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SOLUTIONS OF DUFFING’S EQUATIONS

WITH LIPSCHITZIAN CONDITION
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Abstract

This paper deals with the existence and multiplicity of periodic solutions of Duffing equations
ẍ + g(x) = p(t). The author proves an infinity of periodic solutions to the periodically forced
nonlinear Duffing equations provided that g(x) satisfies the globally lipschitzian condition and
the time-mapping satisfies the weaker oscillating property.
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§1. Introduction

We deal with the Duffing equation

ẍ+ g(x) = p(t), (1.1)

where g(x), p(t) ∈ C(R,R) and p(t) is periodic, whose least period is 2π. The multiplicity

of periodic solutions of Equation (1.1) has been widely studied since the 50s. In [1], T.
Ding studied the multiplicity of periodic solutions of Equation (1.1) under the following
conditions.

(g1) Let g(x) ∈ C1(R,R), and let K be a positive constant, such that

|g′(x)| ≤ K, x ∈ R.

(g2) There exist two constants A0 > 0 and M0 > 0 such that

g(x)

x
≥ A0, |x| ≥M0.

(τ0) There exist a constant σ > 0, an integer m > 0, and two sequences {ak} and {bk}
(k ∈ N), such that ak → ∞ and bk → ∞ as k → ∞; and moreover

τ(ak) <
2π

m
− σ, τ(bk) >

2π

m
+ σ,

where τ(e) denotes the least positive period of the solution x(t) (x(0) = 0, ẋ(0) =
√
2e) for

the equation ẍ+ g(x) = 0.
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By using a generalized form of the Poincaré-Birkhoff twist theorem, T. Ding proved that
Equation (1.1) has infinitely many 2π-periodic solutions. Lately, T. Ding, R. Iannaci and

F. Zanolin[2] further generalized the condition (τ0) to the following condition

(τ1) ∆τ = lim sup
e→+∞

τ(e)− lim inf
e→+∞

τ(e) > 0.

Qian Dingbian[3] improved the results in [1,2] by replacing the conditions (g1) and (g2)
with the condition,

lim sup
|x|→+∞

G(x)

g2(x)
< +∞, G(x) =

∫ x

0

g(s)ds.

Hao Dunyuan and Ma Shiwang[4] generalized the condition (τ0) to the condition

(τ2) lim inf
e→+∞

√
e(τ(e)− 2π

n ) = −∞, lim sup
e→+∞

√
e(τ(e)− 2π

n ) = +∞,

where n is a positive integer. They also obtained the multiplicity of periodic solutions of
Equation (1.1) under conditions (g1), (g2) and (τ2)

In the present paper, we study the existence of 2π-periodic solutions for Equation (1.1)
under conditions (τ2) and

(H1) lim
|x|→+∞

sgn(x)g(x) = +∞,

(H2) g(x) satisfies the globally lipschitzian condition. That is, there exists a positive

constant a such that |g(x)− g(y)| ≤ a|x− y|.
By developing an idea in [1], we obtain the following result.

Theorem 1.1. Assume that conditions (H1), (H2) and (τ2) hold. Then Equation (1.1)
possesses infinitely many 2π-periodic solutions {xk(t)}∞k=1 which satisfy

lim
k→∞

(
min
t∈R

(|xk(t)|+ |ẋk(t)|
)
) = +∞.

If condition (H2) is replaced by the following condition,

(H3) there exist two positive constants a and b such that |g(x)− g(y)| ≤ a|x− y|+ b,

then we also have

Theorem 1.2. Assume that conditions (H1), (H3) and (τ2) hold. Then Equation (1.1)

possesses infinitely many 2π-periodic solutions {xk(t)}∞k=1 which satisfy

lim
k→∞

(
min
t∈R

(|xk(t)|+ |ẋk(t)|
)
) = +∞.

In Section 4, we construct an example for an application of the above theorems. This

example also shows that the above theorems are not contained in the results of the previously
quoted articles.

