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Abstract

The authors investigate the global properties of general autonomous systems on the plane
and establish criteria for the nonexistence, existence and uniqueness of limit cycles. As appli-
cation examples, the limit cycles for some polynomial systems are studied.
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§1. Introduction

The theory of limit cycles is a very active research field of qualitative theory of ordinary
differential equations. There have been many mathematicians studying the nonexistence,
existence and uniqueness of limit cycles for plane systems, and most attenttions were paid
to some special forms (see [2-4, 6-10] and the references cited therein). As we know, for the
general system on the plane

ẋ = P (x, y), ẏ = Q(x, y), (1.1)

where P,Q : R2 → R are continuously differentiable, there are some well-known results.
The most beautiful result is the Poincare-Bendixson theorem which concerns the existence
of a limit cycle on an annular region. For the nonexistence of limit cycles of (1.1) we can
use Poincare or Dulac function method respectively (see [6, 7] for example). We note that
in many cases these methods are only valid on a bounded region and a limit cycle may exist
on a larger area. Recently, Giacomin, Llibre and Vian[1] studied the limit cycles of general
system (1.1), and obtained two theorems concerning the nonexistence and uniqueness of a
limit cycle in a bounded region. Some applications to quadratic and cubic systems were also
presented in the same paper. Up to now, there have been very few global results concerning
the nonexistence and uniqueness of a limit cycle of general form (1.1) on the whole plane.
Comparatively, most results in this direction were obtained for some special systems of
Lienard type.

In this paper we also study the limit cycles of general system (1.1), and give some sufficient
conditions for the existence and noexistence of limit cycles (Theorems 2.1–2.3). Results on
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the maximal number (including the uniqueness) of limit cycles are also given (Theorem 2.4).
Comparing with the known results mentioned above, our conditions are concrete, global and
valid on the whole plane. We also completely solve a problem of the uniquness of a limit
cycle for a cubic system studied in [1, 5] (Propsition 2.1).

The paper is organized as follows. The statements of the main results are presented
in Section 2, and their proofs are given in Section 3. Application examples of the main
theorems to specific systems are provided in Section 4.

§1. Statement of the Main Results

We first give the following definition.
Definition 2.1. A basic cycle of (1.1) is a simple closed invariant curve of (1.1) such

that the Poincare map of (1.1) is well-defined on at least one side of the curve.
Obviously, according to this definition a periodic orbit of (1.1) is a basic cycle. A homo-

clinic or heteroclinic loop is also a basic cycle.
It is easy to see that in any neighborhood of a basic cycle there is a smooth simple closed

curve whose index with respect to the vector field defined by (1.1) is equal to 1. For the
notation of index of a cloed curve with repect to a vector field, the reader can consult [4, 7].

Consider the C1 system (1.1). For the nonexistence of limit cycles we have the following
Theorem 2.1. Suppose the following conditions hold.
(i) There exist y0 ≥ 0, x0 ≤ 0 ≤ x1, and continuous functions S(x) ≥ 0 and R(y) > 0

defined for x0 ≤ x ≤ x1 and y ≥ y0 respectively such that

(a) P (x, y) ̸= 0, Q(x,y)
P (x,y) ≥ R(y)S(x) for x0 < x < x1,y > y0;

(b) M ≡
∫ +∞
y0

dy
R(y) ≤

∫ x1

x0
S(x)dx.

(ii) There exists C1 function F (x, y) such that the equation F (x, y) = F (x0, y0) defines a
simple closed curve C0 surrounding the origin, and that any singular point of (1.1) outside
C0, if exists, has nonpositive index.

(iii) µ(PFx+QFy) ≥ 0 for µ = P ((x0+x1)/2, y0+1) and all points in the interier of the
curve C0, and PFx+QFy ̸= 0 along any basic cycle of (1.1) in the closed region surrounded
by C0.

