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Abstract

Using variational method, the authors get an existence result for positive solutions of a
superlinear elliptic boundary value problem without assuming the P.S. condition. To prove the
results in this paper, the authors adopt the method of gradient flow and use a new class of

truncation functions.
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§1. Introduction and the Main Theorem

In this paper, we consider the elliptic boundary value problem−∆u = f(u), x ∈ Ω,
u > 0, x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1.1)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, f : R+ → R satisfies

locally Lipschitz condition and f(0) ≥ 0. By a solution u of (1.1) we mean a classical

solution u ∈ C2(Ω̄) which satisfies (1.1) pointwise.

Denote by λ1 < λ2 < · · · the eigenvalues of −∆ with 0-Dirichlet boundary condition. It

is known that λ1 > 0 and any eigenfunction corresponding to λ1 does not change sign on Ω.

We will assume that f(t) is superlinear and subcritical at infinity. That is,

(F1) lim inf
t→+∞

f(t)t−1 > λ1,

(F2) lim
t→+∞

f(t)t−(N+2)/(N−2) = 0 if N ≥ 3, lim
t→+∞

f(t)e−tα = 0 for some α < 2 if N = 2.
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It is well known that, under condition (F2), u is a solution of (1.1) if and only if u is a

nontrivial critical point of J defined by

J(u) =

∫
Ω

[1
2
|∇u|2 − F (u)

]
dx, u ∈ H1

0 (Ω),

where F (t) =
∫ t

0
f̃(s)ds and

f̃(t) =

{
f(0), t < 0,
f(t), t ≥ 0.

We say J satisfies the P.S. condition if any sequence {un} ⊂ H1
0 (Ω) for which J(un) is

bounded and J ′(un) → 0 as n→ ∞ possesses a convergent subsequence. We say J satisfies

condition (J∗) if θ, the origin of H1
0 (Ω), is a local minimizer of J . When (F1), (F2), (J∗) and

the P.S. condition are satisfied, the Mountain Pass Lemma guarantees a nontrivial critical

point, which is also a solution of (1.1) (see e.g. [2, 9]). On the other hand, in order to

get a nontrivial critical point by the Mountain Pass Lemma, the four conditions are also

necessary in some sense. When the domain Ω is convex and (F1), (F2) and (J∗) are satisfied

and the P.S. condition, however, is not satisfied, Figueiredo, Lions, and Nussbaum proved

an existence theorem for (1.1) by an approximate argument (see [6, Theorem 2.2]). They

modified J by defining a sequence of functionals {Jn}, in which every Jn satisfies the P.S.

condition. Then they obtained nontrivial critical point un for every Jn by the Mountain

Pass Lemma and proved that ∥un∥C(Ω̄) ≤ C for some constant C independent of n. Hence

for large n, un is a solution of (1.1). In this argument, the condition (J∗) is crucial. If (J∗) is

not satisfied, yet each Jn has a local minimizer distinct from θ, the Mountain Pass Lemma

can be used to get a critical point of the Mountain Pass type of Jn. In this case, the critical

point of the Mountain Pass type can not be distinguished from θ if we do not impose any

condition upon the local behaviour of Jn or J around θ. Therefore, we can not get nontrivial

critical point in general. Under the following condition

(F3) there is a β > 0 such that f(β) = 0,

if that (J∗) is satisfied is not sure, the Mountain Pass Lemma ceases to be effective. If Ω

is convex and (F1), (F2), (F3), and f(0) ≥ 0 are satisfied, Lions proved that (1.1) has a

solution u satisfying max
Ω

u > β by using a topological degree argument under the following

additional condition (see [7, Theorem 3.1])

(F∗) lim sup
t→+∞

tf(t)−θF (t)
t2f(t)2/N

≤ 0 for some 0 < θ < 2N
N−2 (if N ≥ 3).

This condition was introduced by Figueiredo, Lions, and Nussbaum[6] to get a priori bounds

for all solutions of (1.1), and it was used only to get a priori bounds. It was conjectured

by Lions that [7, Theorem 1.2, Theorem 2.1, Theorem 2.2, and Theorem 3.1] are also true

when the convexity of Ω and the condition (F∗) (i.e. (7′) in [7]) is taken out from these

theorems (see [7, Remark 1.3, Remark 1.6, Remark 2.1, Remark 2.3, and Remark 3.1]).

It should be noticed that, as indicated in [7], the convexity of Ω and the assumption (7′)

in these theorems can be replaced with other conditions which imply a priori bounds of

solutions of (1.1) (see [3, 6]). Nevertheless, if the convexity of Ω and the assumption (7′) is

taken off completely, whether these theorems are still true is left as an open problem by now.

