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Abstract

Under certain conditions, the dynamic equatioins of membrane shells and the dynamic
equations of flexural shells are obtained from dynamic equations of Koiter shells by the method
of asymptotic analysis.
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§1. Introduction

In this paper, «,8,0,7,--- take their values in the set {1,2},4,j, k,[, - - - take their values
in the set {1,2,3}.

In [1] and [2] under certain conditions, starting from the three-dimensional dynamic
equations of elastic shells we have given the justifications of dynamic equations of membrane
shells and flexural shells respectively. In this paper, we shall show that, starting from the
dynamic equations of Koiter shells, we can also get the dynamic equations of membrane
shells and flexural shells by the asymptotic analysis. In this way we give the justification
of dynamic equations of Koiter shells, too. The main results of this paper are Theorem 2.2
and Theorem 3.1.

Consider a family of linearly elastic shells with the same middle surface S = () in R?
and thickness 2¢, where w C R? is a bounded domain with Lipschitz-continuous boundary
v = 0w, and @ € C3(w;R?) such that two vectors @ (y) = 9aB(y)(a = 1,2) are linearly
independent at any fixed point y € w. @4 (y)(a = 1,2) form a covariant basis of the tangent
plane to the surface S = @(w) at the point F(y), and two vectors @*(y)(« = 1, 2) defined by

a*(y) - dpy) = 93
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constitute a contravariant basis of the same tangent plane. Let

- 3 a1 (y) x da(y)

B =T = G () x )l
All the elastic shells are clamped along a part of their lateral faces, the middle line of which
is @(7,), where =, is a nonempty part of v with positive length. For each ¢ > 0 , let
us(i = 1,2,3) denote the covariant components of displacement field u$a’ on the middle
surface S = g(w). 4° = (u§) solves the following two-dimensional equations of W. T. Koiter
shells®®4: find @ = (u$) € Vj,(w) such that

. . g3 _, ~
5/ a®Po7 N o (U ) Yo p (T) v ady + g/aaﬁwpar(ug)ﬂaﬂ(v)\/‘;dy
w w
B / pruivady, VT = (v;) € Vi(w) (1.1)
w

where
Vie(w) = {7 = (v;) € HY(w) x H'(w) x H*(w);v; = d,u3 =0 on 7,},

4\
afor _ oo +guaa5a” + 2H(a°“’aﬁT + amaﬁg);
a = det(a®?),

a®? being the first fundamental form of the middle surface,
YaB = %(aav/g + 0gvy) — ['05V0 — bapus,
Pap (V) = Oapvs — I'0505v3 + b3 (0avs — 7 vr)
+ b5, (0pvs — FEJ’UT) + bglﬁvo — CaBUs,
_ 1 [ .
po oL [

—&
A > 0 and g > 0 are the Lamé constants of elastic materials, which is independent of e.
a®P?7 is the contravariant components of the two-dimensional elastic tensor. The functions
~ag(-) represent the covariant components of the linearized change of metric tensor of the
surface S. pag(-) are the covariant components of the linearized change of curvature tensor.
The functions ¢ € Ly(°)(2° = w x (—¢,¢)) express the body force density acting on the
elastic shells. The meaning of other notations such as I'Y 3, b7, b7, 5, cap € C°(w) can be
found in [1], and 9, represents the outward normal derivative operator on boundary v = dw.

§2. Relationship Between the Dynamic Equations of Koiter
Shells and the Dynamic Equations of Membrane Shells

Consider the following dynamic problems: V 7" > 0,

o [ wady +e [ @ s ) ady
L‘;S B _' ) _,
45 [ o () (D) ady

:/pﬂ%\/&dy, V5 = (v) € Vilw) (0<t<T), (2.1)

i (y,0) = @y), @5 (y,0) = B(y) - (2:2)
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Remark. Instead of (2.2), we can take

@ (y,0) = @e)(y), @5(y,0) =v(e)(y) ,

but we should require that there exist F(y) € Vi(w) and 9(y) € La(w) such that when
e — 0,

18E) (1) = EW) i) = 05 9 (W) = D)oy = 0

In this section we make the following assumptions: The elastic shells are clamped on the
whole lateral surface. The middle surface S is elhptlc v € C* @ € C°(w; R3) (these
three assumptions ensure that {3, g||Vas (@ )||0w}2 is an equivalent norm in the space
Vir(w) = HY(w) x H}(w) x La(w) (see [7])). There exist functioins fi(x) independent of &
such that fi¢(z) = fi(z), Vz € Q. By the transform 2§ = ex3, (2.1) can be changed into
the following form:

