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§1. Introduction and Main Result

When statistical data consists of direction only, it can be represented as point of Ω, the
surface of the unit sphere in d-dimensional Euclidean space, defined as Ω = {x ∈ Rd : ∥x∥ =
1}, d ≥ 2. We call it directional (or spherical) data.

The study of directional data is of practical interest. There are many situations where
observed data are in the form of direction cosines or in the form of vectors but with an
unknown positive scalar so that only the direction is known. Up to now, works based on
such data all concentrated upon density problems, such as statistical inference for p.d.f.
(probability density function) on Ω under various parametric models (see [7, 9, 10]) and
nonparametric density estimation (see [1, 3]). In this paper, we consider another important
subject, i.e. regression problems based on directional data, precisely speaking, regression
problems with design variable taking values on Ω.

Given data (xi, Yi) ∈ Ω×R, i = 1, · · · , n, consider regression model on Ω,

Yi = m(xi) + ei, 1 ≤ i ≤ n, (1.1)
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where the pairs (xi, Yi) are observed, the x′
is are fixed vectors on Ω, m(x) : Ω → R is a

smooth function which is to be estimated and the errors ei are independent and identically
distributed (i.i.d.) random variables satisfying

E(ei) = 0, E(e2i ) = 1. (1.2)

To estimate the regression function m(x) = E(Y |X = x), we introduce the following
estimator

m̂(x) =
n∑

i=1

K
(1− x′xi

h2
i

)
Yi

/ n∑
i=1

K
(1− x′xi

h2
i

)
, x ∈ Ω, (1.3)

where K is a non-negative kernel function defined on R+ = [0,+∞) and hn → 0 are a
sequence of positive numbers which are called bandwidth or window size. By the law of
cosines, ∥x− y∥2 = 2(1− x′y) for x, y ∈ Ω, one can easily find the similarity between m̂(x)
and the definition of the general kernel estimator with data in Rd.

In the present article, we give a precise description of the exact rate of strong convergence
of m̂(x)−Em̂(x) by deriving laws of the iterated logarithm (LIL) of m̂(x)−Em̂(x), in the
most common setting for regression problems: where the design variables xi are fixed, or
conditioned upon, and are representation of a random sequence drawn from X (with an
unknown distribution).

In our main theorem, we assume that the kernel function K is a non-negative function
of bounded variation defined on R+, vanishing outside [0, ρ) for some ρ > 0 and bounded
away from zero in [0, ρ). For the bandwidth, we assume that

hn ↓ 0, nα ≪
n∑

i=1

hd−1
i (1.4)

for some α > 0, where “≪” denotes “O”.
Next, we will state our main theorem. We shall say that a result holds for a class

of realizations of x1, x2, · · · having X probability 1 if that class has probability 1 in the
distribution of random sequence X1, X2, · · · drawn from the design population X.

Put

λ(K)
△
=

(2π)(d−1)/2

Γ((d− 1)/2)

∫ ∞

0

K(t)t(d−3)/2dt

and µ denotes the probability measure of X on Ω.
Theorem. For a class of realizations x1, x2, · · · having X probabiliaty 1 and for a.e.

(µ)x ∈ Ω, we have

lim sup
n→∞

( n∑
i=1

hd−1
i / log log n

)1/2

{m̂(x)− Em̂(x)} =
{
2
λ(K2)

λ2(K)
g(x)

}1/2

a.s., (1.5)

where g(x) will be defined in Lemma 2.1 given below.
Replacing ei by −ei in the regression model, the theorem implies

lim inf
n→∞

( n∑
i=1

hd−1
i / log log n

)1/2

{m̂(x)− Em̂(x)} = −
{
2
λ(K2)

λ2(K)
g(x)

}1/2

a.s.

So, we have the following corollary.
Corollary. For a class of realizations x1, x2, · · · having X probabiliaty 1 and for a.e.

