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A REMARK ON FORMAL MODELS FOR
NONLINEARLY ELASTIC MEMBRANE SHELLS
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Abstract

This paper gives all the two-dimensional membrane models obtained from formal asymptotic
analysis of the three-dimensional geometrically exact nonlinear model of a thin elastic shell made
with a Saint Venant-Kirchhoff material. Therefore, the other models can be quoted as flexural
nonlinear ones. The author also gives the formal equations solved by the associated stress tensor
and points out that only one of those models leads, by linearization, to the “classical” linear
limiting membrane model, whose justification has already been established by a convergence
theorem.
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§1. Introduction

We use the following conventions: Latin indices take their values in the set {1,2,3}, Greek
indices in the set {1,2}, and the summation convention is used.

Let w be an open bounded connected set of R? with a Lipschitz boundary v. We denote
by (74) a point of @, and 9, = 9/0x4. Let ¢ € C? (G);R?’) be an injective mapping such
that the two vectors a, = J,¢p are linearly independent for all point of w. The vectors a,
form a covariant basis of the tangent plane to the surface S = ¢ (©). We define the unit
vector normal to each point of the middle surface S by az = IZKZI’ where “Xx” represents
the vector product and |- | the Euclidean norm in R3. We define the associated contravariant
basis (aﬁ ) by a®-a, = dap (dap is the Kronecker symbol), and we complete this contravariant
basis with the vector a? defined by as = a®. Moreover, for all point of S we define the two-
dimensional Christoffel symbols I',; = a”-0,ap (which satisfy the relations I'7j; = I'77), the
metric tensor through its covariant components a.g = a, - ag or through its contravariant
ones a®? = a® - aP, the area element \/adzidzs where a = det (ang), and the curvature
tensor through its covariant components b3 = (Jgaq) cad = bga or through its mixed ones
b2 = — (0na3) - aP.

For € > 0, we consider a shell with thickness 2¢ and middle surface S, made of a Saint
Venant-Kirchhoff elastic material whose Lamé constants A > 0 and p > 0 are independent
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of e. Let Q° = w x |—¢;+¢[ and let ¢ be the injective mapping (this is the case when ¢ is
small enough!?!), defined by ¢ (2°) = ¢ (25; 25) + 25a3 (25; 25).

The shell whose reference configuration is ¢ (QE) is clamped on the portion ¢ (I'§), where
IS = 49 x [—&;+¢], 70 C 7, of its lateral surface ¢ (I'°), where I'® = v x [—¢;4¢]. On its
upper face ¢ (Fi), where I'Y. = w x {+¢}, and its lower face ¢ (FE_), where I'®. = w x {—¢},
it is subjected to applied surface forces and to applied body forces on ¢ (Qe ) Under the
action of these forces, the shell undergoes a displacement field.

In order to establish the limiting models of membrane shells, we use the general principles
of formal asymptotic analysis. We define an open set 2 = wx] — 1;+1[ and the sets I'y =
w X {+1} and T'_ = w x {—1} independent of ¢. With each function d°(z¢) defined on
QF, we associate the function d(g)(x) defined on the fixed open set Q by d®(z¢) = d(e)(x).
Then, the scaled covariant components of the displacement field u(e) = (u;(¢)) solve the
variational problem:

Find u(e) € V(Q) = {v € W"*(Q); v =0o0n Ty =7 x (=1,+1)} such that
€/Qgpqij(€)5puq () (u(e)) Fiy; () (ule), v) Vg(e)de
=c [ Fenaie+ [ BenyoE,

+ull_
for all v € V(Q), where (fi(¢)) are the contravariant componants of the scaled applied
body forces and (hi(e)) are the contravariant componants of the scaled applied surface

forces in the covariant basis (a;), where g¥/P4(g) are the contravariant components of the
scaled three-dimensional elasticity tensor, where &, (¢) (u(e)) are the covariant components
of the scaled symmetric Green-Saint Venant strain tensor whose Géateaux derivatives at u(e)
in the direction v are F; (¢) (u(e), v).
The associated boundary value problem reads

17 ()(@) = F(e)@), TE,

TOE) ) = W), weTy,

—T®3(e)(x) = hi(e)(z), =zel_,
where

T (e) = (9" (e) + 9" (€)g™ (e)use (€)) Eppq (€)(u(e))

are the contravariant components of the first Piola-Kirchhoff scaled stress tensor whose

scaled covariant derivatives TﬁfC (e) are defined by

Tl (£) = 0T () + T ()T o (€) + T ()Y 0 ).
T4 (e) = é@sT” (&) + T ()[4 (e) + T ()T, (o),

where Ffj (€) are the three-dimensional Christoffel symbols expressed on the fixed open set

Q.

We next assume that each geometrical datum that depends on € can be expanded up to
whatever order is necessary in terms of power of 3 and that there exists a formal asymptotic
expansion of the displacement field expressed in the fixed open set {2 by

1

1
uEe)=cuF 44 cutpul feul 4o
k €

are independent of . Then both tensors (&,4(¢) (u(e))) and

where the terms u”
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(Fi;(€) (u(e),v)) possess asymptotic expansions begining with different powers of e:

QHB (E) (u(g)) 5%’“ 50(”6 + - fa”ﬂ (8) (u(g),v) = ‘Fa”ﬁ( ) +ey
Eals (€) (u(e)) = E%Hsaff Db, Fapse) ), v) = e Pl ) e
53“3( ) ( (6)) = 52k+2 (C/‘BH%IC 2 +- FSHB (5) (u(€)7v) = 5kl+2 ]:3_”13 2( ) +

where the terms 51.’”]. and ]-'Z.’”j are independent of ¢.

