P ◦∇.
The connection D : Ω0(η) → Ω1(η) also induces operators D : Ωp(Adη) → Ωp+1(Adη), for
p ≥ 0, defined by Da = D ◦ a − (−1)pa ◦ D, ∀a ∈ Ωp(Adη), which means that for any
u ∈ Γ(η), (Da)u = D(au)− (−1)pa ∧Du. Similarly there is a

∇ : Ωp(Adη) → Γ (Λp(M)⊗T ∗M⊗ad η) for p ≥ 0,

such that D = P ◦ ∇.
Using the Killing form of g we can define inner product on Ωp(Adη). Locally, let

b(x) =
∑

Bi1,··· ,ip(x)dx
i1∧· · ·∧dxip .

Then the inner product is equivalent to

⟨a, b⟩ = −
∑

Trace(Ai1,··· ,ipB
∗
j1,··· ,jp)

⟨
dxi1∧· · ·∧dxip , dxj1∧· · ·∧dxjp

⟩
,

where B∗ is the transpose or conjugate transpose of matrix depending on whether G =
SO(r) or SU(r) and

⟨
dxi1∧· · ·∧dxip , dxj1∧· · ·∧dxjp

⟩
is the inner product induced by g.

Then we can check that for any ϕ, ψ ∈ Ωp(η) or Ωp(Adη), d ⟨ϕ, ψ⟩ = ⟨∇ϕ, ψ⟩ + ⟨ϕ, ∇ψ⟩ .
Then we have an inner product (a, b) :=

∫
M

⟨a, b⟩ for Ωp(η) or Ωp(Adη). Then we can

define L2 (Ωp(η)) or L2 (Ωp(Adη)) as the completion of C∞ sections under these L2 norms.
Similarly, we can define the Sobolev spaces H l,2 (Ωp(Adη)) and H l,2 (Ωp(η)), l ≥ 0, as the

completions of C∞ sections under the norms ∥a∥Hl,2 :=
( l∑

i=0

∥∇(i)a∥2L2

)1/2

.

Let η∗ be the dual bundle of η with the induced Riemannian or Hermitian structure. We
see that ad η ⊂ End(η) ∼= η⊗η∗. Note the fibrewise inner product for Ωp(Adη) is also defined
on Γ(η⊗η∗⊗Λp(M)).

For any v ∈ Ω0(η) we define v∗ ∈ Ω0(η∗) by v∗(u) = ⟨u, v⟩ for any u ∈ Ω0(η). Let v ∈
Ωp(η) and v =

∑
vi⊗ωi, ωi ∈ Λp(M), vi ∈ Ω0(η). Then we define v∗ =

∑
v∗i ⊗ωi ∈ Ωp(η∗).

Let a ∈ Ω1(Adη), b ∈ Ω1(η) and u ∈ Ω0(η). There is an identity

⟨au, b⟩ = ⟨a, b⊗u∗⟩ . (2.1)

Let ∗ : Λp(M) → Λn−p(M) be the star operator of (M, g). Then ∗∗ = (−1)p(n−p) and

⟨α, β⟩ dM = α∧∗β, ∀α, β ∈ Λp(M), p ≥ 0.

Since n = 4, we have

D∗ = − ∗ ◦D ◦ ∗ : Ωp(η) → Ωp−1(η) (D∗ : Ωp(Adη) → Ωp−1(Adη))

is the dual of D respectively, i.e., (Da, b) = (a,D∗b) for all a ∈ Ωp−1(η), b ∈ Ωp(η) or
a ∈ Ωp−1(Adη), b ∈ Ωp(Adη).

Lemma 2.1.

J = J(u,D) =
1

2
(Du⊗u∗ − u⊗(Du)∗) ∈ Ω1(Adη). (2.2)

Proof. Let (D,u) be a stationary point of the YMH-functional (1.1) and a ∈ Ω1(η).
An anti-symmetric or anti-hermitian matrix a is perpendicular to symmetric or hermitian
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matrices, i.e. ⟨a,Du⊗u∗ + u⊗(Du)∗⟩ ≡ 0 on M . Thus by (2.1),

d

dt
YMH(u,D + ta)

∣∣∣
t=0

= 2ℜ(D∗F +
1

2
(Du⊗u∗ − u⊗(Du)∗) , a) = 0.

Since a is arbitrary, we have proved (2.2).
Note that if locallyDu = Diudxi, thenDu∧(Du)∗ = Diu⊗(Dju)

∗dxi∧dxj . Let v ∈ Ω0(η),
A, B ∈ Ω1(η), A = Aidxi, B = Bidxi. By definition ⟨v,B⟩ = ⟨v,Bi⟩ dxi, ⟨A,B⟩ =
⟨Ai, Bj⟩ dxi ∧ dxj , where the ⟨ , ⟩ is the inner product of η.

Lemma 2.2.

DJ =
1

2
(Fu⊗u∗ − u⊗(Fu)∗ − 2(Du)∧(Du)∗) , (2.3)

D∗J =
1

2
(D∗Du⊗u∗ − u⊗(D∗Du)∗) . (2.4)

Proof. Since J ∈ Ω1(Adη) ⊂ Ω1(η⊗η∗) and DJ = D ◦ J + J ◦D, we obtain

(D(Du⊗u∗)) v = D(Du ⟨v, u⟩) +Du∧⟨Dv, u⟩
= Fu ⟨v, u⟩ −Du∧⟨v,Du⟩ = (Fu⊗u∗ −Du∧(Du)∗) v,

(D(u⊗(Du)∗)) v = (Du∧(Du)∗ + u⊗(Fu)∗) v.

Since v is arbitrary, (2.3) is true. Similarly, using D∗ = −∗ ◦D ◦ ∗ and a∧(∗b)∗ = −(∗a)∧b∗
for any a, b ∈ Ω1(η), we can prove that

D∗J =
1

2
(D∗Du⊗u∗ − u⊗(D∗Du)∗) +

1

2
∗ [Du∧(∗Du)∗ + (∗Du)∧(Du)∗]

=
1

2
(D∗Du⊗u∗ − u⊗(D∗Du)∗) .

Each connection D defines a Hodge Laplacian △ = D∗D +DD∗ both on Ωp(Adη) and
on Ωp(η), p ≥ 0. There is another rough (or crude) Laplacian ∇∗∇. The relation between
these operators are the Weitzenböck formula

∇∗∇ϕ = △ϕ+ F#ϕ+Rm#ϕ, (2.5)

where ϕ ∈ Ωp(Adη) or Ωp(η), F = F (D) and Rm is the Riemannian curvature on (M, g)
(see for instance [11, Appendix]). Here and in the following, # denotes any multi-linear map
with smooth coefficients.

§3. Basic Estimates

First we make a convention: if the structure group of η is SU(r), then we take the inner
product as ℜ⟨·, ·⟩ and still write it as ⟨·, ·⟩. It is a real inner product and defines the same
norm as original one. The advantage is that we do not need to distinguish between the real
and the complex cases. Note that our Euler-Lagrange equation (1.2) does not change under
this convention.

Lemma 3.1. Let D(t) and u(t) be weak solutions to (1.4) on [0, T ] ×M . Assume that
|u(0)| ≤ m a.e. on M for a constant m > 0. Then for all t ∈ [0, T ],

|u(t, ·)| ≤ max{m, 1} a.e.on M.

Proof. Without loss of generality, assume that m ≥ 1. Define

ϕ(t, x) = 1− min{m, |u(t, x)|}
|u(t, x)|

≥ 0. (3.1)

Then

dϕ =

{
0, on {|u(t, ·)| ≤ m},
m|u|−3 ⟨u,Du⟩ , on {|u(t, ·)| > m}.

