
Chin. Ann. of Math.
22B: 3(2001),287-296.

SINGULAR LIMIT SOLUTIONS FOR
TWO-DIMENSIONAL ELLIPTIC

PROBLEMS WITH EXPONENTIALLY
DOMINATED NONLINEARITY

S. BARAKET* YE Dong**

Abstract

The authors consider the existence of singular limit solutions for a family of nonlinear
elliptic problems with exponentially dominated nonlinearity and Dirichlet boundary condition

and generalize the results of [3].
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§1. Introduction

The purpose of this paper is to consider the existence of solutions u : Ω ⊂ C → R for the

following Dirichlet problem:{
−∆u = ρ2f(u) = ρ2(eu + eγu) in Ω ⊂ C,
u = 0 on ∂Ω,

(1.1)

where γ ∈ (0, 1). Our motivation is to study the existence of non-minimal solutions with

singular limit as the parameter ρ tends to 0 and extend the results of [3, 2] to more general

functions which are just exponentially dominated. The additional term eγu yields the possi-

bility of better steady state models for physical phenomena having exponential nonlinearities

(see for example [1] and [6]).

The asymptotic behaviour of solutions of (1.1) is well understood thanks to the work

of Nagasaki and Suzuki[7] (for γ < 1/4) and a recent work in [10]. The Green’s function

G(z, z′), defined over Ω× Ω, is given to be the unique solution of{
−∆zG(z, z′) = 8πδz=z′ in Ω,
G(z, z′) = 0 on ∂Ω,

Manuscript received March 15, 2000. Revised September 26, 2000.
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and H(z, z′) = G(z, z′) + 4 log |z − z′| denotes the regular part of Green’s function.

Theorem 1.1.[7,10] Let Ω be a regular bounded domain of C, γ ∈ (0, 1) and ρ > 0. Let uρ

be a sequence of solutions of (1.1). Assume that, as ρ tends to 0, the sequence uρ converges

to some non trivial function u∗ in D′(Ω). Then, the limit function u∗ satisfies{
−∆u∗ = 8π

∑
1≤j≤k

δzj in Ω,

u∗ = 0 on ∂Ω.
(1.2)

In addition, the point (z1, · · · , zk) ∈ Ωk is a critical point of the function

Ψ : (z1, · · · , zk) ∈ Ck 7−→
k∑

j=1

H(zj , zj) +
∑
j ̸=l

G(zj , zl). (1.3)

In this paper, we deal with the converse question: given (z1, · · · , zk) ∈ Ωk a critical point

of the function Ψ defined in (1.3) and given u∗ the solution of (1.2), does there exist a family

uρ, solutions of (1,1), which converges to the function u∗ as ρ tends to 0 ? This kind of

problem was considered by many authors in some special cases (see for instance [5,9] and

[8]). Recently, in [3], Baraket and Pacard have constructed a family uρ which converges to

u∗ when ρ tends to 0, for f(u) = eu on a general domain Ω. Later on, in [2] this result

was extended to the case f(u) = eu + eγu with γ ∈ (0, 7/8), but the method seems not to

work for γ ∈ (7/8, 1). Here, we will use a general construction to solve the problem for all

3/4 ≤ γ < 1. Our main result reads:

Theorem 1.2. Let Ω be a regular bounded domain of C. Let γ ∈ (0, 1) and (z1, · · · , zk) ∈
Ωk be a nondegenerate critical point of the function Ψ defined in (1.3). Then, there exists a

one-parameter family of solutions uρ of (1.1), which converges to u∗, solution of (1.2), when

ρ tends to 0.

Our proof is based on some refinements of arguments in [3]. Our paper is organized

as follows. We will recall some notations and results of [3] in §2, and we construct our

approximate solutions in §3, where a sharp estimate on approximate solutions is established.

Finally, the nonlinear problem is solved in §4. Given the fact that the proof of our result

is rather technical, we shall restrict our attention to one point blow-up solutions. The case

where there might be many blow up points can be treated completely similarly, though the

computations should be more involved. In the following, we assume that k = 1, γ ∈ [3/4, 1)

and c denotes always a constant independent of ρ, even its value could be changed from one

line to another one.

§2. Known Results in [3] and Refinements

For the sake of completeness, we recall some useful notations and results in [3]: For any

ε, τ > 0 and β ∈ C, define ε to be the smallest positive solution of ρ2 = 8ε2/(1 + ε2)2

(clearly, ρ = O(ε) when ρ → 0). Note

uε,τ (z) = 2 log(1 + ε2)− 2 log(ε2 + τ2|z|2) + 2 log τ,

uε,τ,β(z) = 2 log(1 + ε2)− 2 log(ε2 + τ2|z|2|1 + βz2|2) + 2 log τ + 2 log |1 + 3βz2|.
We know that uε,τ (resp. uε,τ,β) are solutions of ∆u+ρ2eu = 0 on C (resp. C\{z, 1+3βz2 =

0}). Define Lε,τ and Lε,τ,β as the following linearized operators about uε,τ and uε,τ,β :

Lε,τω = −∆ω − ρ2euε,τω, Lε,τ,βω = −∆ω − ρ2euε,τ,βω.