(µ)x ∈ Ω, we have

lim sup
n→∞

( n∑
i=1

hd−1
i / log log n

)1/2

|m̂(x)− Em̂(x)| =
{
2
λ(K2)

λ2(K)
g(x)

}1/2

a.s. (1.6)
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As a footnote, we would like to mention some related works on LIL for regression function
estimator with data in the Euclidean space. These include, among others, [5] (LIL for kernel
estimator in the case where the designs xi = Xi are univariate and are regarded as random),
[4] (LIL for kernel estimator of regression function where the designs xi, i = 1, 2, · · · are
representation of a random sequence drawn from X ) and [11] (LIL for kernel estimator of
the ν-th derivative of regression function in fixed design case). Each of those works was
discussed under some assumptions on the p.d.f. of the design variable X. In this paper, our
results hold without any assumption on the distribution of the design variable, thus, they
are distribution free. From the procedure of our proof given below, one can see that similar
results also hold for the general kernel estimator with data in Rd.

§2. Preparatory Lemmas

Our proof of the main theorem is based on the following lemmas. Consider

m̂(x) =
n∑

i=1

K
(1− x′xi

h2
i

)
Yi

/ n∑
i=1

K
(1− x′xi

h2
i

)
.

Then m̂(x)− Em̂(x) = Un(x)
Vn(x)

, where

Un(x) =
n∑

i=1

K
(1− x′xi

h2
i

)
ei

/ n∑
i=1

EK
(1− x′X

h2
i

)
,

Vn(x) =
n∑

i=1

K
(1− x′xi

h2
i

)/ n∑
i=1

EK
(1− x′X

h2
i

)
.

Let ω be the Lebesgue measure on Ω and put Sx(r) = {t ∈ Ω : ∥t− x∥ < r}.
Lemma 2.1. Let h = hn be a sequence of positive numbers with hn → 0. Then there

exists a non-negative function g with g(x) < ∞, such that

ω(Sx(h))

µ(Sx(h))
→ g(x) as n → ∞ for a.e. (µ)x ∈ Ω. (2.1)

For a proof, refer to the proof of [2, Lemma 2.2].
Lemma 2.2. Suppose that hn satisfy

hn → 0,

n∑
i=1

hd−1
i

log n
→ ∞, as n → ∞ (2.2)

and the kernel K(x) satisfies K(x) ≥ BI[0,r) for some positive constants B and r, and
supK(x) ≤ M . Then, for a class of realizations of x1, x2, · · · having X probability 1, we
have

Vn(x) → 1 a.e. (µ)x ∈ Ω. (2.3)

Proof. Let X1, X2, · · · denote the independent and identically distributed random vari-
ables of which x1, x2, · · · represents a realization. Put

V ∗
n (x) =

n∑
i=1

K
(1− x′Xi

h2
i

)/ n∑
i=1

EK
(1− x′X

h2
i

)
.

Then

V ∗
n (x)− 1 =

n∑
i=1

[
K
(1− x′Xi

h2
i

)
− EK

(1− x′X

h2
i

)]/ n∑
i=1

EK
(1− x′X

h2
i

)
△
=

n∑
i=1

ηni.
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To prove Lemma 2.2, it is enough to prove that
n∑

i=1

ηni → 0 a.s. for a.e. (µ)x ∈ Ω. (2.4)

Obviously

|ηni| ≤ M
[ n∑

i=1

EK
(1− x′X

h2
i

)]−1

,
n∑

i=1

Var(ηni) ≤ M
[ n∑

i=1

EK
(1− x′X

h2
i

)]−1

.