Then the system (1.1) has no basic cycles on the plane.
Theorem 2.2. Suppose the following conditions are satisfied.
(i) There exist x0 ≤ 0 and a continuous function p(x) which is defined for x ≤ x0 and

is differentiable for x /∈ E, where E is a finite subset of the interval (−∞, x0], such that
P (x0, y) keeps constant sign for y ≥ p(x0) ≡ y0, µ = −P (x0, y

∗) ̸= 0 for some y∗ > y0, and

µ[Q(x, p(x))− p′(x)P (x, p(x))] ≥ 0 for x ≤ x0, x /∈ E,

P 2(x, p(x)) +Q2(x, p(x)) ̸= 0 for x ≤ x0.

(ii) The condition (ii) of Theorem 2.1 holds with y0 = p(x0).
(iii) The condition (iii) of Theorem 2.1 holds with µ = −P (x0, y

∗).
Then the system (1.1) has no basic cycles on the plane.
The proof of Theorem 2.2 implies the following corollary which is not direct from the

theorem.
Corollary 2.1. Let the condition (i) of either Theorem 2.1 or 2.2 hold for (x0, y0) = (0, 0).

If any singular point of (1.1) not at the origin has nonpositive index, then (1.1) has no basic
cycles on the plane.

For the existence of a limit cycle we have the following theorem.
Theorem 2.3. Suppose the following conditions are satisfied.
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(i) There exist constants a1 < 0 < a2 and a C1 function F (x, y) with lim
x2+y2→∞

F (x, y) =

+∞ such that

PFx +QFy ≤ 0 for x /∈ [a1, a2], |y| < ∞.

(ii) There exist N > 0 and a continuous function R(y) > 0 for |y| ≥ N such that∫ +∞

N

dy

R(y)
= +∞,

∫ −∞

−N

dy

R(y)
= −∞,

yPx, y) > 0,
Q(x, y)

P (x, y)
≤ R(y) for x ∈ [a1, a2], |y| ≥ N.

(iii) There exists a continuous function p(x) defined for x ≤ a1 (resp., x ≥ a2) and being
differentiable for x ≤ a1, x /∈ E (resp., x ≥ a2, x /∈ E) where E is a finite subset of the
interval (−∞, a1] (resp., [a2,+∞)) such that

y1 ≡ p(a1) ≤ N, P (a1, y) > 0 for y > y1,

Q(x, p(x)) ≤ p′(x)P (x, p(x)) for x ≤ a1, x /∈ E (2.1)

(resp.,

y2 ≡ p(a2) ≥ −N, P (a2, y) < 0 for y < y2,

Q(x, p(x)) ≥ p′(x)P (x, p(x)) for x ≥ a2, x /∈ E).

(iv) The system (1.1) has only finitely many singular points and all of them are contained
in the strip a1 < x < a2, |y| < ∞.

Then if any singular point of (1.1) is a saddle or a source, (1.1) has a basic cycle. If any
singular point is a saddle with positive divergence (i.e., div(P,Q) > 0 at the saddle) or a
source, then (1.1) has a periodic orbit. The periodic orbit is a limit cycle provided (1.1) is
analytic.

As we know, we can use the Dulac theorem to discuss the uniqueness of a limit cycle in
an annular region. The following theorem concerns the maximal number of limit cycles of
(1.1) on a simply connected region.

Theorem 2.4. Suppose
(i) There exist a C1 function H(x, y) and constants h1 < h2 such that the region D2 ≡

{(x, y) : H(x, y) < h2} contains an open subset D20 which has a simple boundary curve, and
that the region D1 ≡ {(x, y) : H(x, y) ≤ h1} is a closed set contained in D20 and having
n− 1 simple closed boundary curves, n ≥ 1.

(ii) There exist constants b ∈ R and h0 /∈ (h1, h2) such that the function

F (x, y) = (H(x, y)− h0)(Px +Qy) + b(PHx +QHy)

has constant sign on the region D = {(x, y) : (x, y) ∈ D20, h1 < H(x, y) < h2} (= D20−D1)
and does not equal zero identically on any open subset of D.