No.3 S. BARAKET & YE, D. SINGULAR LIMIT SOLUTIONS FOR ELLIPTIC PROBLEMS 289

To understand the inversion of these operators, we introduce some weighted Hölder spaces

as in [3]. Let S = {zi}1≤i≤k be a finite subset of Ω. We choose a positive function d(z),

smooth in Ω \ S such that d(z) = |z − zi| for z sufficiently close to zi and set

|u|k,α,[σ,2σ] = sup
d(z)∈[σ,2σ]

( k∑
j=0

σj |∇ju(z)|
)
+ σk+α sup

d(x),d(y)∈[σ,2σ]

( |∇ku(x)−∇ku(y)|
|x− y|α

)
.

Definition 2.1. Let Ω be a regular bounded domain of C. For any ν ∈ R and α ∈ (0, 1),

S a finite set of singularities in Ω, the space Ck,α
ν (Ω \S) is defined to be the collection of all

functions u ∈ Ck,α(Ω \ S) for which the norm

∥u∥k,α,ν ≡ sup
σ≤ 1

2diamΩ

σ−ν |u|k,α,[σ,2σ]

is bounded. Moreover, define Ck,α
ν,D(Ω \ S) = {u ∈ Ck,α

ν (Ω \ S), u = 0 on ∂Ω}.
In all this paper, we denote by Br(z) the ball of radius r centered at z, Br when the

center is the origin 0, and B∗
r = Br \ {0}. The properties of Lε,τ and Lε,τ,β are described

by the following propositions:

Proposition 2.1.[3] For all ν ∈ (1, 2) and all τ > 0, there exist two continuous linear

forms H0
ε,τ (·) (resp. H1

ε,τ (·)) defined from C0,α
ν−2(B

∗
1) into R (resp. C) such that for all

f ∈ C0,α
ν−2(B

∗
1), the solution of {

Lε,τw = f in B1,
w = 0 on ∂B1

(2.1)

can be uniquely decomposed as

w(z) = Gε,τ (f)(z) +H0
ε,τ (f)ϕ0

(τ
ε
z
)
+ 2H1

ε,τ (f) ·
τ

ε
ϕ1

(τ
ε
z
)
,

where ϕ0(z) =
1−|z|2
1+|z|2 , ϕ1(z) =

2z
1+|z|2 and z ·z′ ≡ (zz̄′+ z̄z′)/2, for all z, z′ ∈ C. In addition,

the following properties hold :

• Assume that 1 < µ < 2, then the linear operator Gε,τ is well defined from the space

C0,α
µ−2(B

∗
1) into the space C2,α

µ (B∗
1) and stays bounded independently of ε ∈ (0, 1).

• Assume that −2 < µ < 2, then the restriction of Gε,τ to the space of functions spanned

by {e±inθh±n(r)/n > 1} is well defined from the space C0,α
µ−2(B

∗
1) into the space C2,α

µ (B∗
1).

• Assume that µ > 0, then the linear form H0
ε,τ (·) is well defined in C0,α

µ−2(B
∗
1) and

bounded independently of ε ∈ (0, τ/2).

• Assume that µ > 1, then the linear form H1
ε,τ (·) is well defined in C0,α

µ−2(B
∗
1) and

bounded independently of ε ∈ (0, 1).

Proposition 2.2.[3] For all ν ∈ (1, 2), all τ > 0 and all β ∈ C with |β| < 1/4, there exist

ε0 > 0 and two continuous linear forms H0
ε,τ,β(·)(resp. H1

ε,τ,β(·)) defined from C0,α
ν−2(B

∗
1)

into R (resp. C) such that for any ε ∈ (0, ε0) and f ∈ C0,α
ν−2(B

∗
1), the solution of{

Lε,τ,βw = f in B1,
w = 0 on ∂B1

(2.2)

can be uniquely decomposed as

w(z) = Gε,τ,β(f)(z) +H0
ε,τ,β(f)∂τuε,τ,β(z) + 2H1

ε,τ,β(f) · ∂z̄uε,τ,β .
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In addition, there exists c > 0 (independent of f and ε < ε0) such that

||Gε,τ,β(f)||2,α,ν ≤ c(||Gε,τ (f)||2,α,ν + ε2|H0
ε,τ (f)|+ |H1

ε,τ (f)|),
|H0

ε,τ,β(f)| ≤ c(ε2||Gε,τ (f)||2,α,ν + |H0
ε,τ (f)|+ ε2|H1

ε,τ (f)|),
|H1

ε,τ,β(f)| ≤ c(ε2||Gε,τ (f)||2,α,ν + ε2|H0
ε,τ (f)|+ |H1

ε,τ (f)|).