If the convexity of Ω is retained, it has been proved that the assumption (7′) can be dropped

(see [5, 8]). In [5], two positive solutions were obtained with one being a minimum and the

other being a Mountain Pass point, and it was shown that the Mountain Pass point is larger

than the minimum. We would like to mention that [5] did not give further information on
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the Mountain Pass point, for example, in the case of (F3), whether there exists a solution

u satisfying maxΩ u > β was unknown. In [8], a new kind of argument based on descending

flow was introduced and some interesting properties on the solutions of (1.1) were given. In

this paper, we present another argument which is more transparent and more concise than

the one in [8], and we will prove that if the convexity of Ω is retained, the assumption (7′)

can be taken out from the theorems in [7] mentioned above thoroughly.

For reasons of simplicity, here we only give the extension counterpart of [7, Theorem 3.1]

([7, Theorem 1.2, Theorem 2.1, and Theorem 2.2] can be handled in a similar way). Our

main theorem is

Theorem 1.1. Assume that f satisfies (F1), (F2), (F3), and f(0) ≥ 0, and that Ω is

convex. Then there exists a solution u of (1.1) satisfying max
Ω

u > β.

For proving Theorem 1.1, we will modify problem (1.1) by defining a sequence of func-

tionals {Jn} as in the proof of [6, Theorem 2.2] or as in [8]. But we adopt a new technique of

truncation here which enables us to deal with the problem in a much simpler way. We will

see that each Jn satisfies the P.S. condition and it, however, does not satisfy (J∗). Therefore,

we can not use the Mountain Pass Lemma as in the proof of Theorem 2.2 in [6] to get a

nontrivial critical point. Meanwhile, since y(F∗) is not assumed, the proof of Theorem 3.1

in [7], which depends on a priori estimates, no longer has any effect. Instead of using the

Mountain Pass Lemma, we will study directly the gradient flow of Jn and prove that along

a certain curve of the flow we can arrive at a nontrivial critical point un of Jn. Finally, we

prove that ∥un∥C(Ω̄) ≤ C, which shows that un is a solution of (1.1) when n is large enough.

§2. Proof of Theorem 1.1

We will give the proof only in the case N ≥ 3, the case N = 2 is treated by similar

arguments.

Choose a number M > 0 such that inf
t≥M

f(t) > sup
0≤t≤β

f(t), and choose a number m > 0

such that f(t)+mt is strictly increasing on [0, M ]; such numbers exist because f(t) satisfies

(F1) and satisfies locally Lipschitz condition. The inner product of the Hilbert space H1
0 (Ω)

is taken to be

(u, v) =

∫
Ω

(∇u · ∇v +muv)dx, u, v ∈ H1
0 (Ω).

The norms of the spacesH1
0 (Ω) and C

1
0 (Ω̄) are denoted by ∥·∥H1

0 (Ω) and ∥·∥C1
0 (Ω̄) respectively.

Choose an increasing sequence {sn} with s1 > M and sn → +∞ as n→ +∞. Fix a number

γ : λ1 < γ < λ2. Then we can define a sequence of approximate functionals as follows.

fn(t) =

 f(0), t < 0,
f(t), 0 ≤ t ≤ sn,
f(sn) + γ(t− sn), sn < t,

Fn(t) =

∫ t

0

fn(s)ds, t ∈ R1,

Jn(u) =

∫
Ω

[
1

2
|∇u|2 − Fn(u)

]
dx, u ∈ H1

0 (Ω).

It is known that Jn ∈ C2−0(H1
0 (Ω)) and

J ′
n(u) = u− (−∆+m)−1(fn(u) +mu), u ∈ H1

0 (Ω).
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Lemma 2.1. Jn satisfies the P.S. condition for each n.

Proof. Let {uj}∞j=1 be a sequence in H1
0 (Ω) such that

C1 ≤ Jn(uj) ≤ C2, J ′
n(uj) → 0 as j → +∞. (2.1)

In this proof, each Ci means a constant number independent of j. To accomplish the proof,

we need only to get a uniform bound of uj in H1
0 (Ω). Denote

u+j (x) = max{uj(x), 0}, u−j (x) = min{uj(x), 0}, uj = vj + wj , vj ∈ V, wj ∈W,

where V = span{ϕ}, W = V ⊥ is the orthogonal complement of V in H1
0 (Ω), and ϕ is the

eigenfunction corresponding to λ1. Note that

uj = u+j + u−j ,

∫
Ω

∇vj · ∇wj =

∫
Ω

vjwj = 0,∫
Ω

v2j =
1

λ1

∫
Ω

|∇vj |2,
∫
Ω

w2
j ≤ 1

λ2

∫
Ω

|∇wj |2

for j = 1, 2, · · · . For any u ∈ H1
0 (Ω),

(J ′
n(uj), u) =

∫
Ω

∇uj · ∇u−
∫
Ω

fn(uj)u. (2.2)

Taking u to be u−j in (2.2), we have

(J ′
n(uj), u

−
j ) =

∫
Ω

∇uj · ∇u−j −
∫
Ω

fn(uj)u
−
j =

∫
Ω

|∇u−j |
2 −

∫
Ω

fn(u
−
j )u

−
j

=

∫
Ω

|∇u−j |
2 −

∫
Ω

fn(0)u
−
j .