§2. Priliminary Lemmas

At first, we consider the auxiliary autonomous equation

ẍ+ g(x) = 0, (2.1)

or, its equivalent system

u̇ = w, ẇ = −g(u). (2.2)

The orbits Γe of the autonomous system (2.2) are curves determined by the equation

1

2
w2 +G(u) = e, (2.3)

where e is an arbitrary constant.
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Then, we can easily prove the following lemma.

Lemma 2.1. If (H1) holds, then there is a constant e0 > 0, such that , for each e ≥ e0,
Γe is a closed curve which is star-shaped with respect to the origin O.

It follows from Lemma 2.1 that each curve Γe(e ≥ e0) intersects the u-axis at two points

(d(e), 0) and (c(e), 0), where d(e) < 0 and c(e) > 0 are uniquely determined by the formula

G
(
d(e)

)
= G(c(e)) = e.

Let
(
u(t), w(t)

)
be any solution of (2.2) whose orbit is Γe(e ≥ e0). Clearly, this solution is

periodic. Let τ(e) denote the least positive period of this solution. It follows from (2.2) and
(2.3) that

τ(e) =
√
2

∫ c(e)

d(e)

du√
e−G(u)

.

By the definition, it follows that τ(e) is continuous for e ≥ e0.

Now we perform some phase-plane analysis for Equation (1.1). First of all, we write the
Duffing equation (1.1) in the equivalent system:

ẋ = y, ẏ = −g(x) + p(t). (2.4)

Let (x(t, x0, y0), y(t, x0, y0)) be the solution of (2.4) through the initial point (x(0), y(0)) =

(x0, y0). It is not hard to show that every solution satisfying the initial vlaue problem exists
uniquely on the whole t-axis under conditions (H1) and (H2). Then the Poincaré mapping
P : R2 7→ R2 is well defined by

(x0, y0) 7→
(
x(2π, x0, y0), y(2π, x0, y0)

)
.

It is well known that P is an area-preserving homeomorphism.

By applying the transformation x(t) = r(t) cos θ(t), y(t) = r(t) sin θ(t) to the system
(2.4), we get the equation for r(t) and θ(t),

ṙ = r sin θ cos θ − g(r cos θ) sin θ + p(t) sin θ,

θ̇ = − sin2 θ − 1

r
(g(r cos θ) cos θ − p(t) cos θ). (2.5)

Let
(
r(t, r0, θ0), θ(t, r0, θ0)

)
be the solution of (2.5) through the initial point (r(0), θ(0)) =

(r0, θ0). Then the mapping P can also be written in the polar coordinate form

r∗ = r(2π, r0, θ0), θ∗ = θ(2π, r0, θ0) + 2lπ,

where l is an arbitrary integer. It can be easily seen that if (r0, θ0) is such that

r(t, r0, θ0) > 0, t ∈ [0, 2π],

then θ(2π, r0, θ0) is well defined and continuous in (r0, θ0), and moreover,

θ(2π, r0, θ0 + 2π) = θ(2π, r0, θ0) + 2π.

Next, we take the transformation u(t) = ρ(t) cosφ(t), w(t) = ρ(t) sinφ(t) to the system

(2.2). The resulting equations for ρ(t) and φ(t) are

ρ̇ = ρ cosφ sinφ− g(ρ cosφ) sinφ,

φ̇ = − sin2 φ− 1

ρ
g(ρ cosφ) cosφ.

(2.6)

Let (ρ(t, ρ0, φ0),φ(t, ρ0, φ0) be the solution of (2.6) through the initial point (ρ(0), φ(0)) =

(ρ0, φ0). Using (2.5) and (2.6), we can easily prove the following
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Lemma 2.2. If (H1) and (H2) hold and T > 0 is a given constant, then there exist
positive constants α > 1 and Λ0 > 1 such that

(1) ρ0/α ≤ ρ(t, ρ0, φ0) ≤ αρ0 and φ̇(t, ρ0, φ0) < 0 for t ∈ [0, T ] and ρ0 ≥ Λ0;

(2) r0/α ≤ r(t, r0, θ0) ≤ αr0 and θ̇(t, r0, θ0) < 0 for t ∈ [0, T ] and r0 ≥ Λ0.
Remark 2.1. From Lemma 2.2 we know that if ρ0 is large enough, then

√
2e

α
≤ ρ0 ≤ α

√
2e, (ρ0 cosφ0, ρ0 sinφ0) ∈ Γe.

