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Abstract

Let G be a p-group (p odd prime) and let X = Cay(G,S) be a 4-valent connected Cayley
graph. It is shown that if G has nilpotent class 2, then the automorphism group Aut(X) of
X is isomorphic to the semidirect product GR o Aut(G,S), where GR is the right regular

representation of G and Aut(G,S) is the subgroup of the automorphism group Aut(G) of G
which fixes S setwise. However the result is not true if G has nilpotent class 3 and this paper
provides a counterexample.
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§1. Introduction

Let G be a finite group and S a subset of G such that 1 ̸∈ S and S = S−1. The Cayley
graphX = Cay(G,S) of G with respect to S is defined to have vertex set V (X) = G and edge
set E(X) = {(g, sg)

∣∣ g ∈ G, s ∈ S}. From the definition the following two facts are obvious:
(1) the automorphism group Aut(X) of X contains GR, the right regular representation of
G, as a subgroup, and (2) X is connected if and only if S generates the group G.

For a Cayley graph X = Cay(G,S) of a finite group G with respect to S, X is said to be
normal if GR is a normal subgroup of the automorphism group Aut(X) of X. The study of
the normality of Cayley graphs is important in many cases, for example CI-subsets (for the
concept, see [11] ), symmetric graphs and half-transitive graphs (see [5,12]), etc. For abelian
groups (i.e., groups with nilpotent class 1), Baik, et al.[2,3] classified the Cayley graphs of
valency 3, 4, or 5, which are not normal. For nonabelian p-groups of order p3 (p odd prime),
Feng, et al.[5] proved that all connected Cayley graphs of valency 4 are normal. In this
paper, we obtain the same result for a p-group of nilpotent class 2.
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Theorem 1.1. All 4-valent connected Cayley graph of a p-group (p odd prime) of nilpo-
tent class 2 are normal.

In general, it is known to be difficult to determine the normality of Cayley graphs. The
only groups, for which the complete information about the normality of Cayley graphs is
available, are the cyclic groups of prime order[1] and the groups of order twice a prime[4].
Since Wang, Wang and Xu[10] obtained all normal disconnected Cayley graphs, we only
consider the connected ones in Theorem 1.1. For a p-group of nilpotent class 3, Theorem
1.1 is not true and in the third section we provide a 4-valent connected Cayley graph which
is not normal.

Let u be a vertex of a Cayley graph X = Cay(G,S). We denote Ni(u) = {v ∈ V (X)
∣∣

d(u, v) = i} (i positive integer), where d(u, v) denotes the distance between u and v in X.
Write A = Aut(X) and by A1 we denote the stabilizer of 1 in A. For other group- and
graph-theoretic notions used later, the reader can refer to [7] and [8].

Before the end of this section, we list some preliminary results.

Proposition 1.1.[11, Proposition 1.5] Let X = Cay(G,S) be a Cayley graph of G with respect
to S and let A = Aut(X). Then X is normal if and only if A1 = Aut(G,S).

In view of Theorem 1.2 of [2] we have

Proposition 1.2. Let G be an abelian p-group and let X = Cay(G,S) be a 4-valent
connected Cayley graph. If X is not normal, then X is the complete graph K5, G is the
cyclic group Z5 and S = G\{1}.

Proposition 1.3.[5, Theorem 3.1] All 4-valent connected Cayley graphs of a nonabelian
group of order p3 (p odd prime) are normal.

Let G be a finite group and let X = Cay(G,S) be a 4-valent connected Cayley graph of
G. Denote by (g, z1g, z2z1g, . . . , zn−1zn−2 · · · z2z1g, znzn−1 · · · z2z1g = g) a cycle of length
n in X where zi ∈ S (1 ≤ i ≤ n). Obviously zi+ℓ · · · zi+1zi ̸= 1 (1 ≤ i ≤ i + ℓ ≤ n)
except znzn−1 · · · z2z1 = 1. For simplicity we use Cg(znzn−1 · · · z2z1) to denote this cycle.