Furthermore, we require that no compatibility conditions on the data are needed for the
three-dimensional problem: this means that if at the I-th step, [ € Z, there exist f*! and
h¥*1 independent of ¢ such as f©° = fi(e) = ' ! and h** = hi(e) = e!T1h%!*! and they
must satisfy the compatibility condition

/pi’l(l'h.’172)77i<.’171,$2)d.’171d!1}2 =0

for  in some functional space on w, where

) 1 - ) .

pl’l(xh x?) = 5 (/ fl,l(xh x2, t)dt + h17l+1 (xli x2, +1) + h17l+1(x17 x2, _1))7
-1

then we assume that f! =0 and AT = 0.

The identification of the successive powers of € in the variational problem (cf. [8]) leads us
to assume that the applied body forces are of order 0 (f¢ = f°) and that the applied surface
forces are of order 1 (h® = eh'). Then the asymptotic expansion of the displacement field
u(e) begins with a term u® independent of x3, and we are next led to solve the following
system:

()\a“ﬁSOHB( N+ A+ 2/1)53?”3 (u’u ))cﬂéu(;”3
+2uEY 5 (00, ut) (a7 +a*Pauy ) =0,
(Aa"ﬁgolm (%) + (XA + 2/1)53?”3 (u®,ut))(1+ ug\li%)
—|—2ua’”52”3 (u®, ul)ug‘h =0,

(1.1)

where the leading term of the asymptotic expansion of the Green-Saint Venant strain tensor
can be written as

0
26015 (W) = ugy g + Uy, + a7 Ul us +uSy, ug s,

2Eqs (0 0h) = ulyg + gy, + a7 Ul ufys + ugy, ug, (1.2)
2635 (u%, ') = 2ugy; + a2 ufys ugy, + gy ugy,
with
ug”B = Opul — FC* ¢ — bagug, ugHS = dzuy, + bgug,
ugl\ﬁ = 85u3 bcuc, ug\l3 = 83u:1)).

The purpose of this work is to find all the solutions to the system (1.1) which is an alge-
braic system with unknowns uY,., and to give the associated variational equations and the

boundary value problems.
The solution given by B. Miara (Section 2)

Aa® ﬁEOHﬁ () + (A + 20)E3) 5 (u,u') =0,
€a”3 (u’u') =0,

allows us to find (Section 3) the classical variational problem:
Findu’ € V(w) = {n = (1;) € W'*(w); n =0 on 7o} such that for all n(z1,z2) € V(w)

/ B0 5 (00) s () ad = [ i,

|3

(1.3)
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where b*#7° is the two-dimensional elasticity tensor and where .7-:?” s (uo, 77) is the Gateaux
derivative of the two-dimensional change of metric tensor 6’2” 5 (uo) at the point u in the
direction n.

The associated boundary value problem reads

—113° =p™®  inw,

T%%5 =0 on /o,

u’' =0 on o,
where 70 are the first non vanishing terms of the asymptotic expansion of the first Piola-
Kirchhoff stress tensorl® given by

160 = Lye00 g poiteqrnaly e, (),

«
36,0 __ paBdp,,0 0 0
T500 = 0", 5 (w7)
and where the “divergence” of a bidimensional tensor is given by

T\T?O _ agTi6’0 + FigTinO + Fit;T“s’O
with T35 =0, T'5 =0, Fi} =bys and T'); = —b].

We note that the linearization of the variational problem written for a shell completely
clamped on its lateral boundary (i.e. v = ) leads to the “classical” linear model whose
existence and uniqueness of the solution has been proved in [3]:

Find v’ € V,,,(w) = H}(w) x H}(w) x L?(w) such that for all n(z1,72) € V,,(w),
/wbaﬁwegng (u”)ed 5 (m)v/adw = /wpi’omx/adM

where egH 5 (u) is the linearized change of metric tensor.
A second solution to the system (1.1) (Section 4)
ug =0,
{22 (14
33—

gives the new limiting variational problem (Theorem 4.1):
Find u® € V(w) such that for all n(z1,z2) € V(w),

/aaﬂw“f&m (u”) Fja (u’,m) Vadew :/pwm\/&dw’

w

where g’g”ﬂ (u’) =&°

0y _1_AXA
ollp (W) = 53755 ap and where

Fous(®,m) = (52H5 (uo)) n = Fos ().

The associated boundary value problem reads

80 _ 5,0 ;

T\|5 =p in w,
_T‘il?’o _ p3,0 _ %Abyaa% in w,
Fv8,0,, . — A5
T7%n5 = 5a7%ns on v/%o,
735,0,,  _

T%%%5 =0 on v/,
u’ =0 on o,

where 7700 (which is not the leading term of the asymptotic expansion of the first Piola-
Kirchoff stress tensor) is given by
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~ A
5,0 _ s 5 0 0 0 5 0
T700 = (P70 4 b7 a? - gy (U7) — 50 Ta g,

A
0 5,0
ug Eapp (0°) = S ug),

The linearization of the variational equation reads:
Find u’ € Vi(w) = {n = (n;) € H'(w); 7 =0 on 7} such that for all n(z1,z2) € V;(w)

/ a®Pe Hﬁ( °) S (m )fdw**/mw (a7 by 25+l Yy ) Vad
1 .
= i/AaV‘Segué (n) \/Eder/p”Om\/adw.

So, it does not lead to the linear model. In each case, the linear one and the nonlinear one,
a linear term in u® and perturbation terms of volume and surface forces appear.
Finally, the system (1.1) has also the set of solutions (Section 5)

(ug ) :(aalg—i—ug )wf,
I8) 15 s

0 _,,0 o
(“3u3)7—“3naw7 .