Moreover

||∂rGε,τ,β(f)|∂B1 ||1,α ≤ c(||∂rGε,τ (f)|∂B1 ||1,α + ε2||Gε,τ (f)||2,α,ν + ε2|H0
ε,τ (f)|+ |H1

ε,τ (f)|).

We need however some refinements for proving our results. We define the subspace of

even functions in Ck,α
ν (B∗

1) by

Ek,α
ν (B∗

1) = {f ∈ Ck,α
ν (B∗

1); such that f(z) = f(−z), ∀ z ∈ B∗
1}. (2.3)

Clearly, Ek,α
ν (B∗

1) is an algebra for any ν > 0. Furthermore, we can get more precise

estimations of solutions of (2.2) when f is even, in particular for the L∞ norm ∥w∥∞. The

reason is that we do not have terms like f1(r)e
iθ in the expansion of f , so the operators Lε,τ

or Lε,τ,β are invertible on E0,α
δ−2(B

∗
1) for all δ in (0, 2), instead of δ ∈ (1, 2) as Propositions

2.1 and 2.2 required. More precisely, we have

Proposition 2.3. Assume that δ ∈ (0, 2), τ > 0 and |β| ≤ 1/4 are given. Then there

exist ε0 > 0 and a continuous linear form H0
ε,τ,β(·), defined from E0,α

δ−2(B
∗
1) into R, such

that for any f ∈ E0,α
δ−2(B

∗
1) and ε ∈ (0, ε0), the solution of (2.2) can be uniquely decomposed

as w(z) = Gε,τ,β(f)(z) + H0
ε,τ,β(f)∂τuε,τ,β(z). Moreover, there exists c > 0 such that

∥Gε,τ,β(f)∥2,α,δ + |H0
ε,τ,β(f)| ≤ c∥f∥0,α,δ−2.

Sketch of Proof. First, we show the corresponding result for Lε,τ , easily obtained by

Proposition 2.1. We follow the proof of Proposition 2.2 in [3]. In step 1, we get a function

ω ∈ E2,α
δ (B∗

1) such that Lε,τω = f and w|∂B1 is constant in R. We prove then the orthogonal

projection of Span{∂τuε,τ,β(e
iθ)} on R in L2(∂B1) is one-to-one for ε sufficiently small, and

finally, we complete our proof as in step 3, just by remarking that uε,τ and uε,τ,β are even

functions.

Remark 2.1. We see that with minor changes, the results of Propositions 2.1 to 2.3 hold

still if we replace B1 by any fixed Br (r > 0). Proposition 2.3 is a key point for our proof,

which will permit us to solve (1.1) in symmetric case (see §3), i.e. when Ω is Br, z1 = 0 (see

Lemma 2.1), and will permit us to construct some appropriate approximate solutions.

Recall now the approximate solutions in [3]. Suppose that z1 is a critical point of Ψ(z) =

H(z, z1) and define

−2 log τ0 ≡ Ψ(z1) = H(z1, z1) and β0 ≡ 1

4
∂2
zΨ(z1). (2.4)

Let τ > 0 and a ∈ C be given. We set r0 = ε2/5,

ūε(τ, a, z) ≡ χ
(z − z1 − a

r0

)
uε,τ0+τ,β0(z − z1 − a) +

[
1− χ

(z − z1 − a

r0

)]
G(z, z1 + a), (2.5)

where χ is a C∞, positive, radial function defined in C such that χ(z) = 1 in B5/4 and

χ(z) = 0 outside B7/4. By the invariance of our problem under the transformation τ 7→
u(τz) + 2 log τ , we may assume that B2(z1) ⊂⊂ Ω and |β0| can be chosen to be less than

1/4. Define Lε by Lεω = −∆ω − ρ2euε,τ0,β0
(z−z1)χ(z − z1)ω, then the behaviours of Lε as

ε → 0 is given by
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Proposition 2.4.[3] Assume that 1 < ν < 2 is given. Then, there exist ε0 > 0 and

two continuous linear forms H0
ε(·) (resp. H1

ε(·)) (depending on ν, τ0 and β0), defined from

C0,α
ν−2(Ω \ {z1}) into R (resp. C) such that for any ε ∈ (0, ε0) and f ∈ C0,α

ν−2(Ω \ {z1}), the
solution of {

Lεw = f in Ω,
w = 0 on ∂Ω

(2.6)

can be uniquely decomposed as

w(z) = Gε(f)(z)+χ(z− z1)
(
H0

ε(f)∂τuε,τ0
1 ,β0

(z − z1) + 2H1
ε(f) · ∂z̄uε,τ0

1 ,β0
(z − z1)