By (2.1), the Holder inequality, the Schwartz inequality, and the Sobolev inequality, it follows

that ∫
Ω

|∇u−j |
2 ≤ C3∥u−j ∥L2 + C4 ≤ C5

(∫
Ω

|∇u−j |
2

)1/2

+ C4.

Hence ∫
Ω

|∇u−j |
2 ≤ C6. (2.3)

Taking u to be vj in (2.2), we have

(J ′
n(uj), vj) =

∫
Ω

∇uj · ∇vj −
∫
Ω

fn(uj)vj =

∫
Ω

|∇vj |2 −
∫
Ω

fn(u
+
j )vj

=

∫
Ω

|∇vj |2 −
∫
Ω

γu+j vj −
∫
Ω

(fn(u
+
j )− γu+j )vj

=

∫
Ω

|∇vj |2 −
∫
Ω

γujvj +

∫
Ω

γu−j vj −
∫
Ω

(fn(u
+
j )− γu+j )vj

=
(
1− γ

λ1

)∫
Ω

|∇vj |2 +
∫
Ω

γu−j vj −
∫
Ω

(fn(u
+
j )− γu+j )vj

≤
(
1− γ

λ1

)∫
Ω

|∇vj |2 + γ∥u−j ∥L2∥vj∥L2 + C7∥vj∥L2 .

By (2.1) and (2.3), it follows that

−C8

(∫
Ω

|∇vj |2
)1/2

≤
(
1− γ

λ1

)∫
Ω

|∇vj |2 + C9∥vj∥L2 .
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In view of λ1 < γ we see that ∫
Ω

|∇vj |2 ≤ C10. (2.4)

Finally, taking u to be wj in (2.1), we have in a similar way

(J ′
n(uj), wj) =

∫
Ω

|∇wj |2 − γ

∫
Ω

w2
j + γ

∫
Ω

u−j wj −
∫
Ω

(fn(u
+
j )− γu+j )wj

≥
(
1− γ

λ2

)∫
Ω

|∇wj |2 − C11∥wj∥L2

from which and the fact that γ < λ2 we get∫
Ω

|∇wj |2 ≤ C12. (2.5)

By (2.4) and (2.5) we get the boundedness of uj = vj + wj in H1
0 (Ω).

Lemma 2.2. fn(t) satisfies the conditions (F1) and (F2) uniformly in n, that is to say,

(i) there exist δ > 0 and T > 0 such that for t ≥ T and n = 1, 2, · · · , fn(t)t−1 > λ1 + δ;

(ii) for any ε > 0, there exists T ∗ > 0 such that for t ≥ T ∗ and n = 1, 2, · · · ,
fn(t)t

−l < ε.

Proof. (i) From (F1) we can take δ > 0 such that λ1 + δ < γ, λ1 + δ < lim inf
t→+∞

f(t)t−1.

Take T > 0 such that for t ≥ T, f(t)t−1 > λ1 + δ. Without loss of generality, we can assume

that sn > T for all n. For t ≥ T and n = 1, 2, · · · , if t ≥ sn, then

fn(t)t
−1 = f(sn)t

−1 + γ(1− snt
−1) > (λ1 + δ)snt

−1 + γ(1− snt
−1) > λ1 + δ.

(ii) For any ε > 0, since sn → +∞ as n→ +∞, we can assume without loss of generality

that γs1−l
n < ε/2 for all n = 1, 2, · · · . From (F2), there exists T ∗ > 0 such that for t ≥ T ∗,

f(t)t−l < ε/2. Without loss of generality, we can also assume that sn > T ∗. For t ≥ T ∗ and

n = 1, 2, · · · , if t ≥ sn, then

fn(t)t
−l = (f(sn) + γ(t− sn))t

−l <
(ε
2
sln + γ(t− sn)

)
t−l

<
ε

2
+ γt1−l ≤ ε

2
+ γs1−l

n < ε.

This finishes the proof.

Denote Anu = (−∆+m)−1(fn(u) +mu). Then An maps H1
0 (Ω) into H

1
0 (Ω) and there

exists a constant L > 0 such that

∥Anu−Anv∥H1
0 (Ω) ≤ L∥u− v∥H1

0 (Ω), u, v ∈ H1
0 (Ω). (2.6)

Indeed, such an L exists because K
△
= (−∆ + m)−1 is a bounded linear operator from

L
2N

N+2 (Ω) toW 2, 2N
N+2 (Ω)∩W 1, 2N

N+2

0 (Ω), because of the imbeddingsW 2, 2N
N+2 (Ω)∩W 1, 2N

N+2

0 (Ω)

→ H1
0 (Ω) and H1

0 (Ω) → L
2N

N+2 (Ω), and because fn(t) +mt satisfies Lipschitz condition on

all of R1.