Lemma 2.3. Assume that conditions (H1), (H2) hold and T > 0 is a given constant.
Then there exist positive constants c0, Γ0 and M such that

(1) |θ(t, r0, θ0)− φ(t, r0, θ0)| ≤ c0
r0
, r0 ≥ Γ0, t ∈ [0, T ];

(2) |r(t, r0, θ0)− ρ(t, r0, θ0)| ≤M, t ∈ [0, T ].

Proof. (1). The proof follows the arguements in [1].
Let

(
u(t, x0, y0), w(t, x0, y0)

)
be the solution of the system (2.2) through the initial point(

u(0), w(0)
)
= (x0, y0) with x0 = r0 cos θ0, y0 = r0 sin θ0. Set

s(t) = s(t, x0, y0) = x(t, x0, y0)− u(t, x0, y0),

v(t) = v(t, x0, y0) = y(t, x0, y0)− w(t, x0, y0).

Then we have
ds(t)

dt
= v(t),

dv(t)

dt
= p(t) + g(u(t, x0, y0))− g(x(t, x0, y0)).

Let η(t) = (s2(t) + v2(t))
1
2 . Then we have

η(t)
dη(t)

dt
= s(t)v(t) + p(t)v(t) + [g(u(t, x0, y0))− g(x(t, x0, y0))]v(t).

It follows from (H2) that∣∣∣η(t)dη(t)
dt

∣∣∣ ≤ |p(t)v(t)|+ (1 + a)|s(t)v(t)|.

Furthermore, ∣∣∣dη(t)
dt

∣∣∣ ≤ 1

2
(1 + a)η(t) +B, (2.7)

where B = max
t∈[o,2π]

|p(t)|. The differential inequality (2.7) together with η(0) = 0 yields

η(t) ≤ 2B

1 + a
[e

(1+a)T
2 − 1] ≡ H0

for t ∈ [0, T ]. Write

ψ(t) = ψ(t, r0, θ0) = φ(t, r0, θ0)− θ(t, r0, θ0).

It is clear that if |ψ(t)| < π, then ψ(t) is just the angle between the vectors (x(t), y(t)) and
(u(t), w(t)). Therefore, we have

cosψ(t) =
r2(t) + ρ2(t)− η2(t)

2r(t)ρ(t)
≥ 1− H2

0

2r(t)ρ(t)
, t ∈ [0, T ].

On the other hand, we have ρ(t) ≥ r(t) − H0. It follows from Lemma 2.2 that, for r0
sufficiently large, we have

1

α2
− H0

αr0
>

1

4α2
, (2.8)

r(t)−H0 > 0 for t ∈ [0, T ].
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Therefore

1− cosψ(t) ≤ H2
0

2r(t)(r(t)−H0)
, t ∈ [0, T ].

This results in

sin2
(1
2
ψ(t)

)
≤ H2

0

4r(t)(r(t)−H0)
for t ∈ [0, T ]. (2.9)

It follows from Lemma 2.2 and the inequality (2.9) that∣∣∣ sin(1
2
ψ(t)

)∣∣∣ ≤ H0

2r0

√
1
α2 − H0

αr0

. (2.10)

Since ψ(0) = 0 and ψ(t) varies continuously as t increases from 0 to T , we can see from

(2.10) that

|ψ(t)| ≤ 4
∣∣∣ sin(1

2
ψ(t)

)∣∣∣ for t ∈ [0, T ] (2.11)

for r0 large enough.

Combining (2.8), (2.10) and (2.11) yields

|ψ(t)| ≤ 4αH0

r0
for t ∈ [0, T ].