)
. (2.7)

In addition, there exists c > 0 (independent of f and ε < ε0) such that

∥Gε(f)∥2,α,ν ≤ c
(
∥Gε,τ0(f̄)∥2,α,ν + |H0

ε,τ0(f̄)|+ |H1
ε,τ0(f̄)|+ ∥f |Ω\B1(z1)∥0,α

)
,

|H0
ε(f)|+ |H1

ε(f)| ≤ c
(
ε2∥Gε,τ0(f̄)∥2,α,ν + |H0

ε,τ0(f̄)|+ |H1
ε,τ0(f̄)|

)
,

where f̄ is the function f(z + z1), defined in B1.

§3. Approximate Solutions and Their Estimates

Here, we will construct some subtle approximate solutions and obtain their convenient

estimates. We know that (see [2]) the desired estimations hold with ūε(0, 0, ·) for the case

γ < 3/4, but for γ closer to 1, this construction seems not to be sufficient. Our idea is to

deform slightly uε,τ0+τ,β0 by adding a function h to get a local solution of (1.1). In fact, let

h be a solution of{
−∆h = ρ2euε,τ0+τ,β0 (eh − 1) + ρ2eγuε,τ0+τ,β0 eγh in B2,
h = 0 on ∂B2.

(3.1)

Of course uε,τ0+τ,β0 + h verifies (1.1) in B2. The existence and the sharp estimates of h are

given by

Lemma 3.1. Let δ be fixed in (0, 1 − γ]. Then there exist c, ε0 > 0 such that for any

ε ∈ (0, ε0), |τ | ≤ ε2δ, we have a unique solution of (3.1) such that h ∈ E = E2,α
δ (B∗

2) ⊕
Span{∂τuε,τ0,β0}, and if h = h̄+ λ∂τuε,τ0,β0 , then ∥h̄∥2,α,δ + |λ| ≤ 2cε4(1−γ)−δ.

Proof. Let E = E2,α
δ (B∗

2) ⊕ Span{∂τuε,τ0,β0} be endowed with the norm ∥(h̄, λ)∥E =

∥h̄∥2,α,δ + |λ|. By the regularity of ∂τuε,τ0,β0 (bounded), we have immediately ∥h∥∞ ≤
c∥h∥E and |∇h(z)| ≤ c∥h∥E/|z|. The Proposition 2.3 and Remark 2.1 mean that Lε,τ,β is

an isomorphism from E into E0,α
δ−2(B

∗
2). We transform the equation (3.1) as follows:

Lε,τ0,β0h = T (h)

= (Lε,τ0,β0 − Lε,τ0+τ,β0)h+ ρ2euε,τ0+τ,β0 (eh − 1− h)

+ ρ2eγuε,τ0+τ,β0 eγh

= E(h) + F (h) +G(h) in B2,

h = 0 on ∂B2.

(3.2)

One result that we shall use frequently as in [3], and without comments, is that to check

if a function u is an element of C0,α
ν (Ω \ {z0}); it is usually sufficient to check that |z −

z0|−ν |u(z)| ≤ c and |z − z0|1−ν |∇u(z)| ≤ c. Since the two estimates are always similar in
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this work, we present only the calculus for |x|−ν |u(x)| in general. We have then

∥T (0)∥0,α,δ−2 = ∥ρ2eγuε,τ0+τ,β0 ∥0,α,δ−2 ≤ cε2 sup
r≤2

r2−δ

(ε2 + τ20 r
2)2γ

≤ c1ε
4(1−γ)−δ,

where c and c1 are constants independent of |τ | ≤ τ0/2. We get also

∥E(h1)∥0,α,δ−2 ≤ cε−δ|τ |∥h1∥E , ∥F (h1)− F (h2)∥0,α,δ−2 ≤ cε4(1−γ)−2δ∥h1 − h2∥E,
∥G(h1)−G(h2)∥0,α,δ−2 ≤ cε4(1−γ)−δ∥h1 − h2∥E for any |τ | ≤ τ0/2, h1, h2 ∈ E .

So, for any h1, h2 in B2c1ε4(1−γ)−δ of E ,

∥T (h1)− T (h2)∥0,α,δ−2 ≤ c2(ε
4(1−γ)−2δ + εδ)∥h1 − h2∥E for any |τ | ≤ ε2δ.

By a classical fixed point argument, when ε is small enough, we get the existence and

uniqueness of h, the solution of (3.1) with desired estimates (for c = c1).