Consider the initial value problem of ordinary differential equations in H1
0 (Ω){

du(t)
dt = −u(t) +Anu(t),

u(0) = u0.
(2.7)

Let u(t, u0) be the unique solution with maximal right interval of existence [0, η(u0)).
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Lemma 2.3. For any u0 ∈ H1
0 (Ω), η(u0) = +∞.

Proof. For any 0 ≤ t1 < t2 < η(u0), let h denote t2 − t1. Then by using (2.6) and (2.7)

we have, for 0 ≤ t < η(u0)− h,

∥u(t+ h, u0)− u(t, u0)∥H1
0 (Ω) ≤

∫ t+h

t

∥u′(s, u0)∥H1
0 (Ω)ds

≤ (L+ 1)

∫ t+h

t

∥u(s, u0)∥H1
0 (Ω)ds+ ∥Anθ∥H1

0 (Ω)h.

Denote K(t, h) = (L + 1)
∫ t+h

t
∥u(s, u0)∥H1

0 (Ω)ds + ∥Anθ∥H1
0 (Ω)h. Then, for 0 ≤ t <

η(u0)− h,

|K ′
t(t, h)| ≤ (L+ 1)∥u(t+ h, u0)− u(t, u0)∥H1

0 (Ω) ≤ (L+ 1)K(t, h).

This implies that, for 0 ≤ t < η(u0) − h, K(t, h) ≤ K(0, h)e(L+1)t. Hence we have, for

0 ≤ t < η(u0)− h,

∥u(t+ h, u0)− u(t, u0)∥H1
0 (Ω) ≤ K(0, h)e(L+1)t.

If η(u0) < +∞, choose t = t1 in the last inequality, it would be that, for 0 ≤ t1 < t2 < η(u0),

∥u(t2, u0)− u(t1, u0)∥H1
0 (Ω) ≤ K(0, t2 − t1)e

(L+1)η(u0).

Therefore

lim
t1, t2→η(u0)−0

∥u(t2, u0)− u(t1, u0)∥H1
0 (Ω) = 0.

It follows that there exists u∗ ∈ H1
0 (Ω) such that

lim
t→η(u0)−0

∥u(t, u0)− u∗∥H1
0 (Ω) = 0.

Hence the solution curve u(t, u0) can be extended to [0, η(u0) + η(u∗)). This contradicts

the maximality of the interval [0, η(u0)).

Now we regard An as an operator from C1
0 (Ω̄) to C

1
0 (Ω̄). Because K = (−∆+m)−1 is a

bounded linear operator from LN (Ω) to W 2, N (Ω) ∩W 1, N
0 (Ω), because of the imbeddings

W 2, N (Ω) ∩ W 1, N
0 (Ω) → C1

0 (Ω̄) and C1
0 (Ω̄) → LN (Ω), and because fn(t) + mt satisfies

Lipschitz condition on all of R1, there exists a number L1 > 0 such that

∥Anu−Anv∥C1
0 (Ω̄) ≤ L1∥u− v∥C1

0 (Ω̄), u, v ∈ C1
0 (Ω̄). (2.8)

Therefore, we can consider the initial value problem (2.7) in C1
0 (Ω̄). For u0 ∈ C1

0 (Ω̄), let

ũ(t, u0) be the unique solution of (2.7) considered in C1
0 (Ω̄) with maximal right interval of

existence [0, η̃(u0)). By the same argument as in Lemma 2.2, we have the following lemma.

Lemma 2.4. For any u0 ∈ C1
0 (Ω̄), η̃(u0) = +∞.

Lemma 2.5. For any u0 ∈ C1
0 (Ω̄) and 0 ≤ t < +∞, we have ũ(t, u0) = u(t, u0).

Proof. Because of the imbedding C1
0 (Ω̄) → H1

0 (Ω), ũ(t, u0) is also a solution of (2.7)

considered in H1
0 (Ω). Then the uniqueness of the solution in H1

0 (Ω) gives the result.

Let D = {u ∈ C1
0 (Ω̄) | 0 ≤ u(x) ≤ β for all x ∈ Ω} and P = {u ∈ C1

0 (Ω̄) | 0 ≤
u(x) for all x ∈ Ω}. The interior part of D in P is D◦ = {u ∈ C1

0 (Ω̄) | 0 ≤ u(x) <

β for all x ∈ Ω}. Since fn(t) = f(t) for 0 ≤ t ≤ β, f(0) ≥ 0, f(β) = 0 and f(t) + mt

is strictly increasing on [0, β], by Hopf’s strong maximum principle we have the following

lemma.

Lemma 2.6. For each n,

An(D) ⊂ D◦. (2.9)
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Proof. We have Anu = Au for ∀u ∈ D, since s1 > M > β. For any u ∈ D, let v = Au.