Thus, by Bernstain inequality, we have

P (|V ∗
n (x)− 1| > ε) ≤ 2 exp

{
− ε2

n∑
i=1

EK
(1− x′X

h2
i

)/[
(2 +

2

3
ε)M

]}
(2.5)

holds for each ε > 0.
By Borel-Cantelli’s lemma, (2.4) follows from (2.5) if we show that the right-hand side

of (2.5) is summable. For this, by Lemma 2.1 and the fact (refer to the result (1.7) given in
[1]) that

h−(d−1)

∫
Ω

K
(1− x′y

h2

)
ω(dy) → λ(K), as h → 0,

we have

hd−1
i /EK

(1− x′X

h2
i

)
≤ hd−1

i

/[
BEI[0,r)

(1− x′X

h2
i

)]
≤

[
hd−1
i

/(
B

∫
Ω

I[0,r)

(1− x′y

h2
i

)
ω(dy)

)]ω(Sx(
√
2rhi))

µ(Sx(
√
2rhi))

→ (Bλ(K))−1g(x) < ∞ as i → ∞ for a.e. (µ)x ∈ Ω.

So there exist a constant c(x) > 0, such that

hd−1
i /EK

(1− x′X

h2
i

)
≤ c(x), i = 1, 2, · · · , for a.e. (µ)x ∈ Ω.

From (2.2) and (2.6), it is easy to see that the right-hand side of (2.5) is summable.
The next two lemmas will play an important role in our theorem’s proof.
Lemma 2.3. Suppose that K is a non-negative function of bounded variation, vanishing

on [ρ,∞), for some positive constant ρ, and further, K ≥ BI[0,r) for some B, r > 0. Then

n∑
i=1

hd−1
i

/ n∑
i=1

EK
(1− x′X

h2
i

)
→ λ−1(K)g(x) as n → ∞, for a.e. (µ)x ∈ Ω. (2.7)

Proof. We need only to show that for each x ∈ {t : o ≤ g(t) < ∞}, (2.7) holds.
(i) Case of g(x) = 0
In this case, we need only to show that the left-hand side of (2.7) tends to zero. In fact,

from Lemma 2.1, it is easy to see that

hd−1
i /EK

(1− x′X

h2
i

)
≤ hd−1

i /Bµ(Sx(
√
2rhi)) → 0 as i → ∞.

So, for each ε > 0, there exists a positive integer N(ε), such that for all i > N(ε),

EK
(1− x′X

h2
i

)
≥ ε−1hd−1

i .
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Then

lim
n→∞

n∑
i=1

hd−1
i

/ n∑
i=1

EK
(1− x′X

h2
i

)

≤ lim
n→∞

n∑
i=1

hd−1
i

/[N(ε)∑
i=1

EK
(1− x′X

h2
i

)
+ ε−1

n∑
i=N(ε)+1

hd−1
i

]
= ε

holds for any ε > 0. Therefore, (2.7) is true.
(ii) case of g(x) > 0.

Firstly, we assume that K is a step function, i.e. K(x) =
l∑

j=1

αjI[aj−1,aj)(x), where

αj ≥ 0, j = 1, 2, · · · , l (say), and 0 = a0 < a1 < · · · < al = ρ. It is easy to see that K can
be represented as

K(x) =
l∑

j=1

βjI[0,aj)(x) =
∑

{j:βj≥0}

βjI[0,aj)(x) +
∑

{j:βj<0}

βjI[0,aj)(x)
△
= K1(x) +K2(x)

where βj is a linear combination of α1, · · · , αl, for j = 1, 2, · · · , l.
For each ε > 0, from Lemma 2.1, there exists a positive integer N(ε), such that for all

j = 1, 2, · · · , l and all i > N(ε) ,∣∣∣µ(Sx(
√
2ajhi))

ω(Sx(
√

2ajhi))
− g−1(x)

∣∣∣ < ε.

