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Abstract

This note investigates the multiplicity problem of principal curvatures of equifocal hyper-
surfaces in simply connected rank 1 symmetric spaces. Using Clifford representation theory,

and the author also constructs infinitely many equifocal hypersurfaces in the symmetric spaces.
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§1. Introduction

By [11], a hypersurface in a symmetric space is called equifocal if every normal geodesic

perpendicular to it is closed of constant length, say l, and contains 2g focal points for some

positive integer g. This is a natural generalization of isoparametric hypersurfaces in spheres

where the integer g is the number of distinct principal curvatures. In this note we consider

equifocal hypersurfaces in simply connected rank one symmetric spaces, i.e. the complex

projective space CPn, the quarternionic projective space HPn and the Cayley plane QP 2.

By using the Hopf fibration, equifocal hypersurfaces in CPn and HPn can be lifted to

isoparametric hypersurfaces in spheres with 2g distinct principal curvatures and the length

of every normal geodesic is 2l. Using Münzner’s remarkable theorem[8] we see that the

integer g must be among {1, 2, 3} if the ambient space is CPn and HPn. For equifocal

hypersurfaces in the Cayley plane, it is known that g is either 1 or 2 (see [12]).

Inspired by the construction of Ferus-Karcher-Münzner[5], we present infinitely many

equifocal hypersurfaces in CPn and HPn with g = 2.

Let bm be an integral function on m satisfying that bm+8k = 24kbm and b1 = 1, b2 =

2, b3 = b4 = 4 and b5 = b6 = b7 = b8 = 8.
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Theorem 1.1. (1) If m ≡ 2, 3, 4, 5, 6(mod 8) and n ≡ 0(mod bm), then there is at least

an equifocal hypersurface in CPn−1 with g = 2 and multiplicities m and n − m − 1. The

same result holds if m = 0,±1(mod 8) and n ≡ 0(mod 2bm).

(2) If m ≡ 3, 4, 5(mod 8) and n ≡ 0(mod bm), then there is at least an equifocal hyper-

surface in HP
n
2 −1 with g = 2 and multiplicities m and n−m− 1. The same result holds if

m = ±2(mod 8) and n ≡ 0(mod 2bm) and if m = 0,±1(mod 8) and n ≡ 0(mod 4bm).

By the work of Stolz[9] (compare [4]) it is easy to show the following

Theorem 1.2. (1) If m ≡ 2, 3, 4, 5, 6(mod 8) and m ̸= 4, then m and n−m− 1 are the

multiplicities of an equifocal hypersurface in CPn−1 if and only if n ≡ 0(mod bm).

(2) If m ≡ 3, 4, 5(mod 8), then m and n − m − 1 are the multiplicities of an equifocal

hypersurface in HP
n
2 −1 if and only if n ≡ 0(mod bm).

By the above theorem we get a necessary and sufficient condition for the multiplicity

problem of equifocal hypersurfaces in CPn and HPn in about half cases. However, it is

still open whether the same result can be extended to the rest. We should like to make the

following

Conjecture 1.1. Let m and l be positive integers. If m ≤ l and m = 0,±1(mod 8) (resp.

m = 0,±1,±2(mod 8)), then m, l are the multiplicities of an equifocal hypersurface in CPn

(resp. HPn) with g = 2 if and only if m+ l + 1 ≡ 0(mod bm).

For the multiplicity problem of equifocal hypersurfaces in QP 2, we have to use some extra

argument to settle the multiplicity problem of equifocal hypersurfaces in QP 2. Using the

Leray-Serre spectral sequence we get

Theorem 1.3. Let M ⊂ QP 2 be an equifocal hypersurface with multiplicities m1 ≤ m2.

Then either (m1,m2) = (7, 15), M is diffeomorphic to S15 and g = 1 or (m1,m2) = (4, 7),

M is an S4-bundle over homotopy 11-sphere as well as an S7-bundle over HP 2 and g = 2.

Remark 1.1. The above theorem was originally contained in [4] when the focal manifolds

are both orientable. In [10] Tang obtained the same result by a very different approach (see

Theorem 5.1 and Proposition 5.7 in [10]).