(3.2)
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Note that since u ∈ Ω0(η), Du ∈ Ω1(η) and ⟨u,Du⟩ ∈ Λ1(M) is a 1-form. Choosing ϕ2u as
the test function in (1.7) and using (3.2), we obtain(∂u

∂t
, ϕ2u

)
= −

(
Du, u⊗ dϕ2

)
−

(
Du, ϕ2Du

)
+
λ

2

∫
M

ϕ2(1− |u|2)|u|2

= −2m

∫
M

ϕ|u|−3 ⟨Du, ⟨u,Du⟩⊗u⟩ −
∫
M

ϕ2|Du|2 + λ

2

∫
M

ϕ2(1− |u|2)|u|2.
(3.3)

Using (1.4), we have

∂ϕ

∂t
=

{
0, on {|u(t, ·)| ≤ m},
−m|u|−3 ⟨D∗Du, u⟩+ λ

2m|u|−1(1− |u|2), on {|u(t, ·)| > m},
and thus∫

M

|u|2 ∂ϕ
2

∂t
= −2m

(
D∗Du, ϕ|u|−1u

)
+

∫
M

λmϕ|u|(1− |u|2)

= 2m

∫
M

|u|−3ϕ ⟨Du, ⟨u,Du⟩⊗u⟩ − 2m2

∫
{|u|>m}

|u|−4 ⟨Du, ⟨Du, u⟩⊗u⟩

− 2m

∫
M

ϕ|u|−1|Du|2 +
∫
M

λmϕ|u|(1− |u|2). (3.4)

Note that

∂

∂t

(
u, ϕ2u

)
= 2

(∂u
∂t
, ϕ2u

)
+

∫
M

|u|2 ∂ϕ
2

∂t
. (3.5)

From (3.3), (3.4) and (3.5) we have

1

2

d

dt

∫
M

|u|2ϕ2 =
(∂u
∂t
, ϕ2u

)
+

1

2

∫
M

|u|2 ∂ϕ
2

∂t

≤ −m
∫
M

ϕ|u|−3(1 +m|u|−1)| ⟨Du, u⟩ |2

−
∫
M

(ϕ2 +mϕ|u|−1)|Du|2 + λ

2

∫
M

(ϕ|u|+m)ϕ|u|(1− |u|2) ≤ 0.

Here we have used the fact that ⟨Du, ⟨Du, u⟩⊗u⟩ = | ⟨Du, u⟩ |2.
Thus the function

fm(t) =

∫
M

|u(t, x)|2ϕ(t, x)2 =

∫
|u(t,x)|>m

(|u(t, x)| −m)2 ≥ 0

is a decreasing function of t. Since fm(0) = 0, we know that fm ≡ 0. This is equivalent to
saying that {|u(t, ·)| > m} has measure zero, or |u(t, ·)| ≤ m a.e. on M .

Since F (D+ ta) = (D+ ta)◦(D+ ta) = F + tDa+ t2a∧a for any a ∈ Ω1(Adη), we have

dF (D + ϵa)

dϵ

∣∣∣
ϵ=0

= Da.

In particular, taking a = ∂D/∂t and using (1.4), we have

dF (D(t))

dt
=
dF (D + ϵ∂D/∂t)

dϵ

∣∣∣
ϵ=0

= D
∂D

∂t
= −D(D∗F + J). (3.6)

Lemma 3.2. If u and D are weak solutions to (1.4) on [0, T ]×M , then

YMH(u(T ), D(T )) + 2

∫ T

0

∫
M

(∣∣∣∂u
∂t

∣∣∣2 + |D∗F + J |2
)
= YMH(u(0), D(0)). (3.7)
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Proof. By (1.4) and (2.1), note that for any a ∈ Ω1(Adη),

⟨au,Du⟩ = ⟨a,Du⊗u∗⟩ = ⟨a, J(u,D)⟩ . (3.8)

We have ∫
M

∣∣∣∣∂u∂t
∣∣∣∣2 = −

(∂u
∂t
, D∗Du− λ

2

(
1− |u|2

)
u
)

=
(∂D
∂t

u,Du
)
−

(∂(Du)
∂t

,Du
)
− λ

8

∫
M

∂

∂t

(
1− |u|2

)2
= −1

2

d

dt

∫
M

[
|Du|2 + λ

4

(
1− |u|2

)2 ]− (D∗F + J, J) .

Applying (3.6), we obtain

1

2

d

dt

∫
M

|F |2 =
(∂F
∂t
, F

)
= − (D(D∗F + J), F ) = −(D∗F + J,D∗F ).

Thus

1

2

d

dt

∫
M

[
|F |2 + |Du|2 + λ

4

(
1− |u|2

)2 ]
+

∫
M

∣∣∣∣∂u∂t
∣∣∣∣2 = −

∫
M

|D∗F + J |2.

Integrating on [0, T ] gives (3.7).

Lemma 3.3. Let u and D be weak solutions to (1.4) on [0, T ]×M . Then for any x0 ∈M
and geodesic ball B2R(x0), there is a constant C = C(M) such that

sup
0≤t≤T

∫
BR(x0)

|F (t, x)|2 + |Du(t, x)|2 + λ

4

(
1− |u(t, x)|2

)2
≤

∫
B2R(x0)

|F0|2 + |D0u0|2 +
λ

4

(
1− |u0|2

)2
+ CTR−2[YMH(u(0), D(0))].

Proof. Let ϕ be a cut off function with support inside B2R(x0) and ϕ ≡ 1 on BR(x0).
We can arrange that 0 ≤ ϕ ≤ 1 and |dϕ| ≤ C1R

−1, where C1 only depends on M . By (1.4),
(2.2) and (3.8), we have∫

M

ϕ2
∣∣∣∂u
∂t

∣∣∣2 = −
(
ϕ2D

∂u

∂t
,Du

)
−

(
dϕ2⊗ ∂u

∂t
,Du

)
+
λ

2

(
ϕ2
∂u

∂t
,
(
1− |u|2

)
u
)

=
(
ϕ2
∂D

∂t
u,Du

)
−
(
ϕ2
∂(Du)

∂t
,Du

)
−
(
dϕ2⊗ ∂u

∂t
,Du

)
− λ

8

∫
M

ϕ2
∂

∂t

(
1− |u|2

)2
= −1

2

d

dt

∫
M

ϕ2
[
|Du|2 + λ

4

(
1− |u|2

)2 ]− (ϕ2(D∗F + J), J)−
(
dϕ2⊗ ∂u

∂t
,Du

)
.

Using (3.6) again, we have

1

2

d

dt

∫
M

ϕ2|F |2 =
(
ϕ2
∂F

∂t
, F

)
= −

(
ϕ2D(D∗F + J), F

)
= −

(
ϕ2(D∗F + J), D∗F

)
+
(
dϕ2∧(D∗F + J), F

)
.

Note that

−
(
dϕ2⊗ ∂u

∂t
,Du

)
≤ 2

∫
M

ϕ|dϕ|
∣∣∣∂u
∂t

∣∣∣|Du| ≤ ∫
M

ϕ2
∣∣∣∂u
∂t

∣∣∣2 + |dϕ|2|Du|2,(
dϕ2∧(D∗F + J), F

)
≤ 2

∫
M

ϕ|dϕ||D∗F + J ||F | ≤
∫
M

ϕ2|D∗F + J |2 + |dϕ|2|F |2.
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We finally obtain

1

2

d

dt

∫
M

ϕ2
[
|F |2 + |Du|2 + λ

4

(
1− |u|2

)2 ]
+

∫
M

ϕ2
∣∣∣∣∂u∂t

∣∣∣∣2 + ∫
M

ϕ2|D∗F + J |2

≤
∫
M

ϕ2
(∣∣∣∂u
∂t

∣∣∣2 + |D∗F + J |2
)
+ CR−2YMH(u,D).