Then (1.1) has at most n−1 basic cycles entirely in D. If, further, the function PHx+QHy

keeps constant sign on D1 and is not zero identically along any basic cycle of (1.1) in D1,
then (1.1) has at most n − 1 basic cycles entirely in D20. In particular, (1.1) has at most
n− 1 limit cycles in D20 and every two limit cycles surround different singular points.

Remark 2.1. If P = P0 + P1, Q = Q0 +Q1 and P0, Q0 and H satisfy

P0Hx +Q0Hy = 0, div(P0, Q0) = 0,

then

F (x, y) = (H(x, y)− h0)div(P1, Q1) + b(P1Hx +Q1Hy).

Remark 2.2. From the proof of Theorem 2.4 given in Section 3 we know that if the
conditions (i)-(ii) are satisfied and F is not equal to zero identically on a periodic orbit of
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(1.1) in D, then all limit cycles of (1.1) are located in D entirely, hyperbolic and of the same
stability.

Consider the following cubic system

ẋ = −y + ax(x2 + y2 − 1), ẏ = x+ by(x2 + y2 − 1), (2.2)

where a and b are constants. It was proved in [5] that the unit circle γ : x2 + y2 = 1
is a limit cycle of (2.2) if ab > −1, (a − b)2 > 4. Recently, the following conclusions were
obtained in [1]:

(i) γ is the unique limit cycle of (2.2) if a+ b = 0 and ab ̸= 0;
(ii) γ is a hyperbolic limit cycle, stable for a+b < 0 and unstable for a+b > 0 if a+b ̸= 0;
(iii) γ is the unique limit cycle, and the origin is the unique singular point if a + b ̸= 0

and ab ≥ 0.
Applying Theorem 2.4 we can solve the problem of the uniqueness of limit cycles in the

case of a + b ̸= 0 and ab < 0, and obtain the following proposition which also presents a
correction to the conclusion (i) above.

Proposition 2.1. (i) Let a+ b = 0, ab ̸= 0. Then γ is contained in a period annulus of
(2.2). (ii) Let a + b ̸= 0. Then γ is the unique limit cycle of (2.2), stable if a + b < 0 and
unstable if a+ b > 0.

§3. Proof of the Main Results

Proof of Theorem 2.1. For the sake of definiteness, we suppose

P (x, y) > 0 for x0 < x < x1, y > y0. (3.1)

Consider the Hamiltonian system ẋ = 1
R(y) , ẏ = S(x). It has a positive semiorbit L0 passing

through the point A(x0, y0). It can be represented as∫ x

x0

S(x)dx =

∫ y

y0

dy

R(y)
< M, y ≥ y0.

Let x∗
0 satisfy M =

∫ x∗

x0
S(x)dx. Then along L0 we have x → x∗ ≤ x1 as y → +∞.

By the condition (i) and the comparison theorem, the positive semiorbit of system (1.1)
passing through the same point A, denoted by L+, is always located above L0 in the region
x0 ≤ x < x∗, y ≥ y0. It implies that (1.1) has no basic cycle surrounding the closed curve C0

given in the theorem. By the condition (ii), (1.1) has no singular point with positive index
outside C0, which implies that (1.1) has no basic cycles outside C0 and not surrounding it.

Fig. 3.1 The orbit L of (1.1) under (3.1)
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Further, by the condition (iii) and (3.1) we have

dF

dt

∣∣∣
(1.1)

= PFx +QFy ≥ 0 (3.2)

for (x, y) in the interior of C0, and is not zero identically on any basic cycle of (1.1) inside
C0. Hence, by Theorem 1.1 the system (1.1) has no basic cycles inside C0, and therefore,
the negative semiorbit L− of (1.1) passing through A approaches a singular point inside
C0. And also, by (3.2), the region surrounded by C0 is negatively invariant with respect to
the flow of (1.1), which yields that (1.1) has no basic cycles intersecting C0 (see Fig. 3.1).
Hence, (1.1) has no basic cycles in the whole plane. This ends the proof of Theorem 2.1.