/f@ eyt / @) vas (0) Vady + % / 0P o (T ) (7)/adly
_ %/w </_11 fidxg)viﬁdy, Vi = (v;) € Ve(w) (0<t<T), 23)

Denote ¢ = (q;), where ¢q; = %f_ll fidxs(i =1,2,3).
By Galerkin method we have the following

Theorem 2.1. If ¢(z,t),q(x,t) € Loo(0,T;V(w)), where Vi*(w) is the daul space
of Vi(w), #(y) € Vi(w) and (y) € La(w), then there exists a unique solution uc(x,t)
to the problem (2.2), (2.3) such that

U (z,1) € Loo(0,T; Vig(w)), U(x,t) € Loo(0,T; Lo(w)), Ug(x,t) € Loo(0,T; Vi (w)).
In what follows we will establish a priori estimate for the solution to the problem (2.2),
(2.3).
Specially taking ¥ = @ in (2.3), we get
1d

T @ - Y aﬁa‘r
2 dt ( ) fdy+ th rYO'T( )'Yaﬂ( )fdy
+%% aaﬂ”,owwg)paﬂ(ﬁﬂ\/&dy: [a-wivady w<e<m).

Then, integrating it from 0 to ¢, we get

5 [ @Vady+ 5 [ a7 @ o) Vady

62
. / 0B po (i) pop (i)
:3/( (v))*Vady + 2 / 0P o (F(y) v (B(w)) Vady
+ 5 [ @ @ty + [ [ @@ 0<e<T). )



Obviously,
B(y))*vady + = / 0Ty (F()) Ve (F(y))Vady
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JAG
S a0 () pas (F9)ady < C.

Here and hereafter C stands for a positive constant independent of €. Substituting the above
inequaity into equality () yields
1
+ =S pllepas (@)

1 s, 1
- 2 d E “E
5 [ @+ 3Easlon @I +

<Cl+//q")dydt+// dydt 0<t<T).

Then, by Gronwall inequality we obtain
Lemma 2.1. If §(y,t) € Loo(0,T; La(w)) , G(y) € Vi(w),¥(y) € La(w), then we have

/ (@)?dy + Sa plvas (@)

Since the middle surface S is elliptic , v € C* and @ € C°(w; R?), from the conclusion
in [7] (also see [8, 9]) we know that {Eaﬁﬂfya,ﬂ(ﬂs)ﬂovw}z is an equivalent norm in the
space Vi (w) = HY(w) x H(w) X Lay(w). By Lemma 2.1, 4 is uniformly bounded with
respect to € in Loo(0,T; Var(w)), {epas(i®)}e>o0 is uniformly bounded with respect to ¢ in
Lo(0,T; La(w)). Hence, there exists a subsequence (still denoted by (¢).>0) and functions
U € Loo(0,T; Var(w)), paﬂ € Loo(0,T; Ly(w)) such that, when € — 0,

DN | =

=2}

w t Baplepas(@), <C (0<t<T).

@ @ weak-star in Lo (0, T; Var(w)), (2.4)
epap(U®) = pos weak-star in Loo(0,T; La(w)), (2.5)
@5 = iy weak-star in Loo(0,T; La(w)). (2.6)

By (2.6), for any fixed ¥ € Vi (w ), when e — 0, [ 4;0\/ady converges to [ u;v/ady
weak-star in Lo (0,7), then [ uv\/ady converges to [ ;v\/ady in D'(0,T). Therefore,
when ¢ — 0,

/ ;v ady — — /ut’u Vady in D'(0,T). (2.7)

Since @5, U € Loo(0,T; La(w)), we infer u5,u; € D'(0,T; La(w)), hence %, dy € D'(0,T;
Lo(w)).