Feng et al.[5, Lemma 2.6 and Remark 1] obtained the following Proposition.

Proposition 1.4. Let X = Cay(G,S) be a 4-valent connected Cayley graph where G is
a p-group of nilpotent class less than or equal to 2 and S = {x, y, x−1, y−1}. If either p > 3,
or p = 3 and the order o([x, y]) of the communicator [x, y] is greater than 3, then for any
g ∈ G we have

(1) there are exactly two cycles of length 8 in X which have xg, g and x−1g as three
consecutive vertices on them : Cg(xyx

−1y−1y−1x−1yx), Cg(xy
−1x−1yyx−1y−1x);

(2) there are exactly seven cycles of length 8 in X which have xg, g and yg as three
consecutive vertices on them :

Cg(y
−1x−1yyx−1y−1xx), Cg(y

−1x−1x−1y−1xyyx), Cg(y
−1y−1xyx−1x−1yx),

Cg(y
−1xyx−1y−1x−1yx), Cg(y

−1x−1yxyx−1y−1x),

Cg(y
−1x−1yx−1y−1xyx), Cg(y

−1x−1y−1xyx−1yx).

§2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1 by introducing the following three lemmas.

Lemma 2.1. Let G = ⟨a, b, c
∣∣ a9 = b3 = c3 = 1, [a, b] = c, [c, a] = [c, b] = 1⟩. Then all

4-valent connected Cayley graphs of G are normal.

Proof. Let X = Cay(G,S) be a 4-valent connected Cayley graph and let S = {x, y, x−1,
y−1}. Since all the elements of order 3 in G are commutative, by G = ⟨S⟩, we may assume
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o(x) = 9 and x = aibjck (3 ̸
∣∣ i). Thus a, b and c satisfy the same relations as do x, b and ci

and so we can assume that S = {a, a−1, y, y−1}. Now we consider these two cases o(y) = 3
or 9 separately.

Case 1: o(y) = 3.
In this case we have y = a3ibjck. Since G = ⟨S⟩, we have 3 ̸

∣∣ j. Then a, b and c satisfy

the same relations as do a, y and cj . We can assume that S = {a, a−1, b, b−1}.
Let α ∈ A1 and let α fix S pointwise. We shall prove α = 1. Since there is a unique

triangle through each vertex of X, if α fixes g, ag (g ∈ G), it also fix aig (i integer)
and if α fixes g and transposes ag and a−1g, it also transposes aig and a−ig (i integer).
Since α fixes 1 and a, it fixes aj for each integer j. Suppose that α transposes ab and
a−1b. Then α transposes aib and a−ib and specially transposes a3b and a−3b. However
(a3b)α = (ba3)α ∈ {ba3, b−1a3} since α fixes a3. Consequently a−3b = ba3 or b−1a3, which
are impossible. Thus α fixes N1(b) pointwise and similarly N1(b

−1) pointwise.
Let C1(baz1z2z3z4ab) (z1, z2, z3, z4 ∈ S) be a cycle of length 8 which have ab, b, 1, b−1,

a−1b−1 as consecutive vertices on it. Then baz1z2z3z4ab = 1. Clearly there are two a−1s and
two b−1s in {z1, z2, z3, z4} and z4 ̸= a−1. With these we can easily prove that there is only
one such cycle, that is, C1(bab

−1a−2b−1ab). Since α fixes ab, b, 1, b−1, a−1b−1, it fixes each
vertex of the cycle and specially a−1b−1ab. Let d(x, y) denote the distance between x and
y in X (x, y ∈ G). It is easy to check that d(b−1a, a−1b−1ab) = 2 and d(ba, a−1b−1ab) ̸= 2
which shows that α fixes N1(a) pointwise and similarly N1(a

−1) pointwise.
By the connectivity of X, α = 1. This implies that A1 acts on S faithfully. The fact that

there is only one triangle passing 1 gives rise to |A1| ≤ 4. On the other hand, it is easy to
prove |Aut(G,S)| ≥ 4 and hence A1 = Aut(G,S). By Proposition 1.1, X is normal.