§2. Equifocal Hypersurfaces in CPn and HPn

In this section we define infinitely many isoparametric functions in odd dimensional

spheres as in [5] which are invariant with respect to the canonical circle or Sp(1) actions

on the spheres. As in [5], these produce isoparametric hypersurfaces in spheres admitting

the canonical circle or Sp(1) actions. Therefore the quotients are equifocal hypersurfaces in

CPn and HPn.

Let Cl0,m be the Clifford algebra defined by the quadratic form (Rm,−(x2
1 + · · ·+ x2

m))

(see [6]). Note that Cl0,m+8k = Cl0,m ⊗ R(24k) and Cl0,m is as in the following table for

m ≤ 8:

m 1 2 3 4 5 6 7 8

Cl0,m R⊕ R R(2) C(2) H(2) H(2)⊕H(2) H(4) C(8) R(16)

Let 2bm be the dimension of irreducible real representation of Cl0,m+1. It is easy to verify

that bm+8k = 24kbm, b1 = 1, b2 = 2, b3 = b4 = 4 and b5 = b6 = b7 = b8 = 8.
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Proof of Theorem 1.1. Observe that when m is mod 8 congruent to 2, 3, 4, 5 and 6,

Cl0,m+1 is a matrix algebra or the direct sum of two matrix algebra over C or H. Hence

its irreducible representation(s) is complex of C-dimension bm and for each positive integer

n ≡ 0(mod bm) there is an n-dimensional complex representation. Let e0, · · · , em be an

orthonormal basis of (Rm+1,−x2
0 − · · · − x2

m). Obviously, e0, · · · , em give rise to unitary

n× n matrices P0, · · · , Pm so that P 2
i = I and PiPj + PjPi = 0 if i ̸= j.

Now we define isoparametric function F : Cn → R by

F (x) = ⟨x, x⟩2 − 2
m∑
i=0

⟨Pi(x), x⟩2, x ∈ Cn.

Note that F (eiθx) = F (x), i.e., F is invariant with respect to the circle action. The

restricting of F on the unit sphere S2n−1 gives rise to a function F : S2n−1 → [−1, 1] which

is a Bott-Morse function with ±1 the only critical values. For any c ∈ (−1, 1), F−1(c) is a

hypersurface in S2n−1 invariant under the standard circle action. The quotient F−1(0)/S1 ⊂
CPn−1 is an equifocal hypersurface because its lifting to S2n−1 is isoparametric. By [5] we

conclude that the multiplicities of the equifocal hypersurface in CPn−1 just constructed are

m and n−m− 1, where n is a multiple of bm.

When m ≡ 0,±1(mod 8), the dimension of irreducible complex representation of Cl0,m+1

is 2bm. The above argument proves that if n ≡ 0(mod 2bm), there is an equifocal hypersur-

face in CPn−1 with multiplicities m and n−m− 1. The same argument applies to give the

required equifocal hypersurfaces in HP
n
2 −1.

Proof of Theorem 1.2. If m ≥ 8, m and n−m−1 are the mulitiplicities of an equifocal

hypersurface in CPn−1 or HP
n
2 −1, by using the Hopf fibration we get an isoparametric

hypersurface in the unit sphere with the same multiplicities. By appealling to a result of

Stolz[9] it follows that n ≡ 0(mod bm). Now the desired result follows from Theorem 1.1.

Our next result shows that there does not exist equifocal hypersurfaces in CPn (resp.

HPn) with g = 3 except n = 3 (resp. n = 1).

Proposition 2.1. There does not exist equifocal hypersurface in CPn (resp. HPn) with

g = 3 if n ̸= 3 (resp. n ̸= 1).

Proof. By a result of Abresch, the dimension of an isoparametric hypersurface in the unit

sphere must be either 12 or 6 with multiplicities 2 or 1 respectively. If there is an equifocal

hypersurface in CP 6, using the Hopf fibration we get an isoparametric hypersurface in S13

with six distinct principal curvatures. By [3] one of the focal manifolds of the isoparametric

hypersurface in S13 must be homeomorphic to X5(2), the Fermat complex hypersurface in

CP 6 defined by the equation z20 + · · · + z26 = 0. In particular, its Euler characteristic is 6.