Clearly, h is a one parameter family of functions depending on τ . With the same idea,

we can also estimate ∂τh. We will denote by h0 and ∂τh0 their values for τ = 0.

Lemma 3.2. Let δ, ε0 be as in Lemma 3.1. Then for any ε ∈ (0, ε0), the mapping

τ 7→ hτ , the solution of (3.2) is derivable in [−ε2δ, ε2δ], and there exists c > 0 (independent

of ε < ε0) such that ∥∂τh∥E ≤ cε4(1−γ)−δ.

Proof. It suffices to remark that ∂τh is the unique solution of the following equation
Lε,τ0,β0g = Td(g) = (Lε,τ0,β0 − Lε,τ0+τ,β0)g

+ ρ2euε,τ0+τ,β0 (eh − 1)g + γρ2eγuε,τ0+τ,β0 eγhg

+
[
ρ2euε,τ0+τ,β0 (eh − 1− h) + γρ2eγuε,τ0+τ,β0 eγh

]
∂τuε,τ0,β0 in B2,

g = 0 on ∂B2,

(3.3)

where h is the solution given by (3.2). As in the proof of Lemma 3.1, we get that for

any |τ | ≤ ε2δ, ∥Td(0)∥0,α,δ−2 ≤ c3ε
4(1−γ)−δ and ∥Td(g1)− Td(g2)∥0,α,δ−2 ≤ c4(ε

4(1−γ)−2δ +

εδ)∥g1 − g2∥E . This completes our proof.

Denote ũε(τ, a, z) = ūε(τ, a, z)+h(z− z1)χ(z− z1). We shall get a sharp estimate on the

pre-image of the error function ∆ũε(0, 0, ·) + ρ2eũε(0,0,·) + ρ2eγũε(0,0,·) by the operator

Λε = ∆+ ρ2eūε(0,0,·).

We know the following

Proposition 3.1.[3] Assume that 1 < ν < 2 is given. There exist c, ε0 > 0 such that,

for all ε ∈ (0, ε0) and for all f ∈ C0,α
ν−2(Ω \ {z1}), there exists a unique w ∈ F2,α

ν satisfying

Λεw = f in Ω and ||w||F ≤ c||f ||0,α,ν−2. In addition

∥w∥F ≤ c
(
rν0∥Gε(f)∥2,α,ν + |H0

ε(f)|+ |H1
ε(f)|

)
,

where

F2,α
ν ≡ C2,α

ν,D(Ω \ {z1})⊕ Span{∂τ ūε(0, 0, ·)} ⊕ Span{∂aūε(0, 0, ·), ∂āūε(0, 0, ·)}

and the norm of w(z) = v(z) + τ∂τ ūε(0, 0, ·) + 2a · ∂āūε(0, 0, ·) ∈ F2,α
ν is defined by

∥w∥F = rν0∥v∥2,α,ν + |τ |R + |a|C.

Thanks to [3] (Corollary 2, page 33),

∥Λ−1
ε (∆ūε(0, 0, ·) + ρ2eūε(0,0,·))∥F ≤ cε2r−2

0 | log ε|,
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so it suffices to check the pre-image of the difference ξ = ∆(h0χ) + ρ2eūε(0,0,·)(eh0χ − 1) +

ρ2eγūε(0,0,·)+γh0χ, where we write h0χ as an abbreviation of h0(z − z1)χ(z − z1).

In B1(z1), ξ = ∆h0 + ρ2eūε(0,0,·)(eh0 − 1) + ρ2eγūε(0,0,·)+γh0 . Using (3.1) we have

ξ = ρ2
(
eūε(0,0,·) − euε,τ0,β0

) (
eh0 − 1

)
+ ρ2eγh0

(
eγūε(0,0,·) − eγuε,τ0,β0

)
.

Clearly ξ ≡ 0 in Br0(z1). In B1(z1)\Br0(z1), ūε(0, 0, ·)−uε,τ0,β0 = (G(z, z1)−uε,τ0,β0)(1−χ1)

where χ1(z) = χ((z − z0)/r0). By the choice of z1, τ0 and β0, we have the following

expansions: for any r ∈ (ε, 1),{
uε,τ0,β0(re

iθ)−G(z1 + reiθ, z1) = O(ε2r−2 + r3),
∂ruε,τ0,β0(re

iθ)− ∂rG(z1 + reiθ, z1) = O(ε2r−3 + r2).
(3.4)

We get then |ξ(z)| ≤ c(ε2|z − z1|−1
ε4(1−γ)−δ + ε2|z − z1|3−4γ

) in B1(z1)\Br0(z1). Applying

Proposition 2.1,

|H1
ε,τ0 |+ |H0

ε,τ0 |+ ∥Gε,τ0(ξ̄)∥2,α,ν ≤ c∥ξ̄∥0,α,ν−2 ≤ cε2r1−ν
0 , ∀ 1 < ν < 2, (3.5)

where ξ̄ = ξ(z + z1)|B1 . In particular,

∥∂rGε,τ0(ξ̄)|∂B1∥1,α ≤ c∥Gε,τ0(ξ̄)∥2,α,ν ≤ cε2r1−ν
0 .