T36,0 oc,(i"yé

1 1
where (g%) and (g%) are the components of the eigenvectors (defined up to a multi-
1 2

plicative constant) of the 2 x 2 matrix
AE < algo (UO) a152||2( O))
: a2gOH1( u®) a2ga”2( 0y )

The new variational formulations associated with these solutions are then given by (Theorem
5.2):

Find u® € V(w ={n=(n;) € W-*(w); 7 =0 on 7} such that for all p € V(w),
a A 7
/ { Mgonﬁ( ) (g~ wlud) } s () Vads = /wp i /ade

where d; is the eigenvalue of the matrix —u(I + 2AF) associated with the eigenvector wi.
We get the same kind of models with the eigenvalue dy of the matrix —u(I+2AF) associated
with the eigenvector wo.
The associated boundary value problems read

~Ti3° =p™ inw

T%%s5 =0 on /v,

u’ =0 on o,
where the contravariant components of the limiting stress tensor associated with these lim-
iting membrane shell models are given by

TV90 — (bo‘ﬁw + baﬂ&pa”ugﬂp )ggl\ﬁ (uO) - dT(wlwi + wiwﬁa‘”ugup)
d:\
A+2u

_ dr A
35,0 _ 5p 0 0 5 a 5 0
7360 _ <bal3 "Es (u°) = drwfut + 55 ma p) gy,

(a” + a‘s"a‘”ugl‘p ),

with no summation on 7 indices.
Once again, the linearization of these new variational problems does not lead to the linear
model.
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§2. About the Asymptotic Analysis of Shells

Let Q° = w x |—¢; +¢[, we denote 2° = (25) a point of QF and let 95 = §/0z5. Let ¢ be
the injective mapping (this is the case when ¢ is small enoughm), defined by
$:a° = (29) € O s ¢ (a%) = o (a5;25) + a5as (25 25)
When ¢ is small enough, the three vectors defined by gf = 0;¢ are linearly independent,

therefore they define a covariant basis at each point of 2. The associated contravariant basis
(g7°) is defined by g/°.g5 = &;;. We can then define the covariant components g5; = g5.g°
and the contravariant ones ¢*/¢ = g*€.g/*¢ of the metric tensor. We also define the volume
element /g=dz® and the surface element det (V@) [V~ 'n|ds® where ¢g° = det (gfj), as well
as the three-dimensional Christoffel symbols T'};° = gP.05gf = TI';". Note that, for the
mapping ¢ defined above, T>5 = F’;;f =0.

The shell whose reference configuration ¢ (QE) is a natural state, is clamped on the
portion ¢(I'§) of its lateral surface ¢(I'°). On its upper face ¢(I'S ) and its lower face ¢(I'%),
it is subjected to applied surface forces whose contravariant components are h*° : 2° €
I's UT< — R3, and to body forces whose contravariant components are f*€ : 2¢ € Q° — R?,
Under the action of these forces, the shell undergoes a displacement field u$g®<.

We next write the problem on a fixed open set Q = wx] — 1;+1[ (i.e. independent of ¢)
and we use the general principles of formal asymptotic analysis!/®71:

(i) We denote by = = (x;) a point of Q, and let 9; = 9/dx;. With the point = € Q, we
associate the point z° = (25) € QF defined by 2%, = z,, and z§ = ex3, hence &5 = 9, and
95 = 10;.

(if) With each function d® defined on Q°, we associate the function d(e) defined on Q by

d°(2°) = d(e)(z), = € Q°, z € Q.
Then the “scaled” displacement field satisfies the variational problem:

Find u(e) = (u;()) € V() = {v e WH*(Q); v=0o0n Iy} such that

£ /Q 9" (£)Epq () (u(e)) Fiyj (¢) (ule), v) Vg(e)dx
=< [ P vat)dn + /F B (2)vi/g (@) dew (2.1)

+ull_
for all v € V(Q), where

9P (e) = AgP()g” (¢) + 1 (97 (e)g% (€) + g™ (€)9” (¢))
are the contravariant components of the “scaled” three-dimensional elasticity tensor, where
1 ST
Eplla () ((€)) = 5 {upiq (&) + uqyy (&) + 97 (&) sy (£)ttrq (€)}

are the covariant components of the “scaled” symmetric Green-Saint Venant strain tensor,
and where F;); (¢) (u(e), v) are their Gateaux derivatives at the point u(e) in the direction
v, i.e.

F3 (6) (a(e),v) = £l &) (u(©) v
= {0y (©) 4 0 (€) 977 (6) (g v () + v Dy ()

with v 5 (¢) = 9pvi — Ffﬁ(e)vk, V3 (€) = 1030, — T%(e)v,.
Let us recall the principle of formal asymptotic analysis used by B. Miara & E. Sanchez-
Palencial®! in the case of linearly elastic thin shells:
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(iii) We assume that each geometrical datum that depends on € can be expanded up to
whatever order is necessary in terms of power of xj:

j i i1
g'(e) =a' +exzg” +-- -,
. iy -
g7 (e) = a"” +exsg? + -,
g . .
g9 (e) = aP1 4 egygPtt 4.
where aP? = \aPla" + {apiaqj + apjaqi}, a¥ = a'.al and ¢®3 = a%a; =0,
k k,0 k1
[ii(e) = Do texslys +-00

0 * 3,0 8,0 3,0 ;0
re’ =17 Faﬂ = baﬁ7 Fa3 = _bg7 Fi3 = 1_%3 =0.

« af?’

(iv) We assume that there exists a formal asymptotic expansion of the unknown

1
u(s):g—ku_k—l—u-—kuo—i—eul—k---

In her article, B. Miaral® demonstrates that, for “membrane” thin elastic shells, the
applied body forces are of order 0, f(¢) = fY, the applied surface forces are of order 1,
h(e) = eh!, and that the displacement field is of order 0, u(e) = u®.