Proof of Theorem 2.2. For definiteness, we suppose

µ < 0, P (x0, y) ≥ 0 for y ≥ y0,

Q(x, p(x)) ≤ p′(x)P (x, p(x)) for x ≤ x0, x /∈ E.
(3.3)

Denote by L0 the curve y = p(x), x ≤ x0, and by L− the negative semiorbit of (1.1) passing
through the endpoint A(x0, y0) of L0. Note that there is no singular point of (1.1) on L0. It
follows from (3.3) and the comparison theorem that L− is always above L0 (see Fig. 3.2).
Hence, (1.1) has no basic cycles surrounding C0. Then just the same as before we can verify
that (1.1) has no basic cycles which are outside or inside C0, or intersect it. The proof is
completed.

Fig. 3.2 The orbit L of (1.1) under (3.3)

Proof of Corollary 2.1. Since (x0, y0) = (0, 0), the endpoint A of the curve L0 in Fig.
3.1 or Fig. 3.2 is at the origin. Hence, (1.1) has no basic cycles surrounding the origin. By
our assumption, all other singular points are of nonpositive index. It follows that (1.1) has
no basic cycles not surrounding the origin. If (1.1) has a basic cycle passing through the
origin, then the Poincare map is only possiblly well-defined on the inner side of it because
of the existence of L0. Thus, there is a simple closed curve on the inner side whose index
with respect to the vector field (P,Q) is equal to 1. It implies that (1.1) has a singular point
which is of positive index and not at the origin, a contradiction. This ends the proof.

Proof of Theorem 2.3. For definiteness we suppose (2.1) holds. Let L1 denote the
curve y = p(x), x ≤ a1. By the condition (iii) we have

(p′(x),−1) · (P (x, p(x)), Q(x, p(x))) ≥ 0 for x ≤ a1, x /∈ E.

Since there are no singular points in the region x ≤ a1, any positive semiorbit of (1.1)
starting at a point on L1 goes into lower side of L1. Let A1(a1, y1) be the endpoint of L1

and A2 the point (a1, y2) with y2 > N . Since P (a1, y) > 0 for y > y1, any positive semiorbit
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of (1.1) starting at a point on the segment L2 = A1A2 goes into right side of it. Let

L3 :

∫ y

y2

du

R(u)
= x− a1, a1 ≤ x ≤ a2.

By the condition (ii) and the comparison theorem, L3 intersects the line x = a2 at a point
A3(a2, y3) with lim

y2→+∞
y3 = +∞, and any positive semiorbit of (1.1) startiing at a point on

L3 goes into lower side of it. Let

L4 : F (x, y) = F (A3), x ≥ a2.

By the condition (i), apart from A3, L4 has another endpoint A4(a2, y4) on the line x = a2
with lim

y3→+∞
y4 = −∞, and any positive semiorbit of (1.1) starting at a point on L4 goes

into left side of it.
Let

L5 :

∫ y

y4

du

R(u)
= x− a2, a1 ≤ x ≤ a2,

L6 : F (x, y) = F (A5), x ≤ a1,

where A5(a1, y5) denotes the left side endpoint of L5. Then, as above, any positive semiorbit
of (1.1) starting at a point of the curve L5

∪
L6 goes into upper side of it. Note that y5 → −∞

as y2 → +∞ and L1 is always fixed. The curve L6 intersects L1 at a point A6 for sufficiently
large Y2. Hence, we have constructed a simple closed curve L = A1A2A3A4A5A6A1 such
that any positive semiorbit passing through a point on L is always inside it (see Fig. 3.3).

Fig. 3.3

Now we suppose any singular point of (1.1) is a saddle or a source. Since (1.1) has only
finitely many singular points, there exists a subset S of L consisting of at most finitely many
points such that for any point A ∈ L the positive semiorbit of A approaches a saddle point
if and only if A ∈ S. Then, by the Poincare-Bendixson theorem for any point B ∈ L − S,
the positive semiorbit of B approaches a basic cycle of (1.1). The resulting basic cycle is
outer stable. If the basic cycle is not a periodic orbit, it is a homoclinic or heteroclinic loop.