Case 2: o(y) = 9.
In this case we have y = a3i±1bjck. Thus 3 ̸

∣∣ j because G = ⟨S⟩. Since a, a3ibjck and cj

satisfy the same relations as do a, b and c, we can assume that

S = {a, a−1, ab, (ab)−1} or {a, a−1, a−1b, (a−1b)−1}.
Since the automorphism of G, induced by a 7→ a−1, b 7→ b, c 7→ c−1, maps {a, a−1, ab,
(ab)−1} to {a, a−1, a−1b, (a−1b)−1}, we can assume that S = {a, a−1, ab, (ab)−1}.

Now we state several facts and leave the simple proofs to the reader: (1) through 1 there
are exactly 8 cycles of length 6 and each of them passes exactly one element of T = {a8bc2,
ab2c, a3, ab2, a6, a8bc, ab2c2, a8b} which is a subset of N3(1); (2) of the above cycles of
length 6, two pass a and a−1, two a and ab, two a−1 and (ab)−1, two ab and (ab)−1, and
none of them passes a and (ab)−1, or a−1 and ab; (3) none of the above cycles of length 6
passes a2bc2, a7b2c, a2b or a7b2c2 which are the elements of N1(a), N1(a

−1), N1(ab), and
N1((ab)

−1) respectively, and there is at least one such cycle passing the other elements of
N1(a), N1(a

−1), N1(ab), and N1((ab)
−1); (4) all the cycles of length 8, which contain 1 and

two elements of T , pass bc2 or b2c which belong to N4(1).
Let α ∈ A1 and α fixes a. By the above fact (2) α fixes (ab)−1, by (1) and (4) α fixes T

and {b2c, bc2} setwise, and by (3) α fixes a2bc2. Since |N1(a
2bc2) ∩N1(bc

2)| = |{abc2}| = 1
and |N1(a

2bc2) ∩N1(b
2c)| = 0, α fixes b2c and bc2, and since N1(bc

2) ∩ T = {a8bc2, ab2c2},
N1(a

8bc2)∩N1(a) = {b2}, and N1(ab
2c2)∩N1(a) = ϕ, α fixes a8bc2 and ab2c2. Then α fixes

a−1 by N1(a
8bc2)∩N1(a

−1) = {a7} and N1(a
8bc2)∩N1(ab) = ϕ. Thus, α fixes S pointwise.

We also have

N1(a
8bc2) ∩N1(a) = {b2}, N1(a

8bc2) ∩N1(a
−1) = {a7},

N1(ab
2c2) ∩N1(ab) = {a2b2c2}, N1(ab

2c2) ∩N1((ab)
−1) = {b2c2}.
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These results together with α fixing a2bc2, a7b2c, a2b and a7b2c2 (the above fact (3)) show
that α fixes N1(a), N1(a

−1), N1(ab) and N1((ab)
−1) pointwise. By the connectivity of X,

α = 1. Thus |A1| ≤ 4.

On the other hand, the automorphisms of G induced by a 7→ a−1, b 7→ b2c2, c 7→ c and
a 7→ ab, b 7→ b−1, c 7→ c−1 belong to Aut(G,S) and hence |Aut(G,S)| ≥ 4. Consequently
A1 = Aut(G,S) and X is normal.

Lemma 2.2. Let G be a p-group of nilpotent class 2 and let X = Cay(G,S) be a 4-
valent connected Cayley graph where S = {x, x−1, y, y−1}. If either p > 3, or p = 3 and
o([x, y]) ̸= 3, then X is normal.

Proof. Set A = Aut(X) and let α ∈ A1. It is enough to show that α ∈ Aut(G,S) by
Proposition 1.1, that is, for any positive integer m,

(s1s2 · · · sm)α = sα1 s
α
2 · · · sαm, (2.1)

where si ∈ S for 1 ≤ i ≤ m.