Thus

n∑
i=1

EK1

(1− x′X

h2
i

)
=

N(ε)∑
i=1

EK1

(1− x′X

h2
i

)
+

n∑
N(ε)+1

∑
j:βj≥0

βjµ(Sx(
√
2ajhi))

≤
N(ε)∑
i=1

EK1

(1− x′X

h2
i

)
+ (g−1(x) + ε)

n∑
N(ε)+1

∑
j:βj≥0

βjω(Sx(
√
2ajhi))

=

N(ε)∑
i=1

EK1

(1− x′X

h2
i

)
+ (g−1(x) + ε)

n∑
N(ε)+1

∫
Ω

K1

(1− x′y

h2
i

)
ω(dy)

≪ (g−1(x) + ε)

n∑
i=1

∫
Ω

K1

(1− x′y

h2
i

)
ω(dy). (2.8)

Similarly, we get
n∑

i=1

EK1

(1− x′X

h2
i

)
≫ (g−1(x)− ε)

n∑
i=1

∫
Ω

K1

(1− x′y

h2
i

)
ω(dy). (2.9)

Combining (2.8) and (2.9), we get

lim
n→∞

n∑
i=1

EK1

(1− x′X

h2
i

)/ n∑
i=1

∫
Ω

K1

(1− x′y

h2
i

)
ω(dy) = g−1(x). (2.10)

Similar to K1 , we can prove that (2.10) also holds for K2, and those imply

lim
n→∞

n∑
i=1

EK
(1− x′y

h2
i

)/ n∑
i=1

∫
Ω

K
(1− x′X

h2
i

)
ω(dy) = g−1(x). (2.11)
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On the other hand, notice the fact that∫
Ω

K
(1− x′y

h2
i

)
ω(dy)/hd−1

i → λ(K) as i → ∞.

In a way similar to the proof of (2.11), one finds easily that

lim
n→∞

n∑
i=1

∫
Ω

K
(1− x′y

h2
i

)
ω(dy)

/ n∑
i=1

hd−1
i = λ(K). (2.12)

Combining (2.11) and (2.12), we see that (2.7) follows.
Secondly, we will prove that (2.7) also holds if K satisfies the condition described in

Lemma 2.3. In fact, for any fixed ε > 0, there exists a partition 0 = a0 < a1 < · · · < al(ε) = ρ
on [0, ρ) and a sequence of non-negative constants αj , j = 1, 2, · · · , l(ε) (say), such that

K∗(x) =
l(ε)∑
i=1

αjI[aj−1, aj)(x) satisfies 0 ≤ K(x)−K∗(x) ≤ ε and α1 > 0.

Then, for the step function K∗, from (2.7), we have

λ(K∗)g−1(x) ≤ lim inf
n→∞

n∑
i=1

EK
(1− x′y

h2
i

)/ n∑
i=1

hd−1
i ≤ lim sup

n→∞

n∑
i=1

EK
(1− x′y

h2
i

)/ n∑
i=1

hd−1
i

≤ [λ(K∗)g−1(x) + ελ(I[0,ρ)]g
−1(x).

Let ε → 0, we get λ(K∗) → λ(K). So (2.7) holds for K.
Lemma 2.4. Let c1, · · · , cN be real numbers and I1, · · · , IN be numbers taking only the

values 0 and 1, such that |ci|Ii = |ci| for 1 ≤ i ≤ N . There exists an absolute constant A
such that for all u > 0 and all C1, C2 > 0,

P
{∣∣∣ N∑

i=1

eici

∣∣∣ > (C1 + C2)
( N∑

i=1

c2i

)1/2

u
}
≤ A

[
1− Φ(C2u) + C−3

2

( N∑
i=1

c2i

)−1/2

×
(

sup
1≤i≤N

|ci|
)
u−3E{|e|3I(|e|≤λ)}+

( N∑
i=1

Ii

)
P (|e| > λ)

]
,

where λ = (
∑

Ii)
1/2/C1 and Φ denotes the standard normal distribution function.

For a proof, see [4, Lemma 3.1].

§3. Proof of the Theorem

Put Hn =
n∑

i=1

hd−1
i , Sn =

n∑
i=1

eiK
(

1−x′xi

h2
i

)
, and σ2

n = Var(Sn) =
n∑

i=1

K2
(

1−x′xi

h2
i

)
.