Note that

−∆v +mv = f(u) +mu in Ω, v = 0 on ∂Ω.

First, since f(t) +mt is increasing in [0, β], we see that

−∆v +mv ≥ 0 in Ω, v = 0 on ∂Ω.

By the maximum principle, we have v ≥ 0 in Ω. Second, we have

−∆v +mv ≤ f(β) +mβ = mβ in Ω, v = 0 on ∂Ω.

Rewrite the last inequality in the following way

∆(β − v)−m(β − v) ≤ 0 in Ω, β − v = β on ∂Ω.

By Hopf’s strong maximum principle, β − v can not reach a non-positive value in Ω except

that β − v ≡constant. Hence min
Ω

(β − v) > 0 and max
Ω

v < β. Then we have v ∈ D◦.

Lemma 2.7. If u0 ∈ D, u(t, u0) ∈ D◦ for all t > 0.

Since An(D) ⊂ D and An(P ) ⊂ P , a result of [10] gives the following lemma.

Lemma 2.8. (i) If u0 ∈ D, u(t, u0) ∈ D for all t > 0.

(ii) If u0 ∈ P, u(t, u0) ∈ P for all t > 0.

Proof of Lemma 2.7. Since u(t, u0) is the solution of (2.7) in C1
0 (Ω̄), it satisfies

u(t, u0) = e−tu0 +

∫ t

0

e−t+sAnu(s, u0)ds, 0 ≤ t < +∞. (2.10)

For any t > 0, let Ft = {Anu(s, u0) | 0 ≤ s ≤ t}. Then Ft is a compact subset of C1
0 (Ω̄)

since Anu(s, u0) is continuous from [0, t] to C1
0 (Ω̄). In view of (2.9) and Lemma 2.8 (i), we

have Ft ⊂ D◦. Hence coFt ⊂ D◦, where coFt is the closed convex hull of Ft in C
1
0 (Ω̄). From

(2.10), we see that

u(t, u0) = e−tu0 + e−t

∫ et

1

Anu(ln s, u0)ds

= e−tu0 + (1− e−t) lim
m→+∞

1

m

m∑
i=1

Anu
(
ln

(
1 +

i

m
(et − 1)

)
, u0

)
,

where the integral and the limit are taken in the C1
0 (Ω̄) topology. Since u0 ∈ D and t > 0,

and since

lim
m→+∞

1

m

m∑
i=1

Anu
(
ln
(
1 +

i

m
(et − 1)

)
, u0

)
∈ coFt ⊂ D◦,

we see that u(t, u0) ∈ D◦. The proof is finished.

By Lemma 2.2, there exist constants α > 0 and t∗ > 0 independent of n such that

fn(t) ≥ (λ1 + α)t for all t ≥ t∗ and n = 1, 2, · · · .
Therefore

Fn(t) ≥
1

2
(λ1 + α)t2 − C1 for all t ≥ 0 and n = 1, 2, · · · .

Here and in the sequel, we use Ci to denote a positive constant independent of n. Let ϕ be

the eigenfunction of −∆ corresponding to λ1 satisfying ϕ(x) > 0 in Ω. For t > 0, we have

Jn(tϕ) =

∫
Ω

[1
2
t2|∇ϕ|2 − Fn(tϕ)

]
dx ≤ −α

2
t2
∫
Ω

ϕ2dx+ C1|Ω|,
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where |Ω| means the volume of Ω. Since s1 > M > β, from the definition of Jn we see that

Jn(u) = J(u) for all u ∈ D and n = 1, 2, · · · . Therefore, there exists a number T > 0

independent of n such that

Jn(Tϕ) < inf
u∈D

Jn(u) = inf
u∈D

J(u). (2.11)

Define

τ∗ = sup{τ̃ | 0 ≤ τ̃ ≤ T and for any 0 ≤ τ ≤ τ̃ there exists tτ > 0

such that u(tτ , τϕ) ∈ D◦}.

Lemma 2.9. 0 < τ∗ < T and u(t, τ∗ϕ) ̸∈ D◦ for all t > 0.

Proof. Take a δ0 : 0 < δ0 < T such that δ0ϕ ∈ D. By Lemma 2.7, we have u(t, τϕ) ∈ D◦

for all t > 0 and all 0 ≤ τ ≤ δ0. On the other hand, (2.11) implies that u(t, τϕ) ̸∈ D◦ for

all t > 0 if τ < T and τ is sufficiently close to T , since Jn is decreasing along the gradient

flow curve u(t, τϕ). Therefore, 0 < τ∗ < T .

By Lemma 2.8 (ii), the definition of τ∗, and the theory of ordinary differential equations,

we see that u(t, τ∗ϕ) ̸∈ D◦ for all t > 0.