Further, suppose (1.1) has positive divergence at all saddle points. Then every homoclinic
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or heteroclinic loop, if exists, is unstable and inside L. Hence, the obtained basic cycle must
be a outer stable periodic orbit. Obviously, the periodic orbit is a limit cycle if (1.1) is
analytic. This completes the proof of Theorem 2.3.

Proof of Theorem 2.4. Let B(x, y) = (H(x, y)− h0)
b, (x, y) ∈ D. Then we have

div(BP,BQ) = F (x, y)[H(x, y)− h0]
b−1, (x, y) ∈ D. (3.4)

By the condition (ii) and Dulac theorem, (1.1) has at most n− 1 basic cycles entirely in D.
The first part of the theorem follows. For the last part we can assume that

dH

dt
|(1.1) = PHx +QHy ≥ 0 for (x, y) ∈ D1,

and PHx +QHy ̸≡ 0 along any basic cycle in D1. Then the set D1 is negatively invariant
with respect to the flow of (1.1). Hence, (1.1) has no basic cycles which have points in
common with D1. The proof is completed.

§4. Examples

In this section we present some examples as applications of Theorems 2.1–2.4.
Example 4.1. Consider a system of the form

ẋ = y, ẏ = −(x2 − a)(y2 + 1)y − x(1− bx), (4.1)

where 0 ≤ b ≤ 3/4. We prove that there exists a constant a∗ ∈ (0, 2) such that (4.1) has a
limit cycle if and only if 0 < a < a∗.

First, it is easy to see that the origin is stable (unstable) for a ≤ 0 (a > 0). Then a limit
cycle L(a) appears near the origin for 0 < a ≪ 1. Note that (4.1) forms a generalized rotated
vector field in a (see [6]). The limit cycle L(a) expands as a increases. We claim that when
a = 2, L(a) has disappeared. In fact, choose (x0, y0) = (−1, 0), S(x) = a−x2, R(y) = 1+y2,
and F (x, y) = y2/2 + x2/2− bx3/3. Since 0 ≤ b ≤ 3/4, we have

F (x0, y0) ≤ F (
√
2, 0), M = π/2 ≤ x3

0/3− 2x0,

PFx +QFy = (2− x2)(1 + y2)y2 ≥ 0 for F (x, y) ≤ F (x0, y0).

Also, (0, 1/b) is a saddle point for b > 0. Hence, by Theorem 2.1, (4.1) has no limit cycles
or homoclinic loops for a = 2. Thus, by the theory of rotated vector fields (4.1) has no limit
cycles for all a ≥ 2. The conclusion follows.

Example 4.2. Consider

ẋ = y, ẏ = −y(a− x2 − x3 − y2)− x. (4.2)

We show that there exists a constant a∗ ∈ (0, 2) such that (4.2) has a limit cycle if and only
if 0 < a < a∗.

We first prove that (4.2) has no limit cycles for a = 2. In fact, the claim follows from
Theorem 2.2 by choosing (x0, y0) = (0, 1), p(x) = 1 and F (x, y) = x2 + y2 since

Q(x, 1) = (x+ 1)2(x− 1) ≤ 0 for x ≤ 0,

PFx +QFy = −2y2(2− x2 − y2 − x3) ≤ 0 for x2 + y2 ≤ 1.

The rest is just similar to the discussion for (4.1).
Example 4.3. consider

ẋ = 3(ey − 1)− x3 + 3x, ẏ = − 2xey

1 + x2
. (4.3)

We can prove that (4.3) has a stable limit cycle. In fact, if we choose a2 = −a1 =
√
3, p(x) =
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x+ 4 for x ≤ −
√
3, and

F (x, y) = ln(1 + x2) + 3(y + e−y − 1),

R(y) =
ey

3|ey − 1| − 2
for |y| ≥ 3,

we then have

PFx +QFy = 2x2(3− x2)/(1 + x2) ≥ 0 for |x| ≤
√
3,

−2x

1 + x2
ep(x) ≤ ep(x) for x ≤ −

√
3,

2ep(x) − 3 > −3 > x3 − 3x for x ≤ −3,

2ep(x) − 3 > 2e− 3 > 0 ≥ x3 − 3x for − 3 ≤ x ≤ −
√
3.