The identification of the successive powers of € proves that

83110 = 0,

1

and then, by identifying the coefficients of 71 in (2.1), we get

[ (a8 () + (25 (1)) Figh . )

+/ 4uaa752‘|3(u°,u1)f;”13 (u°,v)vadz =0
Q
for all v e V(€2), where

Fol(00.v) = § (90, + PPy Do) + buy Oy,

]:?]‘é (uo7 ul,v) = a'Y‘SugHS&),UV + (1 + ug‘l?)) O3v3.

If we choose test functions v = (v1,v2,0) and then v = (0,0, v3), the variational problem
above leads us to solve the nonlinear algebraic system in u?“ 53 (1.1) which can be written as
a matrix in the following way.

With the notations:

ame, e = (). (0 0,

U1 Uo2
E:=¢& (uo,ul) = (SgHS(uO,ul)) , Z= (ugua) Y= (Ugns) )

we get UTAU = (a"f‘sugl‘aug”ﬁ) and zz! = (ugllaugllﬁ ), so that we can express the leading
term of the asymptotic expansion of the Green-Saint Venant strain tensor (1.2) by

2F =U + U' 4+ U'AU + zz',
28y = (I—|—UtA)y+ (l—i—ug‘l?’) z,

2
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Therefore, the system of equations (1.1) reads
[m (AE) + (A + QM)QQHS] Ay + 2uA (I + UA) & =0,
[m (AE) + (A + zﬂ)ggug] (1 + ugu?)) +2uzt A&y = 0.

We are now going to find all the solutions “i|\3 of this system.

§3. Revisiting the First Limiting Model of Membrane Shells

Let us first recall the results obtained by B. Miaral®l leading to the classical limiting
membrane shell model.

3.1. The Variational Problem

A first solution ( 1.3) of system (2.2) leads to the limiting membrane variational problem:

Find u® € V(w) = {n = (n;) € W"*(w); 1 =0 on o} such that for all n(z1,z2) € V(w)
independent of :Eg,

/b“m‘sfgnﬁ(uo)fgua(uo,n)\/&dwz/pi’omx/&dw, (3.1)

where the two-dimensional elasticity tensor is given by

22
pepsYe — oo +gua°‘5a75 +u (ao‘waﬁ‘S + a"“sam) ;

and where the Gateaux derivative of the two-dimensional change of metric tensor Egu 5 (uo)
at the point u® in the direction n is given by
1
0 0 _ 0 0 t, 0 0 t, 0 0
Fois (0m) =5 (%Hé 5y a7 U 57 +a “snﬂtué) :
with the covariant derivatives of the vector n
15 = Osmy — L2511 — bysts, 195 = Osns + b5,

3.2. The Boundary Value Problem
The limiting contravariant components of the “scaled” stress tensor

TU {gptm )_|_gqut( Usnt } Hq (3_2)

associated with the solution (1.3) have been computed in [4, 5]; they are of order 0 for the
terms 7% and of order 1 for the terms 77%:

50 _ s §p o, 0 0 0
760 _ {baﬁv 4 pBoeg wuanp}gauﬁ (u )7
36,0 __ ) 0
T2 = 6 7ugy  Eqy (u ( )

T3 = —p (2, 29, —1 / 10wy, 20, t)dt
— (23 +1) ([%TV‘;’O +T0OOTS + TPOTT S — T3] ) :
T334 = —p3 (2, 29, —1) — /m3 292y, zo, t)dt
-1
(s +1) (&;T?"S’O " Tsa,org; JrTwé,obvé) _ (3.3)

Theorem 3.1. (i) The limiting “membrane” problem associated with (3.1) is of the
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divergence form
T’ =0 inw,
T90s5 =0 on v/,
u’ =0 on Yo,
where
16,0 __ 8,0 S rpvir,0 i% rd,0
T\Ié = 05" + TosT " + VST,

(ii) Hence we can rewrite the terms T as follow:
ng’l = —hl’l(l‘l,l‘g, —1) —/ fl’o(.ﬁl,xg,t)dt
~1

1, . ) I
* %{h“l(m,x% +1) + A (w1, w0, —1) + / fZ’O(JUth,t)dt}.
-1

Proof. We rewrite the variational formulation (3.1) as follows:
/pi’omx/&dw = / b0EY 5 () (ngu(s +a g, M5 + Uy, ’l§n5> Vadw,
w w

= / {T’Y&O?’]gné + TB&O?]g”é } \/&dw

If we assume 7" € H'(w), using a Green formula and the relation dsv/a = I'§"\/a we get
/ p"Oniv/adw

=- / (057750 4+ T80 4 7780 — T8 ) faduo + / 17 ngn,ady
w /70

— / (35T35’0 + F§ZT35’O + TV‘;’Ong) n3vadw + / T3 %nsnsv/ady
w ¥/vo

for all n € V(w). Hence, we deduce that
T =0 1),
and that
T%95 = 0 on v/0.

3.3. Linearization of the First Limiting Model

By linearizing the problem (3.1) written for a completely clamped shell, we find the
“classical” variational formulation of linearly elastic membrane shells:

Find u’ € V,,(w) = Hi(w) x H}(w) x L?(w) such that for all n(z1,22) € V(W)
independent of x3,

[ 0 ()i = [ O (3.4
where egH 5 (uY) is the linearized change of metric tensor defined by
1
0 0y _ 0 0
Calp (W) =5 (“al\ﬁ + “ﬂl\a) ;
with

1
0 0 0 * 0 0
Ug | = 3 (BauB + agua) — Fiﬁuc — bapus.
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Theorem 3.2. The associated equations of equilibrium read

760 ~86,0 _ TP* _~48,0 _ TY* . pd,0 _ v,0 -
UH‘; = —0s0 Is,0 Lpsof" =p n w,
38,0 _ 50 — 3,0
—os = —bys0??0 =p in w, (3.5)
0 _ _
Uy = on Y =17,

with 070 = bo‘ﬁ'y(seg”ﬂ (u).