Integrate on [0, t] for 0 < t ≤ T . The result follows from Lemma 3.2.
Lemma 3.4. There exists constants K, R0 depending only on M such that for any

R ∈]0, R0] there exists a cover of M by geodesic balls BR/2(xi) with the property that at any
point x ∈M at most K of the balls BR(xi) meet.

Proof. For the proof of this lemma, we refer to [15].
Lemma 3.5. Let D = Dref + A with curvature F = F (D). Then there exist constants

C = C(η) and δ = δ(η) > 0 such that for a ∈ Ωp(Adη), and BR, the geodesic ball of radius
R and centred at x0 ∈M ,

∥a∥2H1,2(BR/2)
≤ C(∥Da∥2L2(BR) + ∥D∗a∥2L2(BR) + (1 +R−2)∥a∥2L2(BR)),

provided ∫
BR

|F |2 dM < δ. (3.9)

Moreover if there is an R > 0 such that (3.9) is true for any x ∈M , then

∥a∥2H1,2 ≤ C
(
∥Da∥2L2 + ∥D∗a∥2L2 + (1 +R−2)∥a∥2L2

)
.

The same result also holds for u ∈ Ωp(η).
Proof. Let ϕ ∈ C∞

0 (BR) be a cut-off function with 0 ≤ ϕ ≤ 1, |dϕ| ≤ C(M)R−1, and
ϕ = 1 inside BR/2. Then by (2.5), we find

∥∇a∥2L2(BR/2)
≤ ∥∇(ϕa)∥2L2 = (∇∗∇(ϕa), ϕa)

= ∥D(ϕa)∥2L2 + ∥D∗(ϕa)∥2L2 + (F#ϕa, ϕa) + (Rm#ϕa, ϕa) .

By Hölder and Sobolev inequalities, we find

(F#ϕa, ϕa) ≤ C2(η)∥F∥L2(BR)∥ϕa∥2L4 ≤ δ1/2C1(η)C2(η)∥ϕa∥2H1,2 .

Thus

∥a∥2H1,2(BR/2)
≤ C3

(
∥Da∥2L2(BR) + ∥D∗a∥2L2(BR) + (1 +R−2)∥a∥2L2(BR)

)
,

by choosing δ1/2 < 1
2C1(η)C2(η)

. This proves our local claim. With the help of Lemma 3.4,

the global version is also true by choosing

δ1/2 <
1

2KC1(η)C2(η)
.

The proof for u ∈ Ωp(η) is the same as above.
Lemma 3.6. Let D and u be weak solutions to (1.4) on [0, T ] ×M . Suppose u(0) is

bounded. Then there exists a constant δ = δ(η) > 0 such that

D∗F + J ∈ L2
loc

(
(0, T ];H1,2

(
Ω1(Adη)

))
,

∂

∂t
F ∈ L2

loc

(
(0, T ];L2

(
Ω2(Adη)

))
,

D∗Du ∈ L2
loc

(
(0, T ];H1,2

(
Ω0(η)

))
, D

∂u

∂t
∈ L2

loc

(
(0, T ];L2

(
Ω1(η)

))
,

provided for some R > 0,

sup
0<t<T

∫
BR(x)

(
|Du|2 + |F |2

)
< δ, ∀x ∈M. (3.10)
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Proof. Using (1.4) and (3.6), we have∥∥∥∂F
∂t

∥∥∥2
L2

+ ∥D(D∗F + J)∥2L2

= −2
(
D∗F + J, D∗

(∂F
∂t

))
= −2

(
D∗F + J,

∂D

∂t
#F − ∂J

∂t
+
∂

∂t
(D∗F + J)

)
≤ − d

dt
∥D∗F + J∥2L2 + C

∫
M

|D∗F + J |
(
|D∗F + J ||F |+

∣∣∣∂J
∂t

∣∣∣).
Using (2.2) we get

∂J

∂t
= (D∗F + J)#u#u+D

∂u

∂t
#u+

∂u

∂t
#Du.

By Lemma 3.1, u(t) is bounded, so∥∥∥ ∂
∂t
F
∥∥∥2
L2

+ ∥D(D∗F + J)∥2L2

≤ − d

dt
∥D∗F + J∥2L2 + C

∫
M

(|F |+ |Du|)
(
|D∗F + J |2 +

∣∣∣∂u
∂t

∣∣∣2)
+ C∥D∗F + J∥2L2 +

1

4

∥∥∥D∂u
∂t

∥∥∥2
L2
. (3.11)

By Lemma 3.1 and (2.2) we have

|d|u|2| = |2 ⟨Du, u⟩ | ≤ 2|u||Du| ≤ C|Du|,
|J |2 ≤ C|Du|2.

Using (1.4) and Lemma 3.1, we have

∥DD∗Du∥2L2 +
∥∥∥D∂u

∂t

∥∥∥2
L2

=
(
D
∂u

∂t
,
λ

2
D

[
u(1− |u|2)

]
−DD∗Du)

)
−
(
D
∂u

∂t
− λ

2
D

[
u(1− |u|2)

]
, DD∗Du

)
≤ −2

(
D∗ ∂(Du)

∂t
, D∗Du

)
+ C

∫
M

(|Du|+ |D∗F + J |)
(
|DD∗Du|+

∣∣∣D∂u
∂t

∣∣∣)
≤ − d

dt
∥D∗Du∥2L2 +

1

2
∥DD∗Du∥2L2 +

1

2

∥∥∥D∂u
∂t

∥∥∥2
L2

+ C

∫
M

|Du|(|D∗F + J |2 + |D∗Du|2) + C∥D∗F + J∥2L2 + C∥Du∥2L2 .

Above and (3.11) yield

1

2

(∥∥∥ ∂
∂t
F
∥∥∥2
L2

+ ∥D(D∗F + J)∥2L2 + ∥DD∗Du∥2L2 +
1

2

∥∥∥D∂u
∂t

∥∥∥2
L2

)
≤ − d

dt

(
∥D∗Du∥2L2 + ∥D∗F + J∥2L2

)
+ C∥D∗F + J∥2L2 + C∥Du∥2L2

+ C

∫
M

(|F |+ |Du|)
(
|D∗F + J |2 + |D∗Du|2 +

∣∣∣∂u
∂t

∣∣∣2).
On the other hand, D∗D∗Du = 0 and by Lemma 3.1 and (2.3),

|D∗J |2 ≤ C|D∗Du|2.
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Notting that D∗D∗F = 0 and applying Lemmas 3.4, 3.5, and Sobolev inequality we obtain∫
M

(|F |+ |Du|)
(
|D∗F + J |2 +

∣∣∣∂u
∂t

∣∣∣2 + |D∗Du|2
)

≤
∑
i

∫
BR(xi)

(|F |+ |Du|)
(
|D∗F + J |2 +

∣∣∣∂u
∂t

∣∣∣2 + |D∗Du|2
)

≤C sup
x∈M

(∫
BR(x)

(|Du|2 + |F |2)
) 1

2
∑
i

(∫
BR(xi)

(
|D∗F + J |4 + |D∗Du|4 +

∣∣∣∂u
∂t

∣∣∣4)) 1
2

≤ Cδ1/2K
(
∥D(D∗F + J)∥2L2 + ∥DD∗Du∥2L2 + ∥D∂u

∂t
∥2L2

)
+ Cδ1/2K(1 +R−2)

(
∥D∗F + J∥2L2 + ∥D∗Du∥2L2 +

∥∥∥∥∂u∂t
∥∥∥∥2
L2

)
.