Lemma 2.10. For all t ≥ 0,

inf
u∈D

J(u) ≤ Jn(u(t, τ
∗ϕ)) ≤ sup

0≤τ≤T
Jn(τϕ).

Proof. The second inequality is valid since 0 < τ∗ < T and since Jn is decreasing along

the curve u(t, τ∗ϕ). The reason for the first inequality is as follows.

For any t0 ≥ 0 and any ε > 0, by the theory of ordinary differential equations, there

exists a number τ̃ : 0 < τ̃ < τ∗ such that

Jn(u(t0, τ
∗ϕ)) ≥ Jn(u(t0, τ̃ϕ))− ε.

By the definition of τ∗, there is a tτ̃ > 0 such that u(tτ̃ , τ̃ϕ) ∈ D◦. Then Lemma 2.7

implies that u(t, τ̃ϕ) ∈ D◦ for all t ≥ tτ̃ . Hence we can take a number t1 > t0 such that

u(t1, τ̃ϕ) ∈ D◦. Since Jn is decreasing along u(t, τ∗ϕ), we have

Jn(u(t0, τ
∗ϕ)) ≥ Jn(u(t0, τ̃ϕ))− ε ≥ Jn(u(t1, τ̃ϕ))− ε ≥ inf

u∈D
Jn(u)− ε = inf

u∈D
J(u)− ε.

Let ε→ 0+, then we get the result.

Since T is independent of n, Lemma 2.10 implies that there are two constants C2 and C3

independent of n such that

C2 ≤ Jn(u(t, τ
∗ϕ)) ≤ C3 for all t ≥ 0 and n = 1, 2, · · · . (2.12)

Therefore, for a fixed integer n, there exists an increasing sequence {tk} with tk → +∞ as

k → +∞ such that

d

dt
Jn(u(t, τ

∗ϕ))|t=tk → 0 as k → +∞.

That is,

∥J ′
n(u(tk, τ

∗ϕ))∥2H1
0 (Ω) → 0 as k → +∞. (2.13)

Since Jn satisfies the P.S. condition, (2.12) and (2.13) imply that {u(tk, τ∗ϕ)} has a con-

vergent subsequence in the H1
0 (Ω) topology, which we also denote by {u(tk, τ∗ϕ)} without

loss of generality. Hence, there is un ∈ H1
0 (Ω) such that

∥u(tk, τ∗ϕ)− un∥H1
0 (Ω) → 0 as k → +∞. (2.14)
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(2.13) and (2.14) imply that un is a critical point of Jn. Since fn satisfies the Lipschitz

condition, it follows that un ∈ C2(Ω̄) and un satisfies{
−∆un = fn(un), x ∈ Ω,
un = 0, x ∈ ∂Ω.

By maximum principle, un ∈ P . From (2.12) and (2.14), we have

C2 ≤ Jn(un) ≤ C3, n = 1, 2, · · · .

Using the same argument as in [6, Theorem 2.2] (see [6, p.61, Step 2]), we get that

∥un∥C(Ω̄) ≤ C4 for some number C4 independent of n. Note that in this argument the

result of Lemma 2.1 is necessary. Note also that in this argument the assumption that Ω is

convex is crucial since in this case the Pohozaev identity

(N − 2)

∫
Ω

|∇un|2 = 2N

∫
Ω

Fn(un)−
∫
∂Ω

(x− x0, n(x))|∇un|2ds

together with the boundedness of ∇un on ∂Ω plays important roles in getting a uniform

bound of un in H1
0 (Ω) norm, while the boundedness of ∇un on ∂Ω is derived from the

convexity of Ω.

Now, we are going to prove that max
Ω

un > β for all n.

Lemma 2.11. {u(t, τ∗ϕ) | t > 0} is bounded in the H1
0 (Ω) norm.

Proof. Since Jn satisfies the P.S. condition, there exist two numbers R > 0 and µ > 0

such that ∥J ′
n(u(t, τ

∗ϕ))∥H1
0 (Ω) ≥ µ if ∥u(t, τ∗ϕ)− un∥H1

0 (Ω) ≥ R, (∀t > 0). Now two cases

may occur.

Case (i) there exists t̃ > 0 such that

∥u(t, τ∗ϕ)− un∥H1
0 (Ω) ≤ R for t > t̃.

The result is obvious.

Case (ii) such a number t̃ does not exist. In view of (2.14), we see that there exists a

sequence of mutually disjoint intervals {[Sj , Tj ]}∞j=1 such that

∥u(Sj , τ
∗ϕ)− un∥H1

0 (Ω) = ∥u(Tj , τ∗ϕ)− un∥H1
0 (Ω) = R, j = 1, 2, 3, · · · ,

∥u(t, τ∗ϕ)− un∥H1
0 (Ω) > R if and only if t ∈ (Sj , Tj) for some j.