Proof. If we assume that ¢7%° € H'(w), then by applying a Green formula to the
variational formulation (3.4) which reads

/UW‘S’OU,OYH(; ﬁdw:/pi’oni\/&dw

for all n € V,,(w), we deduce the boundary value problem.

¢4. A Second Limiting Model of Membrane Shells

4.1. The Variational Problem
Theorem 4.1. A second solution to the system (1.1) is

0 _
{“a||3 =0,

o _ _
Ugjg = 1,

and the associated limiting variational problem reads: Find u° € V(w) such that for all
n(z1,z2) € V(w) independent of x3,

/aamggnﬁ (u?) Fys (0, m) adw = /Pi’oni\/&dw (4.1)

with
B 1A
0 0y _ ¢0 0 -
Eao (W) = Eap (W) = 53775, 0as
_1(0+0_~_760 0 10 0)_1L
= gWWalp T Ugla T a Mas T U3 U318 ) T 5 3T s

_ 1
0 0 _ 0 0 _ 0 0 t,,0 0 t,,0 0
Fois (0m) = Flys (u’,m) = 5 (S5 + g, + @™ gy miys + o™ w5y, ).

The formal solution u® of the variational formulation is a stationary point of the functional

1 . N ,
J(n) =5 / a®P0EY 5 (m)EY 5 (m)vadw — / p"Onivadw.

w

Remark. This problem can also be written as follows:

(03 1 T
/a 7Es (u) Py (a”m) Vadw - 5/ A (@l s + s ) Vade
1 .
= 5/)\(1751]2”5 ﬁdw%—/p“om\/ﬁdw,

1
7/ A (Fg;ap‘s + Fizaw’) Ny adw — 5/ Aa"%b., 5131/ adw

w

1 )
+ 2// Aa”‘sn,yy(g\/ad’er/pz’Om\/&dw, (4.2)
Y/o w

using the relations
772”5 = 051y — F,py:;np —bysns, Os (a”‘s) = Fg;a”‘s + F,‘Z’gaw and 9sv/a = F§;\/5.
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So we obtain the nonlinear classical part of membrane shells:
B8 £0 0\ 70 0
Aa By gOtHB (u )‘F’Y”é (u ,77) ﬁdw

with a linear term in u®: % fw Pyl (a‘”ug‘h 772“5 + uglh ng%) vadw and perturbation terms

on the body forces
1
- / Y (rg;am‘ + ngcﬂp) nyvado = / A" b.ys13+/adw

and surface forces % fv /0 Aa“";nwmg v/ad~y which only depend on the geometry of the shell.
Proof. Let us assume that, as in the first model,
Atr (AE) + (A + 2u)Eq5 = 0,
the system (2.2) reads
2u(l + UtA) AL, = 0,
2uzt A&y = 0.

When the displacement field u® vanishes, the matrix (I + U'A) = I is invertible. So we
assume that at least in a suitable neighbourhood of u® = 0 (i.e. for small displacements),
the matrix (I + U'A) is invertible. We then deduce that the vector & vanishes and thus we
are led back to the system (1.3).

In order to find other solutions of the system (2.2) and therefore other limiting models,
we must choose Ar (AE) + (A + 2u)53?”3 # 0. Moreover, if we assume that & = 0, and since

the matrix A is invertible, the system (2.2) then reads
y= (i) =0,
1+ ugy = 0.
We still have to check that this solution actually cancels the vector &y:
260 = (I+U"A) y + (1 + ufj3)z = 0.

So, the solution we have found is a solution to the system (2.2).
Thus, we are now able to give the limiting variational problem associated with this solu-
tion. To do so, we identify the terms €° in the variational formulation (2.1) (see [8]):

/ng (g”qij’l — bﬁapqij) Sguq (u°, ul)}"iﬂjl. (u°,ul, v)\ade
+/Qapqij5£“q (uo,ul)}'ﬂlj (u, u',u? v)yadz
+ /Q aP ey (0’ u', u2)}-¢ﬂ; (u°,ut, v)vadz
= / 1%,y adz —|—/ hitvi/adw (4.3)
Q rpur_
for all v € V(Q), where

1
0 0o .1 .2 _ = 0 0 st 0 0 0 0 1 -1 1 -1
Fijs (0% ul u?v) = 51 Yills T30 T @ (usHithS T Usji3 Vi T Us)i Vg3 +us\|3vt\|i)

0 -1 0 -1
+ 23 (b%a”” + b2a?) (uaHiUﬂHS + “aI\SUBHi> }
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with v;;> = 0 and vt”3 = Osv;. Using test functions v(z1,x2,23) = n(x1,22) € V(w)

0

tII

independent of x3, we get F., (u ,ul, ) = 0, and since we study the solution for which

il
52”3 (u ) = 0, the variational formulation reduces to

/Q{ e s (0°) +a®VEY, (u',u )}fzng (u’, ', n) Vadz = 2Lpi’°niﬁdW~

2
Moreover, 2830H3 =ytAy + (1 + ug|\3) — 1= —1, hence we get

. 1
/Q < P (uf) - 2)\(176) Flis (u’m) Vada

A+2 .
/Q (,\aaﬁgalﬂ (u’) — 2“) F3 3013 (u’,u',n) Vadz = 2/p“0m\/5dw.

Furthermore, r]g”3 = 0. Since n is independent of z3, we get nt_\lé = 031y = 0. We then have
Fi)a (u,ul,n) = a”‘sug‘lgng”?). Moreover, uJ; = 0 is a solution to the system (2.2). Thus
we get ang (u®,u',n) =0, which leads to the result given in the theorem.