It follows that

Q(x, p(x)) ≤ p′(x)P (x, p(x)) for x ≤ −
√
3.

Now the conclusion is evident by Theorem 2.3.
Example 4.4. Consider the cubic system

ẋ = −y + ax(x2 + y2 − 1) = P (x, y), ẏ = x+ by(x2 + y2 − 1) = Q(x, y) (4.4)

where a and b are constants with (a, b) ̸= (0, 0). By [1], (4.4) has a periodic orbit γ :
x2 + y2 = 1. First, suppose a + b = 0, ab ̸= 0. Then on the region x2 + y2 ̸= 1, (4.4) is
equivalent to

ẋ = − y

x2 + y2 − 1
− bx, ẏ =

x

x2 + y2 − 1
+ by. (4.5)

For x2 + y2 ̸= 1, (4.5) is Hamiltonian with the Hamiltonian function

H(x, y) =
1

2
ln |x2 + y2 − 1|+ bxy. (4.6)

It is easy to see that the origin is a saddle point for b2 > 1 and a center for b2 < 1. By (4.6)
for b2 = 1 we have

H(x, y) = −1

2

[
(x− by)2 +

1

2
(x2 + y2)2(1 +O(x2 + y2))

]
,

and hence the origin is a center in this case.
With no loss of generality, we may assume b > 0 since (4.5) is invariant under the change

(y, t, b) → (−y,−t,−b). It is direct that for b > 1 (resp., 0 < b ≤ 1) (4.5) has four (resp.,
two) singular points ±(x0, x0) and ±(x1,−x1) (resp., ±(x1,−x1)) apart from the origin,

where x0 =
√

1
2 (1−

1
b ), x1 =

√
1
2 (1 +

1
b ).

Let

J(x, y) =

(
3ax2 + ay2 − a −1 + 2axy

1 + 2bxy 3by2 + bx2 − b

)
, (4.7)

det J(x, y) = ab(3x2 + y2 − 1)(3y2 + x2 − 1) + (1 + 2bxy)(1− 2axy).

When a = −b, we have

det J(±x0,±x0) = 4(b− 1) > 0 for b > 1;

det J(±x1,∓x1) = −4(b+ 1) < 0 for b > 0.

Hence, ±(x0, x0) are center points and ±(x1,−x1) saddle points. Therefore, in the case of
a = −b ̸= 0 there exists an open set D containing γ and full of periodic orbits of (4.4) such
that the outer boundary curve of D is a heteroclinic loop with two saddles and the inner
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boundary curve is either a double homoclinic loop of the form of eight figure when b2 > 1
or the origin when b2 ≤ 1. The phase portrait of (4.4) is shown in Fig. 4.1.

(i) b > 1 (ii) 0 < b ≤ 1

Fig. 4.1 The phase portrait of (4.4)

Now let a + b ̸= 0. Choose H = x2 + y2, h0 = 1 and b = −1 in Theorem 2.4. Then by
Remark 2.1 we have for (4.4)

F (x, y) = (a+ b)(x2 + y2 − 1)2, div
( P

H − 1
,

Q

H − 1

)
=

F (x.y)

(H − 1)2
, (4.8)

PHx +QHy = 2(x2 + y2 − 1)(ax2 + by2).

By Theorem 2.4 and taking h1 = 0, h2 = 1 and D20 = D2 we know that (4.4) has no limit
cycles inside γ. By taking h1 = 1, h2 = +∞ and D20 = D2 and using (4.8) we know that
if (4.4) has a limit cycle L ̸= γ, then it surrounds γ and is stable if a + b < 0, unstable if
a + b > 0 (see [1]). In order to prove L does not exist, it suffices to show that all singular
points outside γ have negative index.