It follows from (2.7) that when e — 0,

/ﬁfﬁﬁdy—)/ﬁttﬁ\/&dy in D'( 0,T). (2.8)

w

Taking ¢ — 0 in (2.3), we get

/ U U/ ady + / a®P7 " o (@) Vap () v/ ady

w

= /w (/_11 fidx;g)vi\/&dy, Vi = (v;) € Vi(w). (2.9)

From (2.3) and (2.9) we know that the convergence (2.8) in D’(0,T') is actually the weak-star
convergence in Lo, (0,7). It is easy to verify that the initial condition (2.2) for # takes the
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following form:

Since the solution to the problem (2.9)—(2.10) is unique , the convergence (2.4)—(2.6) holds

for the whole family (4®)c~o. Summing up the results of this section, we get the following
main theorem.

Theorem 2.2. Suppose that §(y,t) € Loo(0,T; La(w)), Gt (y,t) € Loo(0,T; V¥ (w)), and
18 the solution to the following problem:

[ @i oady+ [ a0 @ as@Vady + 5 [ @ o (@)pus(0)Vady
1
-5/ (/ Fides viv/ady, ¥ = () € Vi(w),

i (y,0) = By), U3 (y,0) =(y),
where @(y) € Vi(w),db(y) € La(w). Then there exists function @(y,t) € Loo(0,T; Vas(w))
such that, when ¢ — 0, @° converges to @ weak-star in Lo (0,T;Var(w)), @5 converges to iy
weak-star in Lo (0,T; La(w)), and 4 is the solution to the following two-dimensional dynamic
equations of membrane shells:

/ i 5/ady + / 0BT (@) (5)v/addy

w

,L_L'E

= %/w (/_11 fidxg)viﬁdy, VT = (v;) € Vi(w),

iy, 0) = Fy).  i(y,0) = (y).
§3. Relationship Between Dynamic Equations of Koiter
Shells and Dynamic Equations of Flexural Shells

In this section we make the following assumptions about the body force density:
foe(z®) = 2fi(x), VreQ=wx(-1,1), (3.1)

where 2° = (1,22, 2§) corresponds to x = (z1, T2, x3) by the transform z§ = exg (-1 <
Consider the following dynamic problem: V T > 0,

E / &, - i/ady + ¢ / BT (T )y () ady
L& / 0BTy (@) pap (D) ady

= / puivady, Y5 = (v;) € Vi(w) (0<t<T), (3.2)

@ (y,0) = e@(y) , @(y,0) = ¥(y). (3.3)

Remark. Instead of (3.3) we can take

@ (y,0) = e(e) (), T (y,0) = h(e)(y),
but we should require that there exist functions @(y) € Vi(w) and 9(y) € La(w) such that,
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when ¢ — 0,

18E)(Y) = EWlviwy = 0, 1Y) (Y) = P(W)llLaw) = 0.
Denote ¢ = (¢;)(i = 1,2,3), where ¢; = 3 f fi(x)dxs.
Equation (3.2) can be changed into
—E — 1 afor —e — 1 afor —e —
[ i vty 5 [ a0 @ @ ady + 5 [ a7 g (@)ps (0)Vady

= %/w (/_11 fidmg)vi\/&dy, Vi = (v;) € Ve(w) (0<t<T). (3.4)

In what follows we will establish a priori estimate for the solution to the problem (3.3)—(3.4).
For this purpose, specially taking v = Uf in (3.4), we get

1d d
aBaT
oL ( 7)? fdy+2 o Yor (U ) Yap (T°)Vady
1 d
-2 ozBaT —e —e
+ 6dt Por (i )paﬁ(u )Vady

:/(j-ﬁfﬁdy 0<t<T).

Then, integrating it from 0 to ¢ yields

3 [ EPady + 5 [ a5 (@ aa )y

2 [ a7 por (8 pos (i) ady

w

(7 (5,0))*Vady + 55 a7 6 (0,0) e (7 (.0) Vady

—_

DN | =

cn\»—ﬂg\cn

+ /aﬁ”’p (@ (y,0))pas(@(y,0 fdy+// uivadydt (0<t<T).

From (3.3) we know that

5 0ty + 55 [ a7 3,0) s (7 (0) vy

+ / GJQBUTPUT(ﬁE(ya 0))pa[3(ﬁ5(y7 0))\/ady < C. (35)

S| =

Hence, we have

(@) Vady + 55 [ 0 (s ()
0T e (0 ) o Ty
< [ //@fd;,dH// fdydt 0<t<T).