Remark. We note that when the transverse resultant of forces p*° is equal to zero the
problem reads: Find u® € V(w) such that for all n(z1,72) € V(w) independent of z3,

« 1 T
/wa € (1) Fys (u”m) vadw — */ A0 (@7l s+ Sy s ) vade
1
= /)\ (Fg;a”‘s —|—1“5*a7"> Ny adw — 3 / Aa"0b.snzy/adw + 2/ Aa"’n,vsy/ady.

v/v0
This problem have a nonvanishing solution.
4.2. The Boundary Value Problem

Theorem 4.2. The boundary value problem associated with the variational formulation
(4.1) reads

_TH"YW p70 in w,
730,0 3,0 1 § ;

THé =p>" — 5Abysa” mw,

5,0 A yS
1700 = 5a7°ns on v/%o,
7350,  _
T3%%5 =0 on v/vo,
u’ =0 on Yo,

where T:0 (which is not the leading term of the asymptotic expansion of the first Piola-
Kirchoff stress tensor) is given by

) A
Fro0 _ (a"w + a"ﬁﬂsa’”“gur) Enyp () = 5 a’ma Uy

. A
35,0 _ ,0B78,,0 Y6
T Uy Eays () = S0 ugy,,

Proof. We write the variational problem (4.1) as (4.2).
By applying a Green formula, we get

/ a5 vadw
= / A [*55 (aw\/&) - Fvéapéfnv — bysa” \/>773} dw +/ )\awsnﬂh\/&d’y

/o



No.3 C. COLLARD FORMAL MODELS FOR NONLINEARLY ELASTIC MEMBRANE SHELLS 319

for all n € V(w). Since dga® = —T'35a” 4 ba® (Gauss formula), we get
05 (a7°V/a) = (~Ta" ~Tga" + Thra™® ) Va = ~T}a" Va,
hence

/ a1 VVadw = — / Abysa™ 0 13/adw + / A" g, ady.
w w ¥/v0

Moreover,

0 0 0 0 0 0 0
2/ a®0Eq 5 (u°) (%Ha + a1y 1y s +“3|W73\|6) Vaduw
w

- / X7 (Tl nlys + uy, n)s ) Vade = 2/ {27500 + 790005 1 VVadu,
w w

The variational formulation (4.2) then reads

/ {T”‘S’OnS”g + T 5 } Vadw
= /wpi’oni\/&dw — %/w)\bwga""sngx/&dw + ;/7/% Aa"’ngn,\/ady.
If we assume that 70 € H'(w), then by applying a Green formula we get for all n € V(w)
= /w (057750 4 T80 4 T780TY5 — T8 ), vfaduo + /7 N IO, /ady

- / (35T35’0 + Fg:f?’é’o + Tvé’ob»ﬂs) n3vadw + / T35,0n6773\/ad,y
w /Yo

- 1 1
=/p“°m\/5dw— 5/ Abwga75n3\/6dw+2// Aa"’nsn,v/ady.
w w Y/ Yo

4.3. Linearization of the Second Limiting Model
By linearizing, the variational problem (4.1) reads:
Find u° € V;(w) = {n € HY(w); n =0 on 7o} such that

a 1 T
/a Mé@gnﬂ (u°) €5 () Vadw — 5/ Aa™? (ap Uply M5 +“gllv"gl\5> Vadw
= / a 57562|w (u%) 63”5 (m) Vadw — 5/ /\a'yéug\lv ngl\é Vadw
1 .
= 5/ )\a'y‘segué (n) ﬁdw—!—/p”om\/adw (4.4)

for all § € V;(w), where a7 = \a®?a? + (u— %) (a®7a?® + a*?aP7), and so we are not
led to the linear model (3.4) of membrane shells.

Remark. The symmetric matrix a is positive definite for materials like steel (A =
10.10°kg/cm? and p = 8,2.10%kg/cm?), iron (A = 9,9.10°kg/cm? and p = 7,8.10%kg/cm?),
bronze (A = 6,2.10%kg/cm? and p = 3,8.10%kg/cm?), glass (A = 2,2.10%kg/cm? and p =
2,2.10%kg/cm?), nickel (A = 1,3.10%kg/cm? and u = 0, 85.10°kg/cm?).

Theorem 4.3. The limiting problem associated with the linearized variational formula-



320 CHIN. ANN. OF MATH. Vol.22 Ser.B

tion (4.4) reads

6.0 5 38,0 _ P*i8,0 _ 1Y*7068,0 4 738,05 — ,v,0
tis = Ost Iyt Lst790 + 129005 = p mn w,
730,0 __ 736,0 P*735,0 46,0 _ 3,0 1 5
_t\|5 = —0Ost — Fépt —byst7%" = p>7 — SAbysa™ in w,

8,0, — A8
t7%ns = 5a7°ns on y/vo,

53570'”5 =0 on 7/707

u’ =0 on o,

where the linearized stress tensor t790 is given by

. A
76,0 __ ~afyé 0 0 736,0 _ 7 _6p,,0
0 =a"""ey 5 (u”), 07 = 50" U3 -

§5. The Other Limiting Models of Membrane Shells

In order to find the other membrane shell models, we must now assume that

)\ao‘ﬁé'gnﬁ (W) + (A + 20)E3) 5 (u,u') #0,
52”3 (u®, ut) #0.

Theorem 5.1. The other solutions of the system (1.1) are given by the relations

u0 > = (aa +ud ) w?,
( SHS ; 2 ally (51)
(“3H3> = Uz, w? — L,

1
where $2> when they exist are the components of each eigenvector (defined up to a mul-

tiplicative constant) of the 2 X 2 matriz

<aa152|1(u0) aalgglg(uO))

aa250 (110) aa283“2 (UO)

Proof. If we denote d = Mr(AFE) + (A + 2;1)5%)“3, the system (2.2) then reads

2u (I +UA)E +dy =0,
(5.2)

2uzt A&y + d (1 + ugu?)) =0.