Moreover, in Ω \B1(z1),

ξ = ∆(h0χ) + ρ2eG(z,z1)(eh0χ − 1) + ρ2eγG(z,z1)+γh0χ.

Since ∂τuε,τ0,β0 |Ω\B1(z1) is bounded independently of ε ∈ (0, ε0) in C2,α,

∥ξ|Ω\B1(z1)∥0,α ≤ c(ε2 + ∥h0∥E) ≤ cε4(1−γ)−δ. (3.6)

Combining together (3.5), (3.6) and Proposition 2.4, we obtain: for any 1 < ν < 2,

∥Γ(ξ)∥2,α,ν ≤ cε4(1−γ)−δ ≤ cε3(1−γ), |H0
ε(ξ)|+ |H1

ε(ξ)| ≤ cε2r1−ν
0 . (3.7)

Using (3.7) and Proposition 3.1, recalling that γ ≥ 3/4 and ν < 2, so ε2r1−ν
0 ≤ ε2r−2

0 | log ε| ≤
ε(1−γ)rν0 for ε small enough, we are led to conclude

Lemma 3.3. Assume that 1 < ν < 2 and δ ∈ (0, 1−γ] are given. Then there exist ε0 > 0

and c0 > 0 such that for any ε ∈ (0, ε0),

∥Λ−1
ε (∆ũε(0, 0, ·) + ρ2eũε(0,0,·) + ρ2eγũε(0,0,·))∥F ≤ c0ε

(1−γ)rν0 .

§4. Nonlinear Fixed Point Argument

Now we will define some nonlinear mappings which allow us to solve (1.1) by the con-

traction mapping fixed point Theorem. Although the proof is similar to that in [3], some

new technical difficulties appear. As in [3], for any |a| < 1/4 in C, we define a family of

diffeomorphisms Ξa : Ω → Ω depending smoothly on a, satisfying Ξ0 = Id and

Ξa(z) = z − a, ∀ z ∈ B2(z1).

We look for a solution of (1.1) in the form ūε(τ, a, z) + (hτ (z − z1)χ(z − z1) + v) ◦ Ξa,

with w = (v, τ, a) ∈ F2,α
ν . Using hτχ as an abbreviation of hτ (z − z1)χ(z − z1), we denote

M(v, τ, a) = ∆[ūε(τ, a, z) + (hτχ) ◦ Ξa + v ◦ Ξa] ◦ Ξ−1
a

+ ρ2eūε(τ,a,z)◦Ξ−1
a +hτχ+v + ρ2eγ[ūε(τ,a,z)◦Ξ−1

a +hτχ+v],

N (v, τ, a) = ∆(ūε(τ, a, z) + v ◦ Ξa) ◦ Ξ−1
a + ρ2eūε(τ,a,z)◦Ξ−1

a +v,
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and R(v, τ, a) = M(v, τ, a) − N (v, τ, a). By [3, Lemma 4, page 34], we can say that

DN|(0,0,0) = Λε + S, with S a small perturbation satisfying ∥Sw∥0,α,ν−2 ≤ cr2−ν
0 ∥w∥F .

Notice also that supp(hτχ) ⊂ B7/4, hence ∆[(hτχ) ◦ Ξa] ◦ Ξ−1
a ≡ ∆(hτχ) for any |a| < 1/4.

We study now the behaviour ofDR|(0,0,0), when ε tends to 0. First, we checkDR|(0,0,0)(0,
τ, a). Define R1(τ, a) = R(0, τ, a), we have

R1(τ, a) = ∆(hτχ) + ρ2eūε(τ,a,z)◦Ξ−1
a (ehτχ − 1) + ρ2eγūε(τ,a,z)◦Ξ−1

a +γhτχ.