Let n(g1, g2, . . . , gℓ) denote the number of cycles of length 8 containing g1, g2, . . . , gℓ as
consecutive vertices on them. By Proposition 1.4 we have n(x, 1, x−1) = 2 and n(x, 1, y) = 7.
Similarly, n(y, 1, y−1) = 2 and n(x−1, 1, y) = n(x−1, 1, y−1) = n(x, 1, y−1) = 7. Thus
(s−1)α = (sα)−1 for any s ∈ S.

Clearly (2.1) holds for m = 1. Assume m ≥ 2. Set t = s3s4 · · · sm (t = 1 if m = 2).
By inductive hypothesis, we have tα = sα3 s

α
4 · · · sαm, (s1t)

α = sα1 t
α, (s−1

1 t)α = (s−1
1 )αtα =

(sα1 )
−1tα, (s2t)

α = sα2 t
α, and (s−1

2 t)α = (sα2 )
−1tα.

If s1 = s−1
2 , (2.1) holds by sα1 = (s−1

2 )α = (sα2 )
−1. By Proposition 1.4(1), we have

n(x−1g, g, xg, x2g) = 0 and n(x−1g, g, xg, yxg) =n(x−1g, g, xg, y−1xg) = 1, where g ∈ G.
Similarly, for s, s′ ∈ S and g ∈ G, n(s−1g, g, sg, s2g) = 0 and n(s−1g, g, sg, s′sg) = 1,
where s′ ̸= s±1. Thus (s22t)

α = (sα2 )
2tα by n(s−1

2 t, t, s2t, s22t)=n((sα2 )
−1tα, tα, sα2 t

α,
(s22t)

α) = 0 and n((sα2 )
−1tα, tα, sα2 t

α, (sα2 )
2tα) = 0. This implies that (2.1) holds for s1 = s2.

Hence we let s1 ̸= s±1
2 . Then sα1 ̸= (sα2 )

±1. By Proposition 1.4(2), n(yg, g, xg, x2g) =
n(yg, g, xg, y−1xg) = 1 and n(yg, g, xg, yxg) = 5 where g ∈ G. Similarly, for s, s′ ∈
S and g ∈ G, n(s′g, g, sg, s2g) = n(s′g, g, sg, (s′)−1sg) = 1 and n(s′g, g, sg, s′sg) = 5
where s′ ̸= s±1. Noting that n(s1t, t, s2t, s1s2t) = n(sα1 t

α, tα, sα2 t
α, (s1s2t)

α) = 5 and
n(sα1 t

α, tα, sα2 t
α, sα1 s

α
2 t

α) = 5, we have (s1s2t)
α = sα1 s

α
2 t

α, as required.

Lemma 2.3. Let G be a 3-group of nilpotent class 2 and let X = Cay(G,S) be a 4-valent
connected Cayley graph where S = {x, y, x−1, y−1}. If o([x, y]) = 3, then X is normal.

Proof. Set A = Aut(X) and let GR be the right regular representation of G. We shall
prove GR ▹ A.

First we claim that GR is a Sylow 3-subgroup of A. Supposing the contrary, we have 3
divides |NA(GR) : GR|. By [11, Proposition 1.3], NA(GR) = GR·Aut(G,S) and consequently
3 divides |Aut(G,S)|. Let α ∈ Aut(G,S) be an element of order 3. Then α fixes exactly
one element in S. However, this is impossible since if Aut(G,S) fixes s (s ∈ S), it also fixes
s−1.

Obviously, A is a {2, 3}-group and hence solvable. Let N be a minimal normal subgroup
of A. Since A = A1 ·GR and GR is a Sylow 3-subgroup of A, A1 is a Sylow 2-subgroup of
A. Thus O2(A) = 1 and N is an elementary abelian 3-group. Consequently N ≤ GR. If
N = GR, of course GR ▹ A. Thus we assume that N ̸= GR.