If t ∈ (Sj , Tj) for some j,

∥u(t, τ∗ϕ)− un∥H1
0 (Ω) ≤ ∥u(t, τ∗ϕ)− u(Sj , τ

∗ϕ)∥H1
0 (Ω) + ∥u(Sj , τ

∗ϕ)− un∥H1
0 (Ω)

≤
∫ t

Sj

∥ d
ds
u(s, τ∗ϕ)∥H1

0 (Ω)ds+R

≤
∫ t

Sj

∥J ′
n(u(s, τ

∗ϕ))∥H1
0 (Ω)ds+R

≤ (Tj − Sj)
1
2

(∫ t

Sj

∥J ′
n(u(s, τ

∗ϕ))∥2H1
0 (Ω)ds

) 1
2

+R

≤ (Tj − Sj)
1
2

(
−
∫ t

Sj

d

ds
Jn(u(s, τ

∗ϕ))ds
) 1

2

+R.

Using (2.12), we see that, if t ∈ (Sj , Tj) for some j,

∥u(t, τ∗ϕ)− un∥H1
0 (Ω) ≤ (Tj − Sj)

1
2 (C3 − C2)

1
2 +R. (2.15)
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Meanwhile,

−
∫

∞∪
j=1

[Sj , Tj ]

d

ds
Jn(u(s, τ

∗ϕ))ds ≥
∫

∞∪
j=1

[Sj , Tj ]

∥J ′
n(u(s, τ

∗ϕ))∥2H1
0 (Ω)ds ≥ µ2

∞∑
j=1

(Tj − Sj).

Again using (2.12), we have

C3 − C2 ≥ µ2
∞∑
j=1

(Tj − Sj). (2.16)

Combining (2.15) and (2.16) leads us to, for t ∈ (Sj , Tj) for some j,

∥u(t, τ∗ϕ)− un∥H1
0 (Ω) ≤ µ−1(C3 − C2) +R.

This proves the result.

Lemma 2.12. For any α ∈ (0, 1), {u(t, τ∗ϕ) | t > 0} is bounded in the C1, α
0 (Ω̄) norm.

Proof. We will use an argument similar to the proof of Lemma 4.1 in [4]. Since fn(t)+mt

satisfies |fn(t) +mt| ≤ a(|t|+ 1) for some constant a, An is a bounded linear operator from

Lp(Ω) to W 2, p(Ω) ∩W 1, p
0 (Ω) for any p > 1 by the Lp theory of elliptic operators. Let

q = N
1−α and choose an integer i such that 4i − 2 < N ≤ 4(i + 1) − 2. Then we have the

following chain of Sobolev imbeddings and bounded linear operators

H1
0 (Ω) → L

2N
N−2 (Ω)

An→ W 2, 2N
N−2 (Ω) ∩W 1, 2N

N−2

0 (Ω)

→ L
2N

N−6 (Ω)
An→ W 2, 2N

N−6 (Ω) ∩W 1, 2N
N−6

0 (Ω)
· · · · · · · · · · · ·
→ L

2N
N−4i+2 (Ω)

An→ W 2, 2N
N−4i+2 (Ω) ∩W 1, 2N

N−4i+2

0 (Ω)

→ Lq(Ω)
An→ W 2, q(Ω) ∩W 1, q

0 (Ω)

→ C1, α
0 (Ω̄).

(2.17)

For any p > 1 and any α ∈ (0, 1), since fn(t) satisfies the Lipschitz condition on all of

R1, An, when considered as an operator either from Lp(Ω) to Lp(Ω) or from C1, α
0 (Ω̄)

to C1, α
0 (Ω̄), satisfies the Lipschitz condition uniformly. That is, in Lp(Ω) and C1, α

0 (Ω̄),

inequalities similar to (2.7) and (2.8) are also hold. Therefore, by the argument of Lemma

2.5, solutions of (2.7), when considered in these spaces, are all the same. Therefore (2.10)

is valid when the integral in it is taken in H1
0 (Ω), in L

p(Ω), in C1
0 (Ω̄), and in C1, α

0 (Ω̄).

These comments combined with (2.17) imply that, if u0 ∈ C1, α
0 (Ω̄) for some α ∈ (0, 1)

and if {u(t, u0) | t > 0} is bounded in the H1
0 (Ω) norm, {u(t, u0) | t > 0} is bounded in

turn in the L
2N

N−2 (Ω) norm, · · · , in the Lq(Ω) norm, and in the C1, α
0 (Ω̄) norm. Then the

result follows from Lemma 2.11.

In view of (2.14) and Lemma 2.12, there is a subsequence of {u(tk, τ∗ϕ)} (Arzela-Ascoli

Theorem), which is also denoted by {u(tk, τ∗ϕ)}, such that

∥u(tk, τ∗ϕ)− un∥C1
0 (Ω̄) → 0 as k → +∞. (2.18)

Now, Lemma 2.8 (ii), Lemma 2.9, and (2.18) together imply that max
Ω

un ≥ β. The Hopf’s

strong maximum principle shows that max
Ω

un > β, since fn(β) = 0. In fact, if max
Ω

un = β,

then the same argument as in the proof of Lemma 2.6 shows that max
Ω

un < β, which is

impossible.