By choosing δ1/2CK < 1
8 we get

1

4

(∥∥∥∥ ∂∂tF
∥∥∥∥2
L2

+ ∥D(D∗F + J)∥2L2 + ∥DD∗Du∥2L2 +
1

2

∥∥∥∥D∂u∂t
∥∥∥∥2
L2

)
≤ − d

dt

(
∥D∗Du∥2L2 + ∥D∗F + J∥2L2

)
+ C

(
∥D∗F + J∥2L2 + ∥Du∥2L2 +

∥∥∥∥∂u∂t
∥∥∥∥2
L2

+ ∥D∗Du∥2L2

)
. (3.12)

Now given τ > 0 we can find t0 ∈ [0, τ ] such that

∥D∗F + J∥2L2(t0) ≤ 2τ−1

∫ τ

0

∥D∗F + J∥2L2 dt ≤ τ−1YMH(D(0), u(0)),

∥D∗Du∥2L2(t0) ≤ 2τ−1

∫ τ

0

∥D∗Du∥2L2 dt ≤ 2τ−1
(∫ T

0

∫
M

∣∣∣∂u
∂t

∣∣∣2dt+ CTτ
)
.

By Lemmas 3.1 and 3.2,∫ T

0

(
∥D∗F + J∥2L2 + ∥Du∥2L2 +

∥∥∥∥∂u∂t
∥∥∥∥2
L4

+ ∥F∥2L2 + ∥D∗Du∥2L2

)
dt <∞.

Integrating both sides of (3.12) from t0 to T gives∫ T

τ

(
∥D(D∗F + J)∥2L2 +

∥∥∥∥D∂u∂t
∥∥∥∥2
L2

+

∥∥∥∥ ∂∂tF
∥∥∥∥2
L2

+ ∥DD∗Du∥2L2

)
dt ≤ C(τ, T ).

Since τ is arbitrarily small, the last inequality and Lemma 3.5 prove Lemma 3.6.

Lemma 3.7. Let D = Dref +A and u be weak solutions of (1.4) in the sense of Theorem
A (i). If u(0) is bounded and (3.10) is true, then there exist A(T ) ∈ H1,2

(
Ω1(Adη)

)
and

u(T ) ∈ H1,2
(
Ω0(η)

)
such that as t↗ T ,

A(t) → A(T ) in H1,2
(
Ω1(Adη)

)
, u(t) → u(T ) in H1,2

(
Ω0(η)

)
.

Proof. By Lemma 3.6, we have ∂A
∂t ∈ L2

loc

(
(0, T ];H1,2

(
Ω1(Adη)

))
, whence A(t) →

A(T ) in L4
(
Ω1(Adη)

)
for some A(T ) ∈ L4

(
Ω1(Adη)

)
as t ↗ T . In fact, by Fubini’s

theorem, A(t, x) is absolutely continuous for almost all x ∈M , thus

A(t1, x)−A(t2, x) =

∫ t1

t2

∂A

∂t
(t, x)dt
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for almost all x ∈M . Then for any 0 < s ≤ t2 < t1 ≤ T ,

∥A(t1)−A(t2)∥L4 =
∥∥∥∫ t1

t2

∂A

∂t
(t)dt

∥∥∥
L4

≤ C
∥∥∥ ∫ t1

t2

∂A

∂t
(t)dt

∥∥∥
H1,2

≤ C|t1 − t2|
1
2

(∫ T

s

∫
M

∣∣∣∣∂A∂t (t)
∣∣∣∣2 + ∫ T

s

∫
M

∣∣∣∣∇ref
∂A

∂t

∣∣∣∣2 ) 1
2 ≤ C(s, T )|t1 − t2|

1
2 .

The last inequality comes from Lemma 3.6.

Thus there exists an A(T ) ∈ L4
(
Ω1(Adη)

)
such that A(t) → A(T ) in L4

(
Ω1(Adη)

)
, as

t↗ T . By Lemma 3.6 we see that

∂

∂t
(DrefA) =

∂

∂t
(F (D)− F (Dref)−A∧A) = ∂

∂t
(F (D)−A∧A)

=
∂

∂t
F +

∂A

∂t
#A ∈ L2

loc

(
(0, T ];L2

(
Ω2(Adη)

))
,

and DrefA(t) converges in L2
(
Ω2(Adη)

)
as t ↗ T . Moreover, by D∗D∗F = 0, (2.3),

Lemmas 3.1 and 3.6,

∂

∂t
(D∗

refA) = D∗
ref

(∂A
∂t

)
= A#(D∗F + J)−D∗J ∈ L2

loc

(
(0, T ];L2

(
Ω2(Adη)

))
and D∗

refA(t) converges in L2
(
Ω0(Adη)

)
as t ↗ T . By Lemma 3.5, A(t) converges in

H1,2
(
Ω1(Adη)

)
. By the uniqueness of limit, the A(T ) ∈ H1,2

(
Ω1(Adη)

)
and A(t) → A(T )

in H1,2
(
Ω1(Adη)

)
as t↗ T .

Since u is bounded, we only need check that Du(t) converges in L2.

∥Du(t1)−Du(t2)∥L2 ≤
∥∥∥ ∫ t1

t2

∂A

∂t
(t)u(t)dt

∥∥∥
L2

+
∥∥∥ ∫ t1

t2

A(t)
∂u

∂t
(t)dt

∥∥∥
L2

≤ C|t1 − t2|
1
2

(∫ t1

t2

∫
M

∣∣∣∣∂A∂t (t)
∣∣∣∣2 dt) 1

2

+ 2C|t1 − t2|
1
2

(∫ t1

t2

((∫
M

|A(t)|4
) 1

2

+
(∫

M

∣∣∣∣∂u∂t (t)
∣∣∣∣4 ) 1

2
)
dt
) 1

2

.

Again by Lemma 3.6 and Sobolev embedding, u(t) → u(T ) in H1,2
(
Ω0(η)

)
as t↗ T .

§4. The Proof of Theorem A

4.1. The Smooth Case

We consider a scheme of a version of De Turck’s trick that gives solutions to (1.4) and
(1.5) when u0 and D0 = Dref +A0 are smooth.

Let a(t, ·) ∈ Ω1(Adη) and D̄(t, ·) = D0 + a(t, ·). We solve the initial value problems for
a and ū as follows

∂D̄

∂t
=
∂a

∂t
= −D̄∗F̄ − 1

2

(
D̄ū⊗ū∗ − ū⊗(D̄ū)∗

)
+ D̄(−D̄∗a),

∂ū

∂t
= −D̄∗D̄ū+

λ

2
ū(1− |ū|2) + (D̄∗a)ū

(4.1)

with initial values a(0, ·) = 0 and ū(0, ·) = u0. Since

F̄ = (D0 + a)◦(D0 + a) = F (D0) +D0a+ a∧a = F (D0) + D̄a− a∧a
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and D̄∗ū = 0, (4.1) can be written as
∂a

∂t
+ △̄a = −D̄∗F (D0) + D̄∗(a∧a)− 1

2

(
D̄ū⊗ū∗ − ū⊗(D̄ū)∗

)
,

∂ū

∂t
+ △̄ū =

λ

2
ū(1− |ū|2) + (D̄∗a)ū

(4.2)

with initial values a(0, ·) = 0 and ū(0, ·) = u0. The system (4.2) is a perturbation of the
standard heat equation. We see that if D0 and u0 are smooth, for small T > 0, there are
unique smooth a and ū satisfying (4.2) on [0, T ]×M . Now let S(t) ∈ C∞(G) be the unique
smooth solution to the linear initial value problem:

S−1 ◦ dS
dt

= −D̄∗a, S(0) = id. (4.3)

Let D = (S−1)∗D̄ = S ◦D̄◦S−1, u = Sū. Since u∗ = (Sū)∗ = ū∗S−1 and D∗ = S ◦D̄∗◦S−1,
we have

S ◦ D̄∗F̄ ◦ S−1 = S ◦ D̄∗ ◦ S−1 ◦ SF̄ ◦ S−1 = D∗F,

S ◦
(
D̄ū⊗ū∗ − ū⊗(D̄ū)∗

)
◦ S−1 = Du⊗u∗ − u⊗(Du)∗,

D̄(−D̄∗a) = −D̄ ◦ (D̄∗a) + (D̄∗a) ◦ D̄ = −
(
S−1 ◦ dS

dt
◦ D̄ + D̄ ◦ dS

−1

dt
◦ S

)
.