Write c0 = 4αH0. Then we have

|θ(t, r0, θ0)− φ(t, r0, θ0)| ≤
c0
r0

for t ∈ [0, T ],

for r0 large enough.

(2) It follows from the proof of (1) that there exists a constant C > 0 such that

|x(t, x0, y0)− u(t, x0, y0)| ≤ C, |y(t, x0, y0)− w(t, x0, y0)| ≤ C, t ∈ [0, T ].

Hence, for t ∈ [0, T ],

|r(t, r0, θ0)− ρ(t, r0, θ0)| = |
√
x2(t, x0, y0) + y2(t, x0, y0)−

√
u2(t, x0, y0) + w2(t, x0, y0)|

≤ |x2(t, x0, y0)− u2(t, x0, y0)|+ |y2(t, x0, y0)− w2(t, x0, y0)|√
x2(t, x0, y0) + y2(t, x0, y0) +

√
u2(t, x0, y0) + w2(t, x0, y0)

≤ |x(t, x0, y0)− u(t, x0, y0)|+ |y(t, x0, y0)− w(t, x0, y0)|
≤ 2C.

Taking M = 2C, we complete the proof of this lemma.

Let θ0 and θ1(θ0 > θ1) be two given constants. Assume that it takes time ∆T1(θ0, θ1)
for θ(t) = θ(t, r0, θ0) to change from θ0 to θ1. The required time for φ(t) = φ(t, r0, θ0) to

change from θ0 to θ1 is ∆T2(θ0, θ1).

Lemma 2.4. Assume that conditions (H1), (H2) hold and A,B are two given positive
constants such that θ0 − θ1 ≤ A and τ(e) ≤ B. Then, for (r0 cos θ0, r0 sin θ0) ∈ Γe,

|∆T1(θ0, θ1)−∆T2(θ0, θ1)| = O
( 1

r0

)
, r0 → +∞.

Proof. For simplicity, we write

(r(t), θ(t)) = (r(t, r0, θ0), θ(t, r0, θ0)), (ρ(t), φ(t)) = (ρ(t, r0, θ0), φ(t, r0, θ0)).
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It follows from (2.5) and (2.6) that

∆T1(θ0, θ1) =

∫ θ1

θ0

dθ

− sin2 θ(t)− 1
r(t)g(r(t) cos θ(t)) cos θ(t) +

1
r(t)p(t) cos θ(t)

,

∆T2(θ0, θ1) =

∫ θ1

θ0

dφ

− sin2 φ(t)− 1
ρ(t)g(ρ(t) cosφ(t)) cosφ(t)

.

Set T = ([ A2π ] + 1)B. Obviously, 0 < ∆T2(θ0, θ1) < T . By Lemma 2.2 and Lemma 2.3 we

can obtain that there exists a positive constant M0 such that

|r(t) cosφ(t)− r(t) cos θ(t)| ≤M0, t ∈ [0, 2T ], (2.12)

for r0 large enough. It follows from Lemma 2.3 and (2.12) that there exists a positive
constant M0 such that, for t ∈ [0, 2T ],

|g(ρ(t) cosφ(t))− g(r(t) cos θ(t))| ≤ a|ρ(t) cosφ(t)− r(t) cos θ(t)|
≤ a|ρ(t)− r(t)|+ r(t)| cosφ(t)− cos θ(t)|
≤M0.

If t ∈ [0, 2T ], then we have∣∣∣ 1

ρ(t)
g(ρ(t) cosφ(t)) cosφ(t)− 1

r(t)
g(r(t) cos θ(t)) cos θ(t)

∣∣∣
=

1

r(t)

∣∣∣ r(t)
ρ(t)

g(ρ(t) cosφ(t)) cosφ(t)− g(r(t) cos θ(t)) cos θ(t)
∣∣∣

=
1

r(t)
|g(ρ(t) cosφ(t)) cosφ(t)− g(r(t) cos θ(t)) cos θ(t)|+O

( 1

r0

)
=

1

r(t)
|g(ρ(t) cosφ(t)) cosφ(t)− g(r(t) cos θ(t)) cosφ(t)|

+
1

r(t)
|g(r(t) cos θ(t)) cosφ(t)− g(r(t) cos θ(t)) cos θ(t)|+O

( 1

r0

)
=

1

r(t)
|g(r(t) cos θ(t))|| cosφ(t)− cos θ(t)|+O

( 1

r0

)
= O

( 1

r0

)
.