From Lemma 2.2, Lemma 2.3 and the condition (1.4), noticing that K2 also satisfies all the
conditions imposed on K, we have nα ≪ Hn ≪ σ2

n ≪ n. Thus

log log σ2
n ∼ log log n ∼ log logHn, (3.1)

where an ∼ bn means that an/bn → 1.
To prove (1.5), from Lemma 2.2, we need only to prove that for all x ∈ Ω satisfying

0 ≤ g(x) < ∞,

lim sup
n→∞

(Hn/ log logHn)
1/2Un(x) =

{
2
λ(K2)

λ2(K)
g(x)

}1/2

a.s. (3.2)

holds for a class of realizations having X probability 1.
If g(x) > 0, one can check, by Lemma 2.2 and Lemma 2.3, that with X probability 1,

(2σ2
nHn)

1
2

/ n∑
i=1

EK
(1− x′X

h2
i

)
→

{2λ(K2)

λ2(K)
g(x)

} 1
2

.
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Thus, to prove (3.2) for g(x) > 0, we need only to prove that with X probability 1,

lim sup
n→∞

(2σ2
n log log σ

2
n)

−1/2Sn = 1, a.s. (3.3)

If g(x) = 0, we have that with X probability 1,

(σ2
nHn)

1
2

/ n∑
i=1

EK
(1− x′X

h2
i

)
→ 0 a.s.

Therefore, to prove (3.2) for g(x) = 0, we need only to prove that with X probability 1,

lim sup
n→∞

(2σ2
n log log σ

2
n)Sn < ∞ a.s. (3.4)

For those, we do in two steps, which give upper bound for the case g(x) ≥ 0 and lower
bound for the case g(x) > 0.

Step (i) Upper bound for g(x) ≥ 0
In this step, we will show (3.4) and the upper bound of (3.3), i.e.

lim sup
n→∞

(2σ2
n log log σ

2
n)

−1/2Sn ≤ 1 a.s. (3.5)

Let c > 1, write mk for the integer part of ck and write f.a.s.l.k as an abbreviation for ‘for
all sufficiently large k’. Put tn = (2σ2

n log log σ
2
n)

1/2. Without lose of generality we assume
that tn is increasing in n. Obviously, (3.4) and (3.5) will follow if we prove that:

(i) in the case g(x) ≥ 0, for any ε > 0

Smk
/tmk

< 1 + ε f.a.s.l.k. (3.6)

(ii) in the case g(x) > 0, for any ε > 0 there exists c > 0, chosen sufficiently close to 1,
such that

t−1
mk

sup
mk<n<mk+1

|Sn − Smk
| < ε f.a.s.l.k. (3.7)

(iii) in the case g(x) = 0, there exists a constant C, such that

t−1
mk

sup
mk<n<mk+1

|Sn − Smk
| < C f.a.s.l.k. (3.8)

By the Borel-Cantelli lemma, (i) will follows if we prove that
∞∑
k=1

P{Smk
> (1 + ε)tmk

} < ∞. (3.9)

Applying Lemma 2.4 with ci = K( 1−x′xi

h2
i

), Ii = I(1−x′xi<ρh2
i )
, C1 = ε/2, C2 = 1 + ε/2, and

u = uk = (2 log log σ2
mk

)1/2, we have

P{Smk
> (1 + ε)tmk

} ≪
(
1− Φ

{(
1 +

ε

2

)
uk

})
+ λ−1

k E{|e|3I(|e|≤λk)}+ λ2
kP (|e| > λk)

△
= I + II + III,

where λk = 2
( mk∑

i=1

Ii

) 1
2

/ε. Noticing that, from Lemma 2.2 and Lemma 2.3, with X proba-

bility 1,
mk∑
i=1

hd−1
i /λ2

k =
ε

2

mk∑
i=1

hd−1
i

/ mk∑
i=1

I[0,ρ)

(1− x′xi

h2
i

)
∼ ε

2

mk∑
i=1

hd−1
i

/ mk∑
i=1

EI[0,ρ)