The first equation of the system (5.2) also reads

2uAEy +d (A +U) 'y =0,

hence, when we multiply this equation by z!, we get
2z’ A&y + dz' (A +U) 'y =0,

and when we substract the second equation of the system (5.2), we get
dz' (A~ + U)_l y=d(1+ “g|\3)'

Moreover, since we consider the case d # 0, we get

(1 + ugus) =z' (A7 + U)_1 y. (5.3)
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In order to express the values of y we rewrite & as
28y = (I—|— UtA) y+ (1 —i—ugu?)) z

—{(I+U'A) (A +U) +zz'} (A +U) Ny
— (AT LU U + U AU + 22"} (A +U) Ny
— (A7 42E) (A +U) .

By replacing & in the first equation of the system (5.2) by the expression found above, we
get

{n+va) (a7 +28) (A7 +0) "+l }y =0,

hence

p (AN U) (I+24E) (A7 +U) 'y = —dy.

Let M = A~! 4+ U. Then, the equation above reads
d
(I4+2AE)M 'y = —— My,
U

Let M~'y be an eigenvector of the matrix (I + 2AE) associated with the eigenvalue —%.
Then, if w is one of the two eigenvectors (defined up to a multiplicative constant) of the

2 x 2 matrix AE and Y is its associated eigenvalue, and if we note M~y = w, then we get

—% =1+ 2x. Thus, we just have to compute the eigenvalues and the eigenvectors of AF.
Next, we can give the expression of the vector y = Mw:

0 0
uOéHS =Yg = (aa'y + “a\l'y)wv'
And then, using the equation (5.3) we get
0 ¢ 0
14 ugs =2z'w = ug), w’.

5.1. The Variational Problems

Associated with each eigenvector w of the matrix AE given in Theorem 5.1, we get a
displacement field whose covariant components solve the following variational problem.

Theorem 5.2. The limiting variational problems associated with the solutions (5.1) read:

Find u® € V(w) such that for all n € V(w),

/ (b8 (u”) +d(5 +A2uaws — 0w ) } s (u®m) Vade = / pin/ade, (54)
1

where (wt, w?) are the components of the eigenvector (defined up to a multiplicative constant)
f the matri (“alggll () @ &g, (u”
of the matrix
aaZ(c/‘ng (110) aa2(c/‘2”2(u0)
d=—pu(l+2x).
Proof. Aswe did in the proof of Theorem 4.1, we use the variational formulation obtained
by identifying the terms in €° in (2.1), and we get (4.3).
For test functions v(z1,x2,x3) = n(z1,2) independent of x3,
—1 (.0 .1 _
Fili (u’,u',n) =0

K3

) associated with the eigenvalue x, and where

and the variational formulation reduces to

/Q a"Ey, (0 u') Fij; (uutim) Vade =2 / p0mi/adw.
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Let us expand the left part of this relation:
/Qapqijgg”q (u’,u") ‘F%‘O\Ij (u’,u',n) Vadz
= /Q {aaﬂijé’gllﬁ (uo) + 2a°‘3ij52”3 (uo,ul) + a33ij5§“3 (uo,ul)}}?”j (uo,ul,n) Vadz
- /Q [a960,, (u0) + ha7Peg (w0 ut) } 25 (w, ) Vade
+/ﬂ4uaa76’2”3 (u’,u') ]-"2”3 (u’,u',n) Vadzx
+ /Q {)\aaﬂfgllg () + (A + 2u)5§‘|3 (u’, ul)}f??ui,) (u’,u',n) Vadz.
Let us now write the ]-'ZQ‘B (uo, ul, 77) in the following way:
275 (s utm) = ()5 + ) + g™ (g + o)

st 0 0 0 0 1 —1 1 —1
ta (“s\lw Ml + a3 Melly T Uslly Tz + Uiy ntl\“/)

_ 0 0 0 0 0 0 0 0
= (%n?) + 773“7) +a%" (“a\w ol T Yoz np\lv) + g3 M)y 5

0 0 F0 0 0
hence if we denote & = (7796|1 ) T = (775”3 )  Fo = < Lis ) and H — (néll ’7(1J|\2 ) ,
312 23 Sl TR

we get
2Fy = (I+U'A) 7+ (1 + ug‘,g) £+ H' Ay,
and in the same way,
Fajs (0 ulm) = s + wag™ Mulys nps + 0w + a ugg gy = a7 uGnhys
hence
.7:??”3 =TlAy.
So we deduce
/Q {)\ao‘ﬂé'g”/g () + (A + Qu)Egus (u’,u') } }"??”3 (u°,u',n) Vadzx
= / drtAy/adz,
Q
/Q4uaa”6’3“3 (u’,u') ]-'3”3 (u°,u',n) Vadx
_ /Q % {Tt (I + AU) + (1 + ugug) et yfAH} A&o/adz.
The first equation of the system (5.2) multiplied by 7! A reads

2ut! (I + AU) A&y + dr' Ay = 0,
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so by adding the integrals above, we deduce
/Q {)\a“’gc‘,’g”ﬂ (u) + (A +2p) )5 (0, ul)}Fglw (u’,u',n) Vadzx
—1—/94/1(10"752“3 (u’,u') ]:SHS (u’,u',n) Vadz
- /Q 20 { (145 ) € +y' AH } A&y ada
_ / {atwe! +w' (A™) + U*) AH} 2 A& /ada.
Q
Finally,
/Qapqijé’guq (u’,u') ]-'f”j (u’,u',n) Vadz
= /Q {aaﬁfyégg”,@ (uO) + )\U/’Yégg‘l?) (uo, ul) } ]:’3H5 (1,107 77) \/&dﬂf

+ / [2iwe! +wt (A1 + UY) AH} 2uAEo/adz.
Q

To obtain the variational formulations, we still have to give the expressions of 2uA&y and

5§||3. By using the first equation of the system (5.2),

2uAy = —d (AT +U) 'y = —dw.
By using the definition of d,

_d o x
A2 A +2u

830"3 (uo,ul) I'(AE) .