Therefore, if ∆T1(θ0, θ1) ≤ 2T , from τ(e) ≤ B we get

∆T1(θ0, θ1) =

∫ θ1

θ0

dθ

− sin2 θ(t)− 1
r(t)g(r(t) cos θ(t)) cos θ(t) +

1
r(t)p(t) cos θ(t)

=

∫ θ1

θ0

dφ

− sin2 φ(t)− 1
ρ(t)g(ρ(t) cosφ(t)) cosφ(t) +O

(
1
r0

)
=

∫ θ1

θ0

( 1

− sin2 φ(t)− 1
ρ(t)g(ρ(t) cosφ(t)) cosφ(t)

× 1(
1 +O

(
1
r0

)(
− sin2 φ(t)− 1

ρ(t)g(ρ(t) cosφ(t)) cosφ(t)
)−1))dφ
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=

∫ θ1

θ0

( 1

− sin2 φ(t)− 1
ρ(t)g(ρ(t) cosφ(t)) cosφ(t)

+O
( 1

r0

))
dφ

=

∫ θ1

θ0

dφ

− sin2 φ(t)− 1
ρ(t)g(ρ(t) cosφ(t)) cosφ(t)

+O
( 1

r0

)
= ∆T2(θ0, θ1) +O

( 1

r0

)
.

This shows that

|∆T1(θ0, θ1)−∆T2(θ0, θ1)| = O
( 1

r0

)
, r0 → +∞.

If ∆T1(θ0, θ1) > 2T , then there exists θ̃1 such that θ1 < θ̃1 < θ0 and ∆T1(θ0, θ̃1) = 2T .
Using the same method, we can prove

|∆T1(θ0, θ̃1)−∆T2(θ0, θ̃1)| = O
( 1

r0

)
, r0 → +∞.

This is a contradiction.

Lemma 2.5. Assume (H1), (H2) and (τ2) hold. Then there exist two sequences {ak},
{bk} such that ak < bk, k ∈ N and

θ(2π, r0, θ0)− θ0 < −2nπ, (r0 cos θ0, r0 sin θ0) ∈ Γak
,

θ(2π, r0, θ0)− θ0 > −2nπ, (r0 cos θ0, r0 sin θ0) ∈ Γbk ,

where n is a positive integer given in condition (τ2).

Proof. From (H1) we know that there exist two positive constants R1 and A1 such that

θ̇(t, r0, θ0) ≤ −A1

r0
, r0 ≥ R1, t ∈ [0, 2π].

Write θ(2π, r0, θ0) − θ0 = −2jπ − η, where j ≥ 0 is an integer, 0 ≤ η < 2π. Denote by tη
the time for θ(t, r0, θ0) to decrease from θ0 − 2jπ to θ0 − 2jπ − η. Obviously,

2π = Tj + tη ≤ Tj+1, (2.13)

where Tj and Tj+1 are the required time for the solution (r(t, r0, θ0), θ(t, r0, θ0) to complete

j and j+1 turns around the origin O, where (r0 cos θ0, r0 sin θ0) ∈ Γe :
1
2w

2 +G(u) = e. By
Lemma 2.2 and Lemma 2.4 we have that there exists a constant c(j+1) > 0 such that

|Tj+1 − (j + 1)τ(e)| ≤ cj+1√
e

(2.14)

provided that τ(e) < +∞. From the first inequality of (τ2) we see that there exists a
sequence {ak} such that

√
ak → +∞, k√

ak
→ 0, as k → +∞ and

√
ak

(
τ(ak)−

2π

n

)
≤ −k. (2.15)

From (2.13), (2.14) and (2.15) we have that, for (r0 cos θ0, r0 sin θ0) ∈ Γak
: 1
2w

2+G(u) = ak
and k large enough, j ≥ n.