Proof of Theorem 1.1. For a large n, denote un by u. Then u is a solution of (1.1)

and satisfies max
Ω

u > β. The proof is finished.
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Remark 2.1. The assumption that Ω is convex can be replaced with other conditions

(see, e.g., [6] or [7]). In particular, Ω is permitted to be Ω = Ω1 − Ω̄2, where Ω1 is strictly

convex, Ω2 is star-shaped and Ω̄2 ⊂ Ω1.

Remark 2.2. If we assume that there is a positive supersolution ψ(x) of (1.1) instead

of assuming (F3), a similar argument shows that (1.1) possesses a solution u satisfying

u(x0) > ψ(x0) for some x0 ∈ Ω.

§3. Some Multiplicity Results

Theorem 3.1. Assume that f satisfies (F1), (F2), (F3), and f(0) > 0, and that Ω is

convex. Then there exist two solutions u1 and u2 of (1.1) such that

0 < u1(x) < β < max
Ω

u2 for all x ∈ Ω.

Theorem 3.2. We assume that f satisfies (F1), (F2), (F3), and

(F4) f(0) = 0, lim inf
t→0+

f(t)t−1 > λ1,

and that Ω is convex. Then there exist two solutions u1 and u2 of (1.1) such that

0 < u1(x) < β < max
Ω

u2 for all x ∈ Ω.

These two theorems are just combinations of known results with Theorem 1.1 (see, e.g.,

[7, Example 3.1 and Example 3.2]). In fact, define

Au = (−∆+m)−1(f(u) +mu) as u ∈ D.

Since f(t) +mt is increasing in t ∈ [0, β], A is an increasing operator from D to D. Define

ψ as

−∆ψ +mψ = mβ in Ω, ψ = 0 on ∂Ω.

Then 0 < ψ < β in Ω by Hopf’s strong maximum principle and Aψ ≤ ψ. If either f(0) > 0

or (F4) is satisfied, then δϕ < A(δϕ) and δϕ < ψ for δ > 0 sufficiently small, where ϕ is the

first eigenfunction. According to [1, Corollary 6.2], there exists u1 satisfying Au1 = u1 and

0 < u1(x) < β in Ω and u1 is a solution of (1.1).

Consider the counterpart of (1.1)

−∆u = λf(u), x ∈ Ω,
u > 0, x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1.1)λ

where λ > 0 is a parameter.

Theorem 3.3. Assume that f satisfies (F2), (F3),

(F5) lim
t→+∞

f(t)t−1 = +∞,

(F6) f(0) = 0, f ′(0) = 1,

and that Ω is convex. Then, if α is the first zero of f(t) in (0, β] and λ∗ is the infimum of

all λ > 0 such that there exists a solution of (1.1)λ less than α, we have

(i) 0 < λ∗ ≤ λ1 and for λ∗ ≤ λ there exists a solution u1, λ of (1.1)λ which is the maximal

one among all solutions of (1.1)λ less than α.

(ii) u1, λ is strictly increasing with respect to λ in Ω and u1, λ is continuous on the right

with respect to λ from [λ∗, +∞) to C2(Ω̄).
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(iii) If f ′′(t) < 0 for 0 ≤ t ≤ α, then u1, λ is the unique solution of (1.1)λ less than α and

u1, λ is continuous with respect to λ from [λ∗, +∞) to C2(Ω̄).

(iv) For all λ > 0, there exists a solution u2, λ of (1.1)λ satisfying max
Ω

u2, λ > β.

Proof. (i) is due to [7] and (iv) is just Theorem 1.1.

(ii) For any λ∗ ≤ λ < µ < +∞, since f(t) > 0 for 0 < t < α, u1, λ is a strict subsolution

of (1.1)µ, while β is a strict supersolution of (1.1)µ. Therefore u1, µ > u1, λ in Ω (see [1]).

We have

lim
µ→λ+

∥u1, µ − u1, λ∥C2(Ω̄) = 0,

since lim
µ→λ+

u1, µ ≥ u1, λ, lim
µ→λ+

u1, µ is a solution of (1.1)λ less than α, and u1, λ is the

maximal solution of (1.1)λ less than α.

(iii) If f ′′(t) < 0 for 0 ≤ t ≤ α, a conventional argument shows that (1.1)λ has a unique

solution less than α. If

lim
µ→λ−

u1, µ ̸= lim
µ→λ+

u1, µ,

there would be at least two solutions lim
µ→λ−

u1, µ and lim
µ→λ+

u1, µ of (1.1)λ less than α, which

is impossible.
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