First, if ab ≥ 0 then the origin is the only singular point of (4.4), which implies that L
does not exist. Let ab < 0. Then (4.4) has three (resp., five) singular points for −1 ≤ ab < 0
(resp., ab < −1) including the origin. Outside γ are only two singular points with coordinates
±(x1, y1) where

y21 =
1 +K

1 +K2b2
, x1 = −Kby1, x1 > 0, K =

√
−1

ab
. (4.9)

By (4.7) we have det J(±x1,±y1) = J1 + J2, where

J1 = ab[(3K2b2 + 1)y21 − 1][(3 +K2b2)y21 − 1], J2 = (1− 2b2Ky21)(1 + 2abKy21).

By (4.9) we have

J1 =
ab

(a− b)2
[(a− 3b)K − 2b][(3a− b)K + 2a]

=
1

(a− b)2
[−3a2 − 3b2 + 10ab− 4a2b2 + 2ab(a2 + b2 − 6ab)K],

J2 =
1

(a− b)2
(a+ b− 2ab2K)(2a2bK − a− b)

=
1

(a− b)2
[4a2b2 − (a+ b)2 + 2ab(a+ b)2K].

Hence

J1 + J2 =
1

(a− b)2
[−4(a− b)2 + 4ab(a− b)2K] = 4(abK − 1) = −4(1 +K)/K < 0.

Therefore, we have proved that γ is the uniqueness limit cycle of (4.4) if a + b ̸= 0. Now
Proposition 2.1 is obvious.



306 CHIN. ANN. OF MATH. Vol.22 Ser.B

Example 4.5. By choosing H = x2 + y2, h0 = h1 = 0, h2 = +∞, b = −2 and D20 = D2

in Theorem 2.4, we can prove that the cubic system

ẋ = y(x2 + y2 − 1) + x(ax2 + by2 − 1), ẏ = −x(x2 + y2 − 1) + y(ax2 + by2 − 1)

has at most one limit cycle. The unique limit cycle exists and is stable if (a− 1)(b− 1) > 0,
a > 0 and b > 0.

Example 4.6. Consider a Lienard system of the form

ẋ = y, ẏ = −(x2 − a)(2 + x)y − x(1− x2). (4.10)

We prove that there exists a number a∗ ∈ (0, 1) such that (4.10) has a unique limit cycle if
and only if 0 < a < a∗, and the cycle is stable and hyperbolic. First, the origin is stable for
a ≤ 0 and unstable for a > 0. Also, apart from the origin (4.10) has saddle points (±1, 0)
for a < 1, which yields that any limit cycles of (4.10) are contained in the strip |x| < 1.
Since

div(4.10) = −(x2 − a)(2 + x) = (1− x2)(2 + x) > 0 for |x| < 1,

when a = 1, (4.10) has no limit cycles in this case. Note that (4.10) forms a rotated vector
field in a. It follows that there exists a number a∗ ∈ (0, 1) such that (4.10) has a limit cycle
if and only if 0 < a < a∗. Let H(x, y) = y2/2+x2/2−x4/4 and choose h0 = h1 = H(

√
a, 0),

h2 = +∞, b = −1/2 and D20 = {(x, y) : −1 < x < 1}. We have for (4.10)

dH

dt

∣∣∣
(4.10)

= −(x2 − a)(2 + x)y2, F (x, y) = −1

4
(x2 − a)2(2− x2 − a2).

Noth that H(x, y) − H(
√
a, y) = 1

4 (x
2 − a)(2 − x2 − a2) and that 2 − x2 − a2 ≥ 1 − a2 >

0 for (x, y) ∈ D20, 0 < a < a∗. We have x2 − a < 0 for H(x, y) < h1 since h1 ≤ H(
√
a, y).

Hence, Theorem 2.4 implies that (4.10) has at most one limit cycle for 0 < a < a∗, and the
conclusion follows.
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