If j ≥ n+ 1, then

θ(2π, r0, θ0)− θ0 ≤ −2(n+ 1)π < −2nπ. (2.16)

Now we assume j = n. Then for k large enough,

tη = 2π − Tn ≥ 2π − n
(2π
n

− k
√
ak

)
− cn√

ak
=
nk − cn√

ak
> 0.
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Therefore

−η =

∫ Tn+tη

Tn

θ̇(t, r0, θ0)dt ≤ − (nk − cn)A1

r0
√
ak

.

Furthermore,

θ(2π, r0, θ0)− θ0 < −2nπ − (nk − cn)A1

r0
√
ak

. (2.17)

It follows from (2.16) and (2.17) that, for k large enough,

θ(2π, r0, θ0)− θ0 < −2nπ, (r0 cos θ0, r0 sin θ0) ∈ Γak
.

Similarly, we can prove that the second inequality of this lemma holds.

§3. The Proof of Main Results

At first, we restate a generalized form of the Poincaré-Birkhoff fixed point theorem.
Let D denote an annular region in the (x, y)-plane. The boundary of D consists of two

simple closed curves: the inner boundary curve C1 and the outer boundary C2. Let D1

denote the simple connected open set bounded by C1. Consider an area-preserving mapping
T : R2 7→ R2. Suppose that T (D) ⊂ R2 − {O}, where O is the origin. Let (r0, θ0) be the
polar coordinate of (x0, y0), that is,

x0 = r0 cos θ0, y0 = r0 sin θ0.

Write the mapping T in the form

r∗ = f(r0, θ0), θ∗ = θ0 + h(r0, θ0),

where f and h are continuous in (r0, θ0) and 2π-periodic in θ0.
A Generalized Form of the Poincaré-Birkhoff Fixed Point Theorem.[5] Besides

the above-mentioned assumptions, we assume that

(1) C1 is star-shaped about the origin O;
(2) O ∈ T (D1);
(3)

h(r0, θ0) > 0(< 0), (r0 cos θ0, r0 sin θ0) ∈ C1;

h(r0, θ0) < 0(> 0), (r0 cos θ0, r0 sin θ0) ∈ C2.

Then T has at least two fixed points in D.
Proof of Theorem. From Lemma 2.5 we have

θ(2π, r0, θ0)− θ0 < −2nπ, (r0 cos θ0, r0 sin θ0) ∈ Γak
,

θ(2π, r0, θ0)− θ0 > −2nπ, (r0 cos θ0, r0 sin θ0) ∈ Γbk ,

with k large enough.
Thus we have proved that the area-preserving homeomorphism P is twisting on the

annulus Ak = {(u, v) ∈ Γe : ak ≤ e < bk}. Moreover, we also have that, for k sufficiently

large,

O ∈ P (Dk),

where Dk ⊂ R2 is an open bounded set with boundary Γak
. Finally, by Lemma 2.1, Γak

is star-shaped with respect to the origin O (for k large), so that all the assumptions of the
generalized Poincaré-Birkhoff fixed point theorem are fulfilled. Therefore, we have proved

that, for each k large enough, the mapping P has at least two fixed points in Ak. Thus we
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have obtained the existence of a sequence {uk(t)}+∞
k=1 of periodic solutions of Equation (1.1),

with minimal period 2π, such that

lim
k→+∞

(
min
t∈R

(|xk(t)|+ |ẋk(t)|)
)
= +∞.

The proof of the theorem is thus completed.

Remark 3.1. With a slight modification of the proof of Theorem 1.1, we can get the
conclusion of Theorem 1.2.