The integral above then reads

/Q apqijé’guq (u’,u') fﬁ‘j (u°,u',n) Vadz
A
= A {ba,@’Y(Sgng (uo) -+ )\+2,u/(175d} .F,(;H(; (uOﬂ?) \/adx

- / dw' {z¢" + (I + U'A) H} wy/adz.
Q

Moreover,
(]—'SM (u’, n)) = % (H+H'+U'AH + H' AU + z€' + ¢2') |
and consequently, if we notice that
w' (z&'+ (I+U'A)H)w=w"(&z' + H' (I + AU)) w,
we get
w' {z{t + (I + UtA) H} W = .7-'3”5 (uo, n) wlw®.

The variational formulations then read

A )
/Q {bam‘sé‘glﬁ (u°) +d < a’ — w7w5> } ]:'(Y)Hé (u°,n) Vadz = 2/ p"Oniv/adw.

A+ 24
5.2. The Boundary Value Problems
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Theorem 5.3. The boundary value problems associated with the variational formulation
(5.4) read

10—
T®0ps =0 on v/,
u’ =0 on Yo,

where the contravariant components of the limiting stress tensor associated with these limit-
ing membrane shell models are given by

T700 = (0270 4+ b7 augy )E 5 (u°) — d(ww’ +wwa ug,)
dA
+
A+2p

7350 — (b0l 5 (u0) — du’u? +

(a"Y(s + G,(SPG/O"Yung )7

ép\,,0
A+ Qua )u3llp’
T = —h! (21,22, -1) — / [ (@1, @0, t)dt + (x5 4+ 1)p°
-1
Proof. By identifying the terms of order 0 of the “scaled” first Piola-Kirchhoff stress
tensor, we get
Fy6, s §
1700 = (aP?D° 4 P tamugut)gguq (uo,ul) ,
and therefore

Rl 5 5 5
1700 = (a*P7° 4 a®F Pa" g, )Eqys (%) + 20aa” ug 3 €55 (u,u)

+ Xa"® + a‘s”a”ug”p)gg‘w (u’,u').

en >\+2u
T70 = (pB° 4 baﬁapamugup)gaw (u°) + 2uaa5a”7ugu3é’2“3 (u’,u')
n dA
A+2u
Furthermore 2uA&y) = —dw and y = (A_1 + U) w, hence

2100 ud s £ 5 (0’ u') = Ay (2pA&)" = —d (I + AU) ww'

Moreover £, (u’,u') = . a*PEq 5 (u’), so

4 4
(@ +a pa‘”ugup).

whw! + wlwPa®lu OH wlw? + w?wlau 2H
= — w1w2 +w1wpaa'2 ng ’LU2U)2 +w wanZ OHp
= —d(ww® + w‘sw”a”'yug”p).
We thus get the expression of the 7790,
In the same way,
735,0 35 5t, 53, 0
T {apq + apq tas gHt} plla ( s 1)
0 0 0 0 0 .1
= a aBs pUSHngtHﬁ (u ) + 2/,La (1 + USHS)gaH?) (u u ) + )\a U3H 53”3 (u ,a ) .
0 0 1y _ _d 0
Moreover &35 (u”,u') = 55 )\+2ua se oIl (u°), so
_ dX
35,0 _ 1aBdp, 0 o0 § 0 0 0 .1 6p,0
T _bOé pugl‘pg ”B ( ) +2/,Laa (1+U3H3)(€a”3 (u ,u ) + ,\_|_2ua pU‘BHp'
Furthermore, by using the relations 2uA&) = —dw and (1 + “gus) = z'w, we get

21a*° (1 + ugH3) 52“3 (uo, u') =(1+ ug|‘3)2;LA50 = —dwz'w = fdwéwpugup.



No

.3 C. COLLARD FORMAL MODELS FOR NONLINEARLY ELASTIC MEMBRANE SHELLS 325

Finally, we get the expression of the 7399,

T730 = (a7 4 Py, 19, ()
= Xa*Pa® 77,LU”3<’5'OLHB (u®) + 2p{a™ + ao"’a”ugup}gg”?, (u’,u')
+ (A4 2p)a”ug) 5 €95 (u’,ul)
= ()\ao‘ﬁgglw ( ) ()\+2u)53”3 (u ul))a"'yugu3
+ 24 {a“” +a*Pa”lu) } Eqps (u’,ut),

which is exactly the first equation of the system (1.1), hence 7730 = 0.

T33,0 _ {apq33 +apq3ta53 0 } Sl ( , 1)

QHt
= )\a/aﬁ(l +Ug”3)(€a‘|5 (u ) +2/,l/aapug”pgg‘|3 (u07u1)
+ (A4 200) (1 + ug3) €55 (u’,u')
= (Aa® B«‘:OW (u%) + ()\+2u)53‘|3 (u’,u'))(1 +ug|‘3) +2uaapu§“p€2”3 (u’u'),

which is exactly the second equation of the system (1.1), hence 7330 = 0.

The expressions of the T%! are obtained in the same way as in [5].
The variational formulations (5.4) also read

/ {17005 + T35 }vadw = / poads,

and if we assume that 7%" € H'(w) then the end of the proof resembles that of Theorem
3.1.

Remark. The linearization of the variational formulation has still to be established.
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