(1− x′X

h2
i

)
→

{
ε
2λ

−1(I[0,ρ))g(x) as g(x) > 0,
0 as g(x) = 0,
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from (1.4), we have

mα
k ≪

mk∑
i

hd−1
i ≪ λ2

k. (3.10)

So, we can find a positive sequence {λ∗
l } including {λk} as its subsequence such that λ∗

l ≍
mα

l , where an ≍ bn means that an/bn and bn/an are both bounded. Hence
∞∑
k=1

λ−1
k E{|e|3I(|e| ≤ λk)} ≤

∞∑
l=1

(λ∗
l )

−1E{|e|3I(|e|≤λ∗
l )
} < ∞.

Here the last inequality is proved by making integral approximation to the series. Now, we
know that II is summable. Similarly we can prove that III is also summable.

Applying the famous exponential inequality

1√
2π

(
1

x
− 1

x3
)e−x2/2 ≤ 1− Φ(x) ≤ 1√

2πx
e−x2/2 (∗)

we can easily varify that I is summable. Up to now, we have proved (i).
Now, we proceed to prove (ii) and (iii). From Kolmogorov inequality (refer to [6, p.260]

or [4, Lemma 3.2]), for any constant C > 0, we have

P
{
t−1
mk

sup
mk<n<mk+1

∣∣∣ n∑
i=mk+1

eiK
(1− x′xi

h2
i

)∣∣∣ > C
}

≤ P
{∣∣∣ mk+1∑

i=mk+1

eiK
(1− x′xi

h2
i

)∣∣∣ > C

2
A1/2(k)

×
(
2

mk+1∑
i=mk+1

K2
(1− x′xi

h2
i

)
log log σ2

mk

)1/2}
(3.11)

where

A(k) =

mk∑
i=1

K2
(1− x′xi

h2
i

)/ mk∑
i=mk+1

K2
(1− x′xi

h2
i

)
.

If g(x) > 0, taking C = ε, from Lemma 2.2, we have that with X probability 1,

A−1(k) =
σ2
mk+1

σ2
mk

− 1 ∼

mk+1∑
i=1

EK2
(

1−x′xi

h2
i

)
mk∑
i=1

EK2
(

1−x′xi

h2
i

) − 1 ∼
Hmk+1

Hmk

− 1.

Then, by taking c sufficiently small and k sufficiently large, we have A1/2(k) > 2(1+ε)
ε . So,

similar to (i), we can prove that the right-hand side of (3.11) is summable.
If g(x) = 0, taking c < 2 such that mk+1 = [ck+1] ≤ 2[ck] = 2mk, then by the conditions

imposed on K, we have

A−1(k) =

mk+1∑
i=mk+1

K2
(

1−x′xi

h2
i

)
mk∑
i=1

K2
(

1−x′xi

h2
i

) ≤ M2

m2

mk+1−mk∑
i=1

I(1− x′xi ≤ ρh2
i )

mk∑
i=1

I(1− x′xi ≤ ρh2
i )

≤ M2

m2
.

So, taking C = 6M
m , similar to (i), we can prove that the right-hand side of (3.11) is

summable. Hence (ii) and (iii) hold.
Step (ii) Lower bound for g(x) > 0
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Write i.o. for infinitely often. In this step, we shall prove that for any ε ∈ (0, 1), with X
probabilily 1,

Sn/(2σ
2
n log log σ

2
n)

1/2 > 1− ε i.o. (3.12)

Define mk and tk as before. Result (3.12) will hold if we prove that for each ε > 0, there
exists a sufficiently large c such that

|Smk
|/tmk+1

< ε f.a.s.l.k., (3.13)

(Smk+1
− Smk

)/tmk+1
> 1− ε i.o. (3.14)

Result (3.13) can be deduced immediately from Step (i). In fact, Step (i) implies that
for all sufficiently large n, Sn/tn < 1 + ε and −Sn/tn < 1 + ε as may be seen on replacing
ei by −ei in the regression model. Therefore |Sn|/tn < 1 + ε holds for all sufficiently
large n. Choose c > 1 so large that for sufficiently large k, tmk

/tmk+1
< ε/2. Therefore

|Smk
|/tmk+1

< (1 + ε)ε/2 < ε, for all sufficiently large k.