Thus

∂D

∂t
= S ◦

(
S−1 ◦ dS

dt
◦D̄ + D̄ ◦ dS

−1

dt
◦ S

)
◦ S−1

− S ◦
(
D̄∗F̄ +

1

2

(
D̄ū⊗ū∗ − ū⊗(D̄ū)∗

))
◦ S−1 + S ◦ (D̄(−D̄∗a)) ◦ S−1

= −D∗F − 1

2
(Du⊗u∗ − u⊗(Du)∗) .

Moreover, since |u| = |Sū| = |ū|,
∂u

∂t
=
dS

dt
ū− S ◦ D̄∗ ◦ S−1 ◦ SD̄ ◦ S−1 ◦ Sū+

λ

2
u(1− |u|2)− dS

dt
ū

= −D∗Du+
λ

2
u(1− |u|2).

Of course D(0) = D0 + a(0) = D0, u(0) = S(0)ū(0) = u0. We get the unique smooth
solutions to (1.4) and (1.5) on [0, T ]×M .

4.2. Proof of Local Existence
When u0 and A0 are meerly in H1,2, then the above method would not work since the

solution a is only in H1,2 and thus D̄∗a is only in L2. This leads to that the solution S of
(4.3) is only measurable. Then S◦D̄◦S−1 is not necessarily an H1,2 connection.

We use a method of Struwe[17] to round about this difficulty.
Since A0 is in H1,2, we can select smooth A1 ∈ Ω1(Adη) such that B0 = A0 − A1 ∈

H1,2
(
Ω1(Adη)

)
has H1,2 norm as small as we please. We can also make u0 = u1 + v0,

where u1 is smooth and v0 has H1,2 norm as small as we please.
Let D1 = Dref +A1 and △1 = D1D

∗
1 +D∗

1D1. We solve the heat equation
∂Abg

∂t
+△1Abg = 0,

∂ubg
∂t

+△1ubg = 0,

(4.4)

with initian values Abg(0) = B0 and ubg(0) = v0.
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By general theory of PDE, for some T > 0 there is a unique pair of solutions,

Abg ∈ C0
(
[0,∞);H1,2(Ω1(Adη))

)
∩ L2

(
[0,∞);H2,2(Ω1(Adη))

)
,

ubg ∈ C0
(
[0,∞);H1,2(Ω0(η))

)
∩ L2

(
[0,∞);H2,2(Ω0(η))

)
,

such that they are smooth for t > 0. In particular, there exist constants C = C(η) and
T1 = T (η,D1) such that on the interval [0, T1] we have

∥Abg∥L∞(H1,2) ≤ C∥B0∥H1,2 , ∥ubg∥L∞(H1,2) ≤ C∥v0∥H1,2 . (4.5)

Using the Abg and ubg we can have data which are smooth for t > 0. We first establish
solution (a, ū) to (4.1) which is smooth for 0 < t < T for some T > 0.

We define Dbg = D1 +Abg, D̄ = Dbg + a, and define ū = u1 + ubg + v such that a and ū
satisfy the equations in (4.2).

Using Da = da+A∧a− (−1)pa∧A and D∗a = −∗D ∗a for D = d+A and a ∈ Ωp(Adη),
we can compute that

△Aa = △a− ∗d ∗ (A∧a+ a∧A)− d ∗ [A∧∗a+ (∗a)∧A]
− ∗{A∧∗(da+A∧a+ a∧A)− [∗(da+A∧a+ a∧A)]∧A}
−A ∗ [d ∗ a+A∧∗a+ (∗a)∧A] + {∗[d ∗ a+A∧∗a+ (∗a)∧A]}A,

(4.6)

where △a = − ∗ d ∗ da− d ∗ d ∗ a. In particular, we have

△̄a = △1a+∇1Abg#a+∇1a#Abg +∇1a#a+Abg#Abg#a+Abg#a#a+ a#a#a.

By the above notation, (4.2) is equivalent to
∂a

∂t
+△1a = f1 + f2 + g1(a,∇1a) + g2(a, v,D1v),

∂v

∂t
+△1v = h1 + h2(a, v,∇1a,D1v),

(4.7)

with initial values a(0) = 0 and v(0) = 0, where

f1 = −∂Abg

∂t
−D∗

1Fbg +Abg#Fbg,

f2 = D1u2#u2 +Abg#u2#u2,

g1(a,∇1a) = Fbg#a+Abg#∇1a+∇1Abg#a+Abg#Abg#a

+∇1a#a+Abg#a#a+ a#a#a,

g2(a, v,D1v) = D1v#u2 +D1u2#v +D1v#v

+ a#u2#u2 + a#v#u2 +Abg#u2#v + a#v#v,

h1 = D1u2#v +∇1Abg#u2 +Abg#Abg#u2 + u2#u2#u2 −△1u1,

h2(a, v,∇1a,D1v) = D1v#Abg +∇1Abg#v +D1v#a+∇1a#v +D1u2#a

+∇1a#u2 +Abg#Abg#v +Abg#a#v +Abg#a#u2

+ a#a#u2 + a#a#v + u2#u2#v + u2#v#v + v#v#v,

for u2 = u1 + ubg ∈ L2(H2,2) ∩ C0(H1,2) ∩H1,2(L2) and Fbg = F (Dbg).
As in [17], we introduce the following spaces:

V =VT (Ω
p(Adη))=L2

(
[0, T ];H2,2(Ωp(Adη))

)
∩H1,2

(
[0, T ];L2(Ωp (Adη))

)
, p ≥ 0,

W =WT (Ωp(η)) = L2
(
[0, T ];H2,2 (Ωp(η))

)
∩H1,2

(
[0, T ];L2 (Ωp(η))

)
, p ≥ 0.

The norms in these spaces are defined as

∥ϕ∥2V :=
∥∥∥ d
dt
ϕ
∥∥∥2
L2,2

+ ∥ϕ∥2L2(H2,2),
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similarly for WT . Here we denote the space-time Lp − Lq-norms

∥ϕ∥Lq,p =
(∫ T

0

∥ϕ∥qLpdt
)1/q

, 1 ≤ p, q <∞,

etc. VT and WT are continuously embedded in

L∞ (
[0, T ];H1,2 (Ωp(Adη))

)
, L∞ (

[0, T ];H1,2 (Ωp(η))
)
,

and as pointed in [17], with

sup
0≤t≤T

∥ϕ∥2H1,2 ≤ ∥ϕ(0)∥2H1,2 + 2∥ϕ∥2V , (4.8)

sup
0≤t≤T

∥u∥2H1,2 ≤ ∥u(0)∥2H1,2 + 2∥u∥2V . (4.9)

We will use Lemmas 3.1–3.3 in [17]. They are also true for u ∈ Ωp(η) since the Weitzenböck
formula (2.5) also holds in this case.

Since a(0) = 0 and v(0) = 0, choosing suitable B0 and v0 and T > 0 small enough we
can make ∥a∥L∞(H1,2) + ∥v∥L∞(H1,2) + ∥B0∥H1,2 + ∥v0∥H1,2 small enough. Then we can find
0 < θ < 1 such that

∥g1∥L2,2 ≤ θ∥a∥VT
, ∥g2∥L2,2 ≤ θ∥v∥WT

, ∥h2∥L2,2 ≤ θ (∥a∥VT
+ ∥v∥WT

) .