Therefore this focal manifold does not admit any free S1-action, a contradiction.

§3. Equifocal Hypersurfaces in Cayley Plane

By [11] we know that an equifocal hypersurface M with multiplicities m1,m2 must be an

Sm1 -bundle over a focal manifold M1 as well as an Sm2 -bundle over another focal manifold

M2. Let S, S1 and S2 denote the sequences

{m1,m2, u = m1 +m2, u+m1, u+m2, 2u, · · · },
{m1, u, u+m1, 2u, · · · } and {m2, u, u+m2, 2u, · · · }.
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Let P = P (QP 2,M × p) (resp. P1 = P (QP 2,M1 × p) and P2 = P (QP 2,M2 × p)) denote

the path spaces consisting of all paths from p ∈ QP 2 to M (resp. M1 and M2) in QP 2,

where p is not a focal point. It is proved in [11] that the dimension of the reduced homology

groups of P (resp. P1 and P2) with any coefficient field occur exactly nontrivially at the

sequence S (resp. S1 and S2). Moreover, the rank of each reduced homology group of

P (resp. P1 and P2) is exactly the number of the elements in the sequence in the given

dimension. The geometry of equifocal hypersurface in QP 2 implies the following identity of

Euler characteristic

χ(QP 2)− χ(M1)− χ(M2) + χ(M) = 0.

Indeed, this follows from the fact that QP 2 is the union of two disc bundles over M1 and M2

along the hypersurface M . In this section we are to prove Theorem 1.3 using this assertion

and the Leray-Serre spectral sequence.

Proof of Theorem 1.3. In the proof all coefficients of homology or cohomology groups

will be Z2. The proof is divided into the following steps.

Step I. 7, 15 ∈ S.

Consider the Leray-Serre cohomology spectral sequence (LSSS) of the fibration

ΩQP (2) → P → M,

where ΩQP (2) is the loop space of QP 2. Note that the rational cohomology groups of ΩQP 2

occur only in the dimensions {0, 7, 22, · · · }. By [11] the reduced cohomology groups of the

path space P occur nontrivially only in the dimensions in the sequence S. The argument is

to compare this fact with the spectral sequence.

If the differential d8 : E0,7
8 → E8,0

8 vanishes, then the term E0,7
8 survives to E∞ and so

7 ∈ S. Also the term E15,0
8

∼= H15(M) survives and therefore 15 ∈ S. If d8 is nontrivial,

then this means that E8,0
8 is nonzero. By Poincaré duality, H7(M) is nontrivial and it

survives to E∞. Thus 7 ∈ S and E8,7
8

∼= H8(M) is of rank at least 1. The differential

d8 : E8,7
8 → E16,0

8 = 0 and so E8,7
∞

∼= E8,7
8 . Thus 15 ∈ S. This completes Step I.

By Step I above it is elementary to see that m1 ̸= m2.

Step II. 2 ≤ m1 ≤ m2 ≤ 6 can not happen.

Suppose not, consider the fibration

ΩQP 2 → P1 = P (QP 2,M1 × p) → M1

and its Leray Serre spectral sequence. Note dimM1 = 15 − m1 ≤ 13. As ΩQP 2 is 6-

connected, it is easy to see that Hq(M) ∼= Z2 if q = 0 or q ≤ 6 and q ∈ S2. This implies

that

d8 : Em2,7
8 → Em2+8,0

8
∼= H7−u(M1) = 0

vanishes if 7 − u ̸= 0 since 7 − u ≤ 2 < m2. Hence Em2,7
8 survives and so m2 + 7 ∈ S2 or

u = 7. In all cases, note that

H8(M1) ∼= H7−m1(M1) ∼= Z2.

Thus E8,7
8

∼= Z2 surviving to E∞. This proves 15 ∈ S2.

If m2 + 7 ∈ S2 and u ̸= 7, by Step I we know that u + m1 = 7. Comparing with the

relations 15 ∈ S2, i.e., 15 = ku or 15 = ku +m2, we get that either u|15 or 22 = (k + 1)u.