In B1(z1), χ ≡ 1,

R1(τ, a) = ρ2(ehτ − 1)
(
eūε(τ,a,z)◦Ξ−1

a − euε,τ0+τ,β0

)
+ ρ2eγhτ

(
eγūε(τ,a,z)◦Ξ−1

a − eγuε,τ0+τ,β0

)
,

so R1 ≡ 0 in Br0(z1). In B1(z1) \ Br0(z1), since ūε(τ, a, z) ◦ Ξ−1
a = χ1uε,τ0+τ,β0 + (1 −

χ1)G(z + a, z1 + a) with χ1(z) = χ((z − z1)/r0), we obtain

DR1|(0,0)(τ, a) = ρ2eh0(eūε(0,0,·) − euε,τ0,β0 )τ∂τh0

+ ρ2(eh0 − 1)(χ1e
ūε(0,0,·) − euε,τ0,β0 )τ∂τuε,τ0,β0

+ γρ2eγh0(eγūε(0,0,·) − eγuε,τ0,β0 )τ∂τh0

+ γρ2eγh0(χ1e
γūε(0,0,·) − eγuε,τ0,β0 )τ∂τuε,τ0,β0

+ ρ2(eh0 − 1)eūε(0,0,·)(1− χ1)∂aH(z + a, z1 + a)|a=0 · a

+ γρ2eγūε(0,0,·)+γh0(1− χ1)∂aH(z + a, z1 + a)|a=0 · a,

where h0 reads as h0(z − z1). Straightforwardly, by Lemmas 3.1, 3.2, the choice of z1 and

the expansion (3.4), we get

∥DR1|(0,0)(τ, a)∥0,α,ν−2
≤ c(ε2r2−ν−4γ

0 + ε2r−2−ν
0 ε4(1−γ)−δ)(|τ |+ |a|)

in B1(z1) \Br0(z1). Finally, in Ω \B1(z1),

R1(τ, a) = ∆(hτχ) + ρ2eG(z,z1+a)◦Ξ−1
a (ehτχ − 1) + ρ2eγG(z,z1+a)◦Ξ−1

a +γhτχ.

By the regularity of hτ and G, we obtain

∥DR1|(0,0)(τ, a)∥0,α,ν−2
≤ c(ε4(1−γ)−δ + ε2)(|τ |+ |a|).

Combining all these estimates, we have proved the following result:

Lemma 4.1. Assume that ν ∈ (1, 2) and δ ∈ (0, 1− γ] are given, then there exists c > 0

independent of ε ∈ (0, ε0), such that

∥DR1|(0,0)(τ, a)∥0,α,ν−2
≤ cε(1−γ)(|τ |+ |a|).

Otherwise, we can repeat the previous proof for any |τ | ≤ ε2δ and |a| ≤ 1/4, since Lemmas

3.1, 3.2 hold still, and Ξa is still a translation in B2(z1), which means

Lemma 4.2. Let ν ∈ (1, 2) and δ ∈ (0, 1 − γ] be given. There exists ε0, c > 0 such that

R1 is a Lipschitz function with Lipschitz constant less than cε1−γ over Bε2δ ×B1/4 ⊂ R×C
and for any ε ∈ (0, ε0).

Now, we shall estimate DR|(0,0,0)(v, 0, 0). Denote ζ(v) = DR|(0,0,0)(v, 0, 0). We are not

able to prove directly that the operator ζ goes to zero with respect to the norm F when ε

tends to 0; however, we can prove that the pre-image by Λε of this operator goes to 0, which

will be sufficient for our proof. More precisely, we shall prove
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Lemma 4.3. Assume that ν is a constant in (5/3, 2) and δ ∈ (0, 1− γ]. Then there exist

ε0, c > 0 such that ∥∥Λ−1
ε

(
DR|(0,0,0)(v, 0, 0)

)∥∥
F ≤ cε3(1−γ)rν0∥v∥2,α,ν

for any ε ∈ (0, ε0) and v ∈ C2,α
ν,D(Ω \ {z1}).

Proof. Denote ζ(v) = R(v, 0, 0) = ρ2(eh0χ − 1)eūε(0,0,·)v + γρ2eγh0χ+γūε(0,0,·)v. Fix also

µ > 1 satisfying (ν − µ) > 2ν/5, which is possible since ν > 5/3. Applying Proposition 2.1

and denoting ζ̄ = ζ(z + z1)|B1 , we get

∥Gε,τ0(ζ̄)∥2,α,µ ≤ c∥ζ̄∥0,α,µ−2 ≤ cε4(1−γ)−δ+ν−µ∥v∥2,α,ν ,

hence

∥Gε,τ0(ζ̄)∥2,α,ν ≤ c∥ζ̄∥0,α,ν−2 ≤ cε3(1−γ)∥v∥2,α,ν ,

|H0
ε,τ0(ζ̄)| ≤ c∥ζ̄∥0,α,δ−2 ≤ cε4(1−γ)+ν−2δ∥v∥2,α,ν ≤ cε2(1−γ)εν∥v∥2,α,ν ,

|H1
ε,τ0(ζ̄)| ≤ c∥ζ̄∥0,α,µ−2 ≤ cε4(1−γ)−δ+ν−µ∥v∥2,α,ν ≤ cε3(1−γ)rν0∥v∥2,α,ν .