Denote by Σ = {B0, B1, · · · , B3ℓ−1} the set of orbits of N on V (X). Then Σ is a complete

block system of A. Consider the corresponding quotient graph X of X defined by V (X) = Σ
and (Bi, Bj) ∈ E(X) if and only if there exist vi ∈ Bi, vj ∈ Bj such that (vi, vj) ∈ E(X). Let
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K be the kernel of the action of A on Σ. Clearly N acts regularly on each Bi (0 ≤ i ≤ 3ℓ−1).
Since |Σ| = 3ℓ is odd, X has valency 2 or 4. Now we need two sublemmas.

Sublemma 1. K acts faithfully on each Bi.

Proof. It is efficient to prove that K acts faithfully on B0. We can assume 1 ∈ B0. If X
has valency 4, then K1 = 1 since the elements of N1(1) belong to different blocks. Clearly K
is faithful on B0. Thus we let X be of valency 2 and let α ∈ K. Then α fixes B0 pointwise.
We only need to prove α = 1.

Without loss of generality, let (B0, B1) be an edge of X. If there are some edges of X in
B0, then the induced subgraph ⟨B0⟩ of X has valency 2 because |V (⟨B0⟩)| is odd. Hence
each vertex in B0 is adjacent to a unique vertex in B1 that implies α fixes B1 pointwise. By
the connectivity of X, α fixes each Bi pointwise (0 ≤ i ≤ 3ℓ − 1), that is, α = 1. If there is
no edge of X in B0, then each vertex in B0 is adjacent to exactly two vertices in B1 because
|Σ| = 3ℓ is odd. Conversely, each vertex in B1 is adjacent to exactly two vertices in B0 and
consequently α fixes B1 pointwise. Again by the connectivity of X, α = 1.

Sublemma 2. If X has valency 2, then the Sylow 3-subgroup of CA(N) is normal in A.

Proof. Set C = CA(N) and let C2 be a Sylow 2-subgroup of C. Let α ∈ C2 ∩ K. By
Frattini argument, K = K1N where K1 is the stabilizer of 1 in K. It follows that K1 is a

Sylow 2-subgroup of K and hence there exists a β ∈ K such that C2 ∩K ≤ Kβ
1 = K1β . Set

g0 = 1β . Then α ∈ K1β = Kg0 . From α ∈ CA(N) we have αγ = γα for any γ ∈ N , which
implies that (gγ0 )

α = gαγ0 = gγ0 , that is, α fixes gγ0 for any γ ∈ N . If g0 ∈ Bi, then α fixes Bi

pointwise by the transitivity of N on Bi. By Sublemma 1, we have α = 1. Thus C2 ∩K = 1
and |C2K| = |C2| · |K|.

Since A/K ≤ Aut(X) ∼= D2·3ℓ where D2·3ℓ is the dihedral group of order 2 · 3ℓ, we obtain
that |A| divides 2 · 3ℓ · |K|. Noting that A1 and K1 are Sylow 2-subgroups of A and K
respectively, we have |A1| = |K1| or 2|K1|. Since the order of a Sylow 2-subgroup of C2K
is no more than |A1|, we have |C2| ≤ 2 by |C2K| = |C2| · |K|. Now C is a {2, 3}-group and
|C2| ≤ 2. By Sylow’s Theorem, the Sylow 3-subgroup of C is normal in C and hence normal
in A since C ▹ A.

Now we return to the proof of Lemma 2.3. For the simplicity of statement, we identify
G with GR.

To use induction on |G|, let |G| = 33. Then Lemma 2.2 is true by Proposition 1.3. Assume
that |G| ≥ 34. If X has valency 4, then K = N · K1 = N . In this case, X = Cay(G,S)
with G = G/N and S = {xN, x−1N, yN, y−1N}. If G has nilpotent class 2, the inductive
hypothesis shows G ▹ Aut(X) and thus G ▹ A. If G has nilpotent class less than 2, we
have the same result by Proposition 1.2. Thus we let X be of valency 2.