§4. An Example

Example. Let g : R 7→ R be an odd function and n ∈ N .

g(x) =

{
n2x− 34x

2
3 sin lnx+ sin 3(x− 1)3, x ≥ 1,

n2x, 0 < x < 1.

Obviously, g(x) satisfies the condition (H3). It is easy to check that

lim
x→+∞

g(x) = +∞ and lim
x→+∞

g(x)

x
= n2.

In order to check (τ2) for g, from [6] we know that it is sufficient to check condition (τ2) for
an odd function

g0(x) = n2x− 34x
2
3 sin lnx, x > 0.

By a direct calculation, we have that

G0(x) =
1

2
n2x2 + 9x

5
3 cos lnx− 15x

5
3 sin lnx, x > 0.

Set

P (c, s) = n2(c2 − s2) + 18(c
5
3 cos ln c− s

5
3 cos ln s)− 30(c

5
3 sin ln c− s

5
3 sin ln s),

Q(c, s) = n2(c2 − s2).

Then

τ0(e) = 2
√
2

∫ c(e)

0

ds√
e−G0(s)

= 2
√
2

∫ c(e)

0

ds√
G0(c(e))−G0(s)

,

where c(e) satisfies G0(c(e)) = e. From lim
x→+∞

2G0(x)
x2 = n2 we have that there exist constants

0 < v1 < v2 such that v1c(e) ≤
√
e ≤ v2c(e) for e large enough. Write c = c(e). Therefore

√
e(τ0(e)−

2π

n
) = 4

√
e

∫ c

0

( 1√
P (c, s)

− 1√
Q(c, s)

)
ds

= 4
√
e

∫ c

0

30(c
5
3 sin ln c− s

5
3 sin ln s)− 18(c

5
3 cos ln c− s

5
3 cos ln s)√

P (c, s)
√
Q(c, s)(

√
P (c, s) +

√
Q(c, s))

ds

= 4l
√
e

∫ c

0

c
5
3 sin(ln c− α)− s

5
3 sin(ln s− α)√

P (c, s)
√
Q(c, s)(

√
P (c, s) +

√
Q(c, s))

ds,

where α = arctan 3
5 , l =

√
302 + 182.

Take a sequence {ek} such that sin(ln c(ek)−α) = 1, ∀k ∈ N and ek → +∞, as k → +∞.
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Set ck = c(ek). Obviously, ck → +∞ as k → +∞. Then we have

√
ek(τ0(ek)−

2π

n
) ≥ 4lv1ck

∫ ck
2

0

(c
5
3

k − s
5
3 sin(ln s− α))√

P (ck, s)
√
Q(ck, s)(

√
P (ck, s) +

√
Q(ck, s))

ds

≥ 4ld0v1

∫ ck
2

0

c
8
3

k√
P (ck, s)

√
Q(ck, s)(

√
P (ck, s) +

√
Q(ck, s))

ds

≥ 2ld0v1

∫ ck
2

0

c
8
3

k√
P (ck, s)Q(ck, s)

ds,

where d0 = 1− ( 1
32 )

1
3 .

Furthermore, for k large enough,

√
ek(τ0(ek)−

2π

n
) ≥ 2ld0v1

∫ ck
2

0

c
2
3

k

n2
√
n2(c2k − s2)

ds

=
2ld0v1c

2
3

k

n3

∫ ck
2

0

1√
c2k − s2

ds =
lπd0v1c

2
3

k

3n3
.

Hence

lim
k→∞

√
ek

(
τ0(ek)−

2π

n

)
= +∞.

Consequently,

lim sup
e→+∞

√
e
(
τ0(e)−

2π

n

)
= +∞.

Similarly, we can check that

lim inf
e→+∞

√
e
(
τ0(e)−

2π

n

)
= −∞.

Therefore

lim inf
e→+∞

√
e
(
τ(e)− 2π

n

)
= −∞, lim sup

e→+∞

√
e
(
τ(e)− 2π

n

)
= +∞.

It follows from above theorem that ẍ+g(x) = p(t) has infinitely many 2π-periodic solutions.
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