The estimates are similar to that in [17]. For example, since |u0| is bounded and u2(t) is
smooth for t > 0, for 0 ≤ t ≤ T there is 0 < N(t) < ∞ such that |u2(t)| ≤ N(t) almost
everywhere on M . Then writing V and W for VT and WT , we have

∥D1v#u2∥L2,2 =
(∫ T

0

∫
M

|D1v#u2|2dMdt
)1/2

≤ C
(∫ T

0

N2(t)dt
)1/2

∥v∥L∞(H1,2) ≤ Cϵ(T )∥v∥W .

We can shrink T to make ϵ(T ) as small as we please. Similarly,

∥D1u2#v∥L2,2 ≤ C
(∫ T

0

∥u2∥2H2,2dt
)1/2

∥v∥L∞,4 ≤ C∥u2∥L2(H2,2)∥v∥W .

Again when T > 0 small, we can make ∥u2∥L2(H2,2) small.
By Lemma 3.2 of [17] and its analogue for v, we have

∥a∥V ≤ C2

∥∥∥da
dt

+△1a
∥∥∥
L2,2

≤ C1∥f1 + f2∥L2,2 + θ (∥a∥V + ∥v∥W ) , (4.10)

∥v∥V ≤ C2

∥∥∥dv
dt

+△1v
∥∥∥
L2,2

≤ C1∥h1∥L2,2 + θ (∥a∥V + ∥v∥W ) . (4.11)

Select T = T (ϵ) > 0 so small that

C1(∥f1 + f2∥L2,2 + ∥h1∥L2,2) < (1− θ)ϵ.

Fix these T and ϵ. Let

UT
ϵ := {(a, v) ∈ VT ×WT

∣∣ ∥a∥VT + ∥v∥WT < ϵ}. (4.12)

Given any (a, v) ∈ UT
ϵ , there is a unique weak solution (b, w) to the equations
∂b

∂t
+△1b = f1 + g1(a,∇1a) + f2 + g2(a, v,D1v),

∂w

∂t
+△1w = h1 + h2(a, v,∇1a,D1v)

with initial values b(0) = 0 and w(0) = 0. Write (b, w) = L(a, v). Then (4.10), (4.11), and
(4.12) give us ∥b∥VT + ∥w∥WT = ∥L(a, v)∥VT×WT < ϵ. Thus L : UT

ϵ → UT
ϵ .
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Now since the terms in g1(a,∇1a), g2(a, v,D1v), and h2(a, v,∇1a,D1v) are either linear
or multiplications of at most order 3 of (a, v), or at most order 2 of (a, v,∇1a,D1v), with
similar estimates and may replace smaller T > 0 and ϵ > 0, we have

∥L(a, v)− L(c, z)∥VT×WT
≤ θ∥(a− c, v − z)∥VT×WT

, 0 < θ < 1.

Thus by contraction mapping theorem on UT
ϵ ⊂ VT ×WT we have unique weak solution

(a, ū) ∈ VT ×WT of (4.7). By general theory of quasi-linear parabolic equations, (a, ū)(t) is
smooth for t > 0 since f1 + f2 and h1 are smooth for t > 0 (for example, see [10]).

Choose tk ↘ 0 and solve the equation for Sk(t) ∈ C∞(CalG), t > 0,

S−1
k ◦ dSk

dt
= −D̄∗a, Sk(tk) = id. (4.13)

Clearly, Sk = S−1
l (tk) ◦ Sl. Let Dk = (S−1

k )∗D̄ = [Sl(tk)]
∗Dl be the corresponding connec-

tions. For each k, Dk(t) = [S−1
k (t)]∗D̄(t) and uk(t) = Sk(t)ū(t) are smooth for 0 < t ≤ T

and are classical solutions to (1.4).

We first construct the D̂ and û mentioned in Theorem A (i).
Since dSk/dt = −SkD̄

∗a and D̄∗a ∈ L2(H1,2), we have∥∥∥ d
dt
Sk

∥∥∥2
L2,4

= ∥D̄∗a∥2L2,4 ≤ C∥D̄∗a∥2L2(H1,2).

Let |M | be the volume of (M, g). Since Sk is smooth for t > 0, for 0 < t1 < t2 < T , when
t2 − t1 is so small that ∫ t2

t1

∣∣∣dSk

dt
(t)

∣∣∣2dt = ∫ t2

t1

|D̄∗a(t)|2dt < 1,

we have∫
M

|Sk(t2)− Sk(t1)|4 =

∫
M

∣∣∣ ∫ t2

t1

dSk

dt
(t)dt

∣∣∣4 ≤
∫
M

(t2 − t1)
2

(∫ t2

t1

∣∣∣dSk

dt
(t)

∣∣∣2dt)2

≤ C(t2 − t1)
2|M | 12 ∥D̄∗a∥2L2(H1,2).

Thus, Sk(0) = lim
t↘0

Sk(t) ∈ L4 exists for any k.

LetDk(t) = Dref+Ak(t). Then |Fk(0)| = |Sk(0)F0Sk(0)
−1| = |F0|, |uk(0)| = |Sk(0)u0| =

|u0|, and |Dk(0)uk(0)| = |Sk(0)D0u0| = |D0u0|. Since Dk and uk satisfy (1.4), by Lemma
3.2, we have∥∥∥∂Ak

∂t

∥∥∥2
L2,2

= ∥D∗
kFk + Jk∥2L2,2 ≤ YMH(uk(0), Dk(0)) = YMH(u0, D0). (4.14)

Note that by Lemma 3.2 and (4.14),

sup
t

YMH(uk(t), Dk(t)) = YMH(uk(0), Dk(0)) = YMH(u0, D0) (4.15)

for any k. Thus ∫
M

|Ak(t2)−Ak(t1)|2 ≤ (t2 − t1)YMH(u0, D0).

For each k the limit Ak(0) = lim
t↘0

Ak(t) exists in L
2. Moreover, since Sk(tk) = id, Ak(tk) =

Ā(tk) → A0 in H1,2, lim
k→∞

Dk(0) = D0 in L2.

By Lemma 3.2 and (4.15),∥∥∥∂ul
∂t

∥∥∥2
L2,2

≤ YMH(ul(0), Dl(0)) = YMH(u0, D0),
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whence ul(0) = lim
t↘0

ul(t) in L2 exists for any l. Fix some l = l̂ and let Ŝ = Sl̂, D̂ = Dl̂,

D̂0 = D̂(0), û = ul̂, Ŝk = Ŝ(tk). D̂ and û satisy (1.4). Moreover,

Ŝ∗
k(D̂)(tk) = D̄(tk) → D0, Ŝ−1

k û = ū(tk) → u0 in H1,2
(
[0, T );L2

)
.

Since Sk(t) = Sl̂(tk)
−1Sl̂(t) = Ŝ−1

k Ŝ(t),

lim
k→∞

Ŝ∗
k(D̂0) = lim

k→∞
Dk(0) = D0 in L2, lim

t↘0
Ŝ−1
k û(t) = lim

t↘0
uk(t) = u0 in L2.

We next prove that Ŝk → Ŝ0 in H1,2. If we let D̂0 = Dref + Â0 with Â0 ∈ H1,2(Ω1(Adη)),
we find

Ŝ∗
k(D̂0)− D̂0 = Ŝ−1

k ◦ (DrefŜk) + Ŝ−1
k ◦ Â0 ◦ Ŝk − Â0 → A0 − Â0 in L2.