If N ≤ Z(G), Lemma 2.2 holds by Sublemma 2. Let N ̸≤ Z(G). Since N ∩ Z(G) ̸= 1,
we have |N | ̸= 3. By the arbitrarity of N , we may assume that A has no minimal normal
subgroup of order 3.

Set z = [x, y]. Since G′ ≤ Z(G) (G has nilpotent class 2), we have that for any integers
i, j, xiyj = yjxizij . Thus by G = ⟨S⟩, G′ = ⟨z⟩ and by o(z) = 3, (xiyj)3 = x3iy3j .
Furthermore we can obtain that g3 ∈ Z(G) for any g ∈ G.

Note that N is an elementary abelian 3-group and N ̸≤ Z(G). There exists an xiyjzk ∈ N
such that o(xiyjzk) = 3 and xiyjzk ̸∈ Z(G). This implies o(xiyj) = 3 and xiyj ̸∈ Z(G)
which forces 3 ̸

∣∣ i or 3 ̸
∣∣ j. Without loss of generality, we can assume that 3 ̸

∣∣ i. Thus

o([xiyj , y]) = 3. With these results and G = ⟨x, y⟩ = ⟨xiyj , y⟩, y has order at least |G|/32.
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If G has an element of order |G|/3, by [9, Theorem 5.3.4],

G = ⟨a, b
∣∣ a3n−1

= b3 = 1, [a, b] = a3
n−2

⟩. (2.2)

If G has no element of order |G|/3, set a = y, b = xiyj and c = [y, xiyj ]. Then

G = ⟨a, b, c
∣∣ a3n−2

= b3 = c3 = 1, [a, b] = c, [c, a] = [c, b] = 1⟩. (2.3)

Given a finite 3-group H, we define Ω1(H) = ⟨h3
∣∣ h ∈ H⟩. Clearly Ω1(H) ▹▹ H, that

is, Ω1(H) is a character subgroup of H. In both cases (2.2) and (2.3), Ω1(G) = ⟨a3⟩ and
Ω1(Ω1(G)) = ⟨a9⟩. Since a3 ∈ Z(G), Ω1(G) ≤ C = CA(N). Let C3 be a Sylow 3-subgroup of
C. By Sublemma 2, we have C3 ▹ C and so Ω1(G) ≤ C3. Then Ω1(Ω1(G)) ≤ Ω1(C3). Since
Ω1(G) is cyclic, Ω1(C3) is cyclic. Suppose Ω1(Ω1(G)) ̸= 1. Then Ω1(C3) has a character
subgroup of order 3. By Ω1(C3) ▹▹ C3 and C3 ▹ A, A has a normal subgroup of order 3,
contrary to our assumption. Thus we have Ω1(Ω1(G)) = ⟨a9⟩ = 1. It implies that n = 3 for
the group G given in (2.2), and n = 3 or 4 for the group given in (2.3). When n = 3, we
have GR ▹ A by Proposition 1.3 and when n = 4, we have the same result by Lemma 2.1.

§3. A Cayley Graph Which Is Not Normal

In this section we give an example of 4-valent connected Cayley graph of a 3-group of
order 81 with nilpotent class 3, which is not normal.

Example 3.1. Let G = ⟨a, b, c
∣∣ a9 = b3 = c3 = 1, [a, b] = a3, [a, c] = b, [b, c] = 1⟩

and S = {a, ac, a−1, (ac)−1}. Then G has nilpotent class 3 and X = Cay(G,S) is not
normal. Moreover if we set A = Aut(X) and A∗

1 = {α ∈ A1

∣∣ sα = s, ∀s ∈ S}, then
A∗

1
∼= Aut(G,S) ∼= Z2 and A1/A

∗
1
∼= D8.

The proof of this example is simple, but tedious. We omit it. As a complement, we
can easily obtain that X is not normal with the help of a computer software “Nauty” or
“Megma”. In fact it is not hard to prove Aut(G,S) ∼= Z2 and these softwares can give us
|A1| = 16. This implies A1 ̸= Aut(G,S) and hence X is not normal by Proposition 1.1.
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