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A REMARK ON FORMAL MODELS FOR
NONLINEARLY ELASTIC MEMBRANE SHELLS
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Abstract

This paper gives all the two-dimensional membrane models obtained from formal asymptotic
analysis of the three-dimensional geometrically exact nonlinear model of a thin elastic shell made
with a Saint Venant-Kirchhoff material. Therefore, the other models can be quoted as flexural
nonlinear ones. The author also gives the formal equations solved by the associated stress tensor

and points out that only one of those models leads, by linearization, to the “classical” linear
limiting membrane model, whose justification has already been established by a convergence
theorem.
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§1. Introduction

We use the following conventions: Latin indices take their values in the set {1,2,3}, Greek
indices in the set {1,2}, and the summation convention is used.

Let ω be an open bounded connected set of R2 with a Lipschitz boundary γ. We denote
by (xα) a point of ω̄, and ∂α = ∂/∂xα. Let φ ∈ C3

(
ω̄;R3

)
be an injective mapping such

that the two vectors aα = ∂αφ are linearly independent for all point of ω̄. The vectors aα
form a covariant basis of the tangent plane to the surface S = φ (ω̄). We define the unit
vector normal to each point of the middle surface S by a3 = a1×a2

|a1×a2| , where “×” represents

the vector product and | · | the Euclidean norm in R3. We define the associated contravariant
basis

(
aβ

)
by aβ ·aα = δαβ (δαβ is the Kronecker symbol), and we complete this contravariant

basis with the vector a3 defined by a3 = a3. Moreover, for all point of S we define the two-
dimensional Christoffel symbols Γρ∗

αβ = aρ ·∂αaβ (which satisfy the relations Γρ∗
αβ = Γρ∗

βα), the
metric tensor through its covariant components aαβ = aα · aβ or through its contravariant
ones aαβ = aα · aβ , the area element

√
adx1dx2 where a = det (aαβ), and the curvature

tensor through its covariant components bαβ = (∂βaα) · a3 = bβα or through its mixed ones
bβα = − (∂αa3) · aβ .

For ε > 0, we consider a shell with thickness 2ε and middle surface S, made of a Saint
Venant-Kirchhoff elastic material whose Lamé constants λ > 0 and µ > 0 are independent
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Laboratoire de Mathématiques Appliquées au Calcul Scientifique, Université de Valenciennes et du
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of ε. Let Ωε = ω × ]−ε; +ε[ and let ϕ be the injective mapping (this is the case when ε is
small enough[2]), defined by ϕ (xε) = φ (xε

1;x
ε
2) + xε

3a3 (x
ε
1;x

ε
2).

The shell whose reference configuration is ϕ
(
Ω̄ε

)
is clamped on the portion ϕ (Γε

0), where
Γε
0 = γ0 × [−ε; +ε], γ0 ⊂ γ, of its lateral surface ϕ (Γε), where Γε = γ × [−ε; +ε]. On its

upper face ϕ
(
Γε
+

)
, where Γε

+ = ω×{+ε}, and its lower face ϕ
(
Γε
−
)
, where Γε

− = ω×{−ε},
it is subjected to applied surface forces and to applied body forces on ϕ

(
Ω̄ε

)
. Under the

action of these forces, the shell undergoes a displacement field.

In order to establish the limiting models of membrane shells, we use the general principles
of formal asymptotic analysis. We define an open set Ω = ω×] − 1;+1[ and the sets Γ+ =
ω × {+1} and Γ− = ω × {−1} independent of ε. With each function