Thus

lim
k→∞

DrefŜk = lim
k→∞

(ŜkA0 − Â0Ŝk) in L2

exists and necessarily coincides with the distributional limit DrefŜ0; that is, Ŝk → Ŝ0 in
H1,2. But this implies that Dk = Ŝ∗

k(D̂) converges uniformly to some D = Ŝ∗
0 (D̂) ∈ C0(L2)

with D(0) = D0 and ∂D/∂t ∈ L2,2 by (4.12). Then we have u(t) = Ŝ−1
0 û(t) = lim

k→∞
Ŝ−1
k û(t)

in L2 for any t > 0 and u(0) = u0. Moreover,

Du(t) = Ŝ−1
0 ◦ Ŝ(t) ◦ D̄ū(t) = lim

k→∞
Ŝ−1
k ◦ Ŝ(t) ◦ D̄ū(t) in L2,

for 0 < t ≤ T , since ū ∈ H1,2. Thus u ∈ C0
(
[0, T );H1,2

(
Ω0(η)

))
.

It only remains to prove that F (D) ∈ C0
(
[0, T );L2

(
Ω2(Adη)

))
. It is clear that F (Dk) =

Ŝ∗
k(F (D̂)) converges in L2, locally uniformly for t > 0, as k → ∞. Since Dk → D in C0(L2),
F (Dk) → F (D) in the sense of distributions. Together, these results imply F (Dk) → F (D)
in C0((0, T ];L2(Ω2(Adη))).

Let D(t) = Dref + A(t). Since A ∈ C
(
[0, T ];L2

(
Ω1(Adη)

))
and u is bounded and is

in L2
(
[0, T ];H1,2

(
Ω0(η)

))
, we know that J(D,u) is uniformly bounded in L2

(
Ω1(η)

)
. By

(4.12) and D ∈ C0((0, T ];L2), we also obtain that F (D(t)) converges to F (D0) weakly in
L2 as t→ 0.

Note that since (a, v) ∈ VT ×WT , D̄ū ∈ C0
(
[0, T ];L2(Ω1(η))

)
, etc., we have

∥Du(t)∥2L2 +
λ

4

∥∥1− |u(t)|2
∥∥2
L2 =

∥∥∥Ŝ−1
0 Ŝ(t)D̄ū(t)

∥∥∥2
L2

+
λ

4

∥∥∥1− |Ŝ0û(t)|2
∥∥∥2
L2

→ ∥D0u0∥2L2 +
λ

4

∥∥1− |u0|2
∥∥2
L2 as t→ 0.

(4.16)

Finally by (4.15), (4.16), and Lemma 3.2, we have

lim sup
t→0

∥F (D(t))∥2L2 ≤ ∥F (D0)∥2L2 .

We obtain that F (D(t)) → F (D0) in L
2 as t → 0; that is, F (D) ∈ C0([0, T ];L2). Hence D

and u in fact are weak solutions to (1.4) and (1.5) in the sense of Theorem A (i).

4.3. Proof of Local Uniqueness

First note that as pointed out in [17] the uniqueness of s = S−1dS/dt and so S by solving
(4.3) depends on whether or not D is irreducible. A form of describing irreducibility is
(1.8). As pointed out in [17], if D ∈ H1,2 satisfies (1.8) for C = C(D), then in an H1,2

neighbourhood of D there is a C such that (1.8) is true.
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The idea in [17] of proving the uniqueness is to fix a global analogue of Uhlenbeck’s
theorem[18−19] on the existence of local Coulomb gauges, depending smoothly on the con-
nection.

Let D0 be a connection of class H1,2 satisfying (1.8), and let Dbg = D1 +Abg, 0 ≤ t ≤ T ,
be a family of background connections such that Dbg(0) = D0, Abg ∈ C∞ for t > 0 and
Abg ∈ L2(H2,2) ∩H1,2(L2), as determined by (4.4). As in [17], we have

Proposition 4.1. Let (D,u) be a weak solution to (1.4) and (1.5) on [0, T ] ×M as in
Theorem A (i). There exist T0 > 0 and a family of gauge transformations

S = S(t) ∈ C0
(
[0, T0];H

1,2(G)
)

with

s = S−1 ◦ dS
dt

∈ L2
(
[0, T ];H1,2

(
Ω0(Adη)

))
, S(0) = id,

such that D̄ = S∗(D) = Dbg + ā satisfies

ā ∈ L∞ (
[0, T0];H

1,2
(
Ω1(Adη)

))
∩H1,2

(
[0, T0];L

2
(
Ω1(Adη)

))
,

ā(t) → 0 in H1,2 as t→ 0, and D̄∗ā = 0.
The proof of Proposition 4.1 is almost the same as the proof of Proposition 5.2 in [17].

The only difference is in the proof of Claim 4 of Lemma 5.3 in [17]. Instead of the estimate

I :=
1

2
∥Fā − Fbg∥2L∞,2 + ∥Dā(Fā − Fbg)∥2L2,2 + ∥D∗

ā(Fā − Fbg)∥2L2,2 ≤ II + III + IV,

we have I ≤ II + III + IV + V, where

V = −
∫ T0

0

(DāJā, Fā − Fbg) dt ≤
∫ T0

0

∥Jā∥L2∥D∗
ā(Fā − Fbg)∥L2dt

≤ 1

2
∥Jā∥2L2,2 +

1

2
∥D∗

ā(Fā − Fbg)∥2L2,2 =
1

2
∥Ja∥2L2,2 +

1

2
∥D∗

ā(Fā − Fbg)∥2L2,2 .

Here we have used the fact that

Ja =
1

2
(Du⊗u∗ − u⊗(Du)∗) ∈ L2

(
[0, T ];L2

(
Ω1(Adη)

))
,

Jā = S−1 ◦ Ja ◦ S, and ∥Jā∥2L2,2 = ∥Ja∥2L2,2 .

By the estimates of II, III, and IV in [17], we have

1

2
∥Fā − Fbg∥2L∞,2 + ∥Dā(Fā − Fbg)∥2L2,2 +

1

2
∥D∗

ā(Fā − Fbg)∥2L2,2 ≤ Cϵ(T ). (4.17)

The final proof of uniqueness then is also a slightly modified version of [17].
Given D0 ∈ H1,2, a family of background connections and sections Dbg, ubg as in (4.4),

let Da = Dbg+a and u be a pair of local weak solutions to (1.4) and (1.5) and S∗Da = Dā =
Dbg + ā and ū = S−1u = u1 + ubg + v the corresponding family of normalized connections
according to Proposition 4.1.

Let s = S−1 ◦ dS/dt. It is easy to see that Dā and ū weakly solves the problem:

d

dt
Dā = −D∗

āFā −
1

2
(Dāū⊗ū∗ − ū⊗(Dāū)

∗) +Dās, (4.18)

D∗
āā = 0, (4.19)

ā(0) = 0, (4.20)

dū

dt
= −D∗

āDāū+
λ

2
ū
(
1− |ū|2

)
− sū, (4.21)

ū(0) = S−1(0)u0, (4.22)
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where Fā = F (Dā), and
ā ∈ L∞ (

[0, T ];H1,2
(
Ω1(Adη)

))
∩H1,2

(
[0, T ];L2

(
Ω1(Adη)

))
,

ū ∈ L∞ (
[0, T ];H1,2

(
Ω0(η)

))
∩H1,2

(
[0, T ];L2

(
Ω0(η)

))
,

Fā ∈ C0
(
[0, T ];L2

(
Ω2(Adη)

))
, s ∈ L2

(
[0, T ];H1,2

(
Ω0(Adη)

))
,

(4.23)

on some interval [0, T ]. The ā and ū attain their initial data in the H1,2-sense. The following
result, analogous to Proposition 6.1 of [17], shows that—provided D0 is irreducible—the
solution Dā, ū and s above is unique.

Proposition 4.2. For any D0 ∈ H1,2 satisfying (1.8), u0 ∈ H1,2, there exists T > 0 and
a unique solution (ā, ū, s) of (4.18)–(4.22) on [0, T ]×M satisfying (4.23).