Next, we will prove (3.14). Observing that

Smk+1
− Smk

=

mk+1∑
i=mk+1

eiK
(1− x′xi

h2
i

)
by the Borel-Cantelli’s lemma, we need only to prove that

∞∑
k=1

P{Smk+1
− Smk

> (1− ε)tmk+1
} = ∞ (3.15)

holds for c > 1 sufficiently large. Write

eik = eiI(|ei|2 ≤ Hmk+1
), Tk =

mk+1∑
i=mk+1

eikK
(1− x′xi

h2
i

)
,

µk = E(Tk) = E(eik)

mk+1∑
i=mk+1

K
(1− x′xi

h2
i

)
,

vk = Var(Tk) = Var(eik)

mk+1∑
i=mk+1

K2
(1− x′xi

h2
i

)
.

Then, putting yk = ((1− ε)tmk+1
− µk)/v

1/2
k , we have

P{Smk+1
− Smk

> (1− ε)tmk+1
}

≥ P (Tk > (1− ε)tmk+1
)−

{ mk+1∑
i=mk+1

I(1−x′xi≤ρh2
i )

}
P (|e|2 > Hmk+1

)

= P
(Tk − µk

v
1/2
k

> yk

)
− P (|e|2 > Hmk+1

)

mk+1∑
i=mk+1

I(1−x′xi≤ρh2
i )

≥ 1− Φ(yk)− sup
−∞<y<∞

∣∣∣P(Tk − µk

v
1/2
k

≤ yk

)
− Φ(yk)

∣∣∣− P (|e|2 > Hmk+1
)

×
mk+1∑

i=mk+1

I(1−x′xi≤ρh2
i )
.
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Therefore, (3.15) will follow if we prove that for sufficiently large c,
∞∑
k=1

1− Φ(yk) = ∞, (3.16)

∞∑
k=1

sup
−∞<y<∞

|P ([Tk − µk]/v
1/2
k ≤ yk)− Φ(yk)| < ∞, (3.17)

∞∑
k=1

P (|e|2 > Hmk+1
)

mk+1∑
i=mk+1

I(1− x′xi ≤ ρh2
i ) < ∞ (3.18)

all hold with X probability 1. Noticing the fact that E(e1k) → 0 and Var(e1k) → 1 as
k → ∞ , it is easy to see, from Lemma 2.2, that for large k, yk ≤ (1− ε/2)(2 log logHmk+1

),
by using the exponential inequality given in (∗), we can verify (3.16) without difficulty. The
proof of (3.18) is very similar to the derivation of (III) in step (i).

The remainder of our proof is dedicated to deriving (3.17). By the Esseen’s inequality
(see [6, p.111]), and Lemma 2.2, there exists an absolute constant A > 0 such that

sup
−∞<y<∞

∣∣∣P(Tk − µk

v
1/2
k

≤ y
)
− Φ(y)

∣∣∣ ≤ Av
−3/2
k (E|eik|3)

mk=1∑
i=mk+1

K3
(1− x′xi

h2
i

)
∼ A

λ(K3)

λ(K2)3/2
g(x)

( mk+1∑
i=mk+1

hk−1
i

)− 1
2

E{|e|3I(|e|2≤Hmk+1
)}

∼ A
λ(K3)

λ(K2)3/2
g(x)(1− c−1)H

− 1
2

mk+1E{|e|3I(|e|2≤Hmk+1
)}.

In a way similar to the proof of (II) in step (i), we can prove that
∞∑
k=1

H
− 1

2
mk+1E{|e|3I

(|e|≤H
1/2
mk+1

)
} < ∞.

So (3.17) holds. By then, we have completed the proof of (3.12).
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