By Proposition 2.4, we have

∥Gε(ζ)∥2,α,ν ≤ cε3(1−γ)∥v∥2,α,ν and |H0
ε(ζ)|+ |H1

ε(ζ)| ≤ cε3(1−γ)rν0∥v∥2,α,ν . (3.8)

The proof is completed by Proposition 3.1.

Now we can tackle the fixed point problem, which is the last step of our proof. For all

w = (v, τ, a) ∈ F2,α
ν , decompose

M(v, τ, a) = M(0, 0, 0) +DM|(0,0,0)(v, τ, a) + [M(v, τ, a)−M(0, τ, a)

−DM|(0,τ,a)(v, 0, 0)] + (DM|(0,τ,a) −DM|(0,0,0))(v, 0, 0)

+ [M(0, τ, a)−M(0, 0, 0)−DM|(0,0,0)(0, τ, a)],

where DM|(0,0,0) = Λε + S +DR|(0,0,0). The proof preceeds with the following steps.

Step 1. Let f0 = M(0, 0, 0). By Lemma 3.3, we know that there exists c0 > 0 such that

for any ε ∈ (0, ε0), ∥Λ−1
ε M(0, 0, 0)∥F ≤ c0ε

1−γrν0 .

From now on, we fix ν ∈ (5/3, 2), δ = 1−γ. Let w1, w2 ∈ F satisfying ∥wi∥F ≤ 2c0ε
1−γrν0 .

Step 2. Define

f1(w) = M(v, τ, a)−M(0, τ, a)−DM|(0,τ,a)(v, 0, 0)

= ρ2eūε(τ,a,z)◦Ξ−1
a +hτχ(ev − 1− v) + ρ2eγūε(τ,a,z)◦Ξ−1

a +γhτχ(eγv − 1− γv).

Remarking that f1 is independent of a in Br0(z1), and using the estimates on h and ∂τh

(notice that |τ | ≤ 2c0ε
1−γrν0 implies that |τ | ≤ ε2δ for ε small enough since γ ≥ 3/4), we get

∥f1(w1)− f1(w2)∥0,α,ν−2 ≤ cε1−γ+νr−ν
0 ∥w1 − w2∥F .

Step 3. Define

f2(w) = (DM|(0,τ,a) −DM|(0,0,0))(v, 0, 0)

= ∆(v ◦ Ξa) ◦ Ξ−1
a −∆v + ρ2

(
eūε(τ,a,z)◦Ξ−1

a )+hτχ − eūε(0,0,·)+h0χ
)
v

+ γρ2
(
eγūε(τ,a,z)◦Ξ−1

a +γhτχ − eγūε(0,0,·)+γh0χ
)
v.

Denoting f2
1(w) = ∆(v ◦Ξa) ◦Ξ−1

a −∆v, we remark that this quantity does not depend on
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τ , and f2
1 ≡ 0 in B1(z1); we get

∥f21(w1)− f2
1(w2)∥0,α,ν−2 ≤ cε1−γ(rν0∥v1 − v2∥2,α,ν + |a1 − a2|).

Denote f2
2 = f2 − f2

1, it is easy to see that f2
2 does not depend on a in Br0(z1). By some

direct computations, we then get

||f22(w1)− f2
2(w2)||0,α,ν−2 ≤ cε1−γ(rν0 ||v2 − v1||2,α,ν + |τ2 − τ1|+ r30|a2 − a1|).

Step 4. Let

f3(τ, a) = M(0, τ, a)−M(0, 0, 0)−DM|(0,0,0)(0, τ, a).

We notice that

M(0, τ, a) = N (0, τ, a) +R(0, τ, a).

Combining the estimation about N (0, τ, a) as in [3, Lemma 5], we get that f3 is a Lipschitz

mapping on B2c0ε1−γrν0
in F2,α

ν , with Lipschitz constant tending to 0, as ε → 0.

Finally, the nonlinear operator Kε we deal with is just defined by

Kε(w) = −Λ−1
ε (Sw +DR|(0,0,0)w + f0 + f1(w) + f2(w) + f3(τ, a)).

Combining the results of the above 4 steps, Lemmas 4.1, 4.3 and Proposition 3.1, we

conclude that there exists ε0 > 0, such that Kε is well defined and Kε is a contraction from

the ball of radius 2c0ε
1−γrν0 in (F2,α

ν , ∥ · ∥F ) into itself for any ε ∈ (0, ε0), so there exists a

unique w ∈ B2c0ε1−γrν0
of (F2,α

ν , ∥ · ∥F ), such that

Kε(w) = w, i.e. M(w) = 0.

This completes the proof of our Theorem 1.2.
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