In addition, ā ∈ L2(H2,2), ū ∈ L2(H2,2), and ā, ū and s are smooth for t > 0. Finally,
if D0 is smooth, ā, ū and s are smooth up to t = 0.

Proof. Our proof is almost exactly the proof of Proposition 6.1 in [17], hence we only
point out the difference.

(i) The existence has been shown.
(ii) Estimates for s: From (4.17) and D∗D∗F = 0 we have

D∗
āDās = D∗

ā

( d
dt
Dā

)
+D∗

āJā = D∗
ā

( d
dt
Abg

)
+ ā#

dā

dt
+D∗

āJā.

Using (1.8) to estimate as in [17], we see that the final estimate for ∥s∥L2(H1,2) then is

∥s∥2L2(H1,2) ≤ C
∥∥∥ d
dt
Abg

∥∥∥2
L2,2

+ C∥ā∥2L∞(H1,2)

∥∥∥ d
dt
ā
∥∥∥2
L2,2

+ C ∥Jā∥2L2,2

with an extra term

C ∥Jā∥L2,2 ≤ θ (∥ā∥VT
+ ∥v∥WT

) + C1∥f∥L2,2

if ∥B0∥H1,2 + ∥v0∥H1,2 + ∥ā∥L∞(H1,2) + ∥v̄∥L∞(H1,2) is small enough. The estimate is similar

to the estimates in the proof of local existence. Here f ∈ L2,2 is a function not depending
on (ā, v, s). Hence we have

∥s∥L2(H1,2) ≤ C
(∥∥∥ d
dt
Abg

∥∥∥
L2,2

+ ∥f∥L2,2

)
+ θ(∥ā∥VT

+ ∥v∥WT
).

(iii) Estimates for ā, v: We observe that using (4.17) we can write the equations as

dā

dt
+△1ā = f + g1(a,∇1a) + g2(a, v,∇1a,D1v) +Dās, (4.18’)

D∗
āā = 0, (4.19’)

ā(0) = 0, (4.20’)

dv

dt
+△1v = h1 + h2(a, v,∇1a,D1v)− sū, (4.21’)

v(0) = 0. (4.22’)

Let L(ā, v, s) = (b̄, w) be the unique weak solution to
db̄

dt
+△1b̄ = f + g1(a,∇1a) + g2(a, v,∇1a,D1v) +Dās,

dw

dt
+△1w = h1 + h2(a, v,∇1a,D1v)− sū

with initial values b̄(0) = 0 and w(0) = 0.
Using the estimate for ∥s∥L2(H1,2), we have similar estimates for (b̄, w) as in the proof of

local existence.
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(iv) Estimates for differences: Now suppose L(ā1, v1, s1) = (ā1, v1), L(ā2, v2, s2) = (ā2, v2)
are two solutions to (4.18’)–(4.22’). Then

∥(ā1 − ā2, v1 − v2)∥VT×WT ≤ θ1(∥ā1 − ā2∥VT + ∥v1 − v2∥WT ) + C∥Dā1s1 −Dā2s2∥L2,2

+ C∥(s1 − s2)v1∥L2,2 + C∥s2(v1 − v2)∥L2,2 . (4.24)

By shrinking T > 0, we can make θ1 as small as we please. Since

Dā1s1 −Dā2s2 = D1(s1 − s2) +Abg(s1 − s2)− (s1 − s2)Abg

+ (ā1 − ā2)s1 + ā2(s1 − s2)− (s1 − s2)ā1 + s2(ā2 − ā1),

∥Dā1s1 −Dā2s2∥L2,2 ≤ C∥s1 − s2∥L2(H1,2). (4.25)

Exactly as in the of proof of Proposition 6.1 of [17], “Estimate for σ”, we have

∥s1 − s2∥2L2(H1,2) ≤ Cϵ
(∥∥∥d(ā1 − ā2)

dt

∥∥∥2
L2,2

+ ∥ā1 − ā2∥2L∞(H1,2)

)
+ C ∥Jā1 − Jā2∥

2
+

1

2
∥Dā(s1 − s2)∥2L2,2 (4.26)

≤ Cϵ∥ā1 − ā2∥2VT
+ C ∥Jā1 − Jā2∥

2
+

1

2
∥s1 − s2∥2L2(H1,2).

The last two terms come from the estimate of (D∗
ā(Jā1 − Jā2), s1 − s2) . Here ā is any convex

linear combination of ā1 and ā2 and ϵ→ 0 as T → 0.
As in the estimate of local existence, we can make

∥Jā1 − Jā2∥ ≤ θ2(∥ā1 − ā2∥VT
+ ∥v1 − v2∥WT

)

for 0 < θ2 < 1. By shrinking T > 0 so that θ = C(θ1 + θ2 + ϵ) < 1 and by (1.8), (4.24),
(4.25), and (4.26), we will have

∥ā1 − ā2∥VT
+ ∥v1 − v2∥WT

≤ θ(∥ā1 − ā2∥VT
+ ∥v1 − v2∥WT

).

Thus (ā1, v1) = (ā2, v2). By (4.26), (ā1, v1, s1) = (ā2, v2, s2).
The smoothness comes from the classical quasi-linear parabolic system of equations (see

for example [10]). So the proof of Proposition 4.2 is completed.
Thus if (D1, u1) and (D2, u2) are two solutions to (1.4), (1.5), then there will be s1 and

s2 such that (S∗
1D1, S

−1
1 u1, s1) and (S∗

2D2, S
−1
2 u2, s2) are two solutions to (4.18)–(4.22),

contradicting Proposition 4.2.
Now we complete the proof of Theorem A.
Proof of Theorem A. By the local existence and uniqueness, we can get a unique max-

imal solution to (1.4) and (1.5) on [0, T ), 0 < T ≤ ∞. If T < ∞, then (1.4) and (1.5) pos-

sesses a weak solution (D,u) which is gauge-equivalent to a smooth (D̂, û) = ((Ŝ−1
0 )∗D, Ŝ0u)

on (0, T ), and assume (by contradiction) that there exists R > 0 such that (3.10) holds.

Then by Lemma 3.7, lim
t↗T

D̂(t) = D̂(T ) and lim
t↗T

û(t) = û(T ) exist in H1,2
(
Ω1(Adη)

)
and

H1,2
(
Ω0(η)

)
respectively.

Thus for t0 < T sufficiently near T the local solution (D̂t0 , ût0) to the initial value problem

(1.4) with initial data (D̂(t0), û(t0)) at time t = t0 constructed in the existence proof extends
to an interval [t0, t1), t1 > T . By uniqueness of weak solutions to (1.4) and equivalence

of (1.4) under time-independent gauge transformations, necessarily D(t) = Ŝ∗
0 (D̂

t0(t)) on

[t0, T ). Hence Ŝ∗
0 (D̂

t0) extends the solution D(t) to the interval [t0, t1), contradicting the
maximality of T .



472 CHIN. ANN. OF MATH. Vol.21 Ser.B

Let M =
∪
Bi, be a covering of M by geodesic balls of very small radii such that the

conclusion of Lemma 3.4 is true. Then for any 0 < t < T ,∑∫
Bi

|F (t)|2 + |Du(t)|2 ≤ K

∫
M

|F (t)|2 + |Du(t)|2 ≤ K (YMH(u0, D0)) .

Let xj , j = 1, · · · , N , be the first N singular points, and xj ∈ Bij . Then

Nδ ≤ lim sup
t↗T

N∑
j=1

∫
Bij

|F (t)|2 + |Du(t)|2 ≤ K (YMH(u0, D0)) .

We know that there are only finite many singular points {x11, · · · , x
l1
1 } and

l1 ≤ K

δ
YMH(u0, D0).

This proves Theorem A.
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