Noting that from the conclusion in [4], {Zq 5/|Vas (@)% To(w) T Sasllpas(t )HLZ(W }2 is an
equivalent norm in the space Vj(w), we have

1 —g —E
7/ Oéﬁa'r 'YozB( 5)\/5dy+ 6/ aaﬁJTpaT(u )Paﬁ(u )\/ady

+

N |
Cn\»—‘g\
e
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1 . _,
> € (Sasll a8 (@) 2., + Saslloas@)I2.,)

> C(Sas a8 @)1 0 + Zasllpas(@)30) = CllEllv, - (3.6)

Hence, by Gronwall inequality we get
Lemma 3.1. If ¢(y,t) € s(0,T; L2(w)), F(y) € Vi(w) and ¥(y) € La(w), then we have

ﬁ 1 ﬂ _,
/(U§)2\/5dy + Zasll 2708 (@)ow + Zasllpas(@)on <€ (0<t<T).

By Lemma 3.1 we have

1l 1vi) < C(aslep @) + Saslpas@)3,w) <C O0<t<T). (37)

Therefore we can select a subsequence ( still denoted by (@€).~0) and there exist functions
U € Loo(0,T; Vie(w)) and xap € Loo(0,T; Lo(w)) such that, when € — 0,

@ = @ weak-star in Lo (0, T; Vi(w)), (3.8)
1 * .
g'yag(z_f) — Xap Wweak-star in Lo (0,T; La(w)), (3.9)
@ > @ weak-star in Lo (0, T; La(w)). (3.10)

By (3.9), when ¢ — 0, v,3(@°) converges to 0 weak-star in L (0,T; La(w)). Moreover,
by (3.8) it is easy to see that, when e — 0, v,3(U°) converges to Yo3(%) weak-star in
L (0,T; La(w)). Hence vo5(t) = 0, then & € Lo (0,T; Vp(w)), where
Vi(w) = {77 € Vi(w); Yap(i) = 0}
is the space of inextensional displacement. By (3.10), when € — 0,
/ﬁfﬁ\/&dy N /ﬁtﬁ\/&dy weak-star in Lo (0,T), V7 € Vp(w). (3.11)
Since @§, U € Loo(0,T; La(w)), we can infer @5, d; € D'(0,T; La(w)), therefore a5, iy €

D'(0,T; La(w)), where D’(0,T; La(w)) is the generalized function space from [0,T] to La(w).
It follows from (3.11) that, when ¢ — 0,

/ w;vvady — / wyy/ady in D'(0,T),

w w

then
d [ .. T o
— | @vvVady — — [ @ 0v/ady in D'(0,T),
it /., it /.,

that is,

/ﬁftﬁ\/&dy — /ﬁttﬁ\/ady in D'(0,7T). (3.12)

w

For any fixed ¢ € Vg (w), taking e — 0 in (3.4) gives

- 1 afoT —e —
[ divady+ 5 [ a5 ) pua(@)vady

w

— %/w (/_11 fidxg)vi\/&d% Vi € Vp(w). (3.13)

From (3.4) and (3.13), the convergence (3.12) in D’( 0,T) is actually the weak-star conver-
gence in Lo (0,T).
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When € — 0, it is easy to verify that the initial condition (3.3) for @ takes the following

form:
t(y,0) =0, @ (y,0) = P(y). (3.14)

Since the solution to the problem (3.13)—(3.14) is unique, the convergence (3.8) holds for
the whole family (4®).>o.

Summing up the above result, we have the following main theorem.

Throrem 3.1. Suppose that Vp(w) # {0} and @° € Loo(0,T;Vi(w)) is the soluton to
the following problem :

2 [ @ ovady+e [ a7 (@) vanlE)ady

3
+ % / P77 por (i) pop (0) v ady = 63/ givivady, VU= (v;) € Vi(w) (0<t<T),

@ (y,0) = e@(y), @(y,0) = v(y),

where 3(y) € Vi(w), ¥(y) € La(w), ¢ = (¢) (¢ = L[, fides) satisfies q(y,t) €
L (0,T; La(w)), G (y,t) € Loo(0,T;V,*(w)). Then, when € — 0,

@ = @ weak-star in Loo(0,T; Vi(w))

and @ € Loo(0,T; Vp(w)) is the solution to the two-dimensional dynamic equations of flexural
shells:

— = 1 afor — —
[ dwivady+ g [ @ por @ pas(9)ady

w

1

:5/ (/l fidxg,)vi\/&dy, Vie Vr(w) (0<t<T),
w —1
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