This implies that u = 5 and (m1,m2) = (2, 3) or u = 11 and (m1,m2) = (5, 6).
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Note that the case u = 7 and m2 + 7 ∈ S2, i.e., 15 = ku or 15 = ku+m2, is impossible.

For the two possibilities above, the dimensions of the focal manifolds are 12, 13 and 9, 10

respectively. In the first case the Euler characteristics χ(M) = 0, χ(M1) = 0. H6(M2) = 0

by an analogous spectral sequence for the path space P2 = P (QP 2,M2 × p). Thus χ(M2)

is even since dimM2 = 12 is even. In the second case χ(M) = 0, χ(M2) = 0 and similarly

χ(M1) is even since dimM1 = 10. Note χ(QP 2) = 3. This contradicts the following identity

of the Euler characteristics

χ(QP 2)− χ(M1)− χ(M2) + χ(M) = 0.

This completes Step II.

Step III. 2 ≤ m1 ≤ 6 and m2 ≥ 6 implies (m1,m2) = (4, 7).

Note that dimM1 = 15−m1 and H∗(M1) = 0 if ∗ ̸= 0 and ≤ 6 by the spectral sequence

as before. By the duality it follows easily that M1 has the rational homotopy type of

S15−m1(In fact it is a homotopy sphere). M2 is a manifold of dimension 15 − m2 ≤ 8.

For q ≤ 6, Hq(M2,Q) = Q only if q = 0 or q = m1. By Poincare duality it follows that

M2 is either homologous to CP 2 or HP 2. These imply m1 = 2 or 4 and m2 = 11 or 7

respectively. Recall that the hypersurface M is sphere bundle over the two focal manifolds.

In the former case, M is an S11-bundle over CP 2 as well as an S2-bundle over S13. Obviously

it is impossible since they have different rational homology groups. In the latter case, M is

an S7-bundle over a homological HP 2 as well as an S4-bundle over a homotopy 11-sphere.

It is easy to check the focal manifold with the homology of HP 2 is actually diffeomorphic

to HP 2 (see [13]). The proof for Step III is completed.

Combining Steps I, II and III, we know that if m1 > 1, then either (m1,m2) = (4, 7) or

m2 > m1 ≥ 7 and thus m1 = 7 by Step I. Furthermore, the latter case implies that either

m2 = 8 or 15. If m2 = 8, the Euler characteristic χ(M1) = 2 and χ(M) = χ(M2) = 0. This

contradicts the Euler characteristic identity as above. Thus (m1,m2) = (7, 15) if the cases

of m1 = 1 can be excluded.

Step IV. m1 ̸= 1.

Suppose not, then dimM1 = 14 and dimM2 = 15−m2 ≤ 14. This implies that (m1,m2)

are among the four cases (1, 1), (1, 3), (1, 5) and (1, 7) by Step I. The dimension of M2 is

14, 12, 10 and 8 respectively. We claim that H7(M1,Z2) = 0. Conisder the fibration

ΩQP 2 → P1 → M1.

Recall that the reduced cohomology group of the loop space ΩQP 2 only occurs nontrivially

at dimension 7, 22, · · · . Clearly Hq(M1) = Hq(P1) for q ≤ 6. In particular, H6(M1) = Z2.

By Poincare duality H8(M1) = Z2.

Consider the Leray-Serre spectral sequence of the above fibration. Let x ∈ H7(ΩQP 2) be

the unique generator. We assert that d8(x) = 0, where d8 : E0,7
8 → E8,0

8 is the differential.

Suppose not, then H8(P1) = 0. This contradicts since 8 ∈ S1. This shows that χ(M1) is

even by the Poincare duality. Similarly, one can prove that χ(M2) is even. This is impossible

since one of χ(M1) and χ(M2) must be odd by the identity

3 = χ(QP 2) = χ(M1) + χ(M2).

This completes Step IV.
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Combining these steps we see that (m1,m2) = (7, 15) or (4, 7) as mentioned above and

consequently M = S15 or a sphere bundle over HP 2. Notice that, in the former case, there

is a free action of the dihedral group D2g on M (see [11]). By [7], it is possible only if g = 1

and then D2g = Z2, where 2g is the number of focal points on the normal geodesic. This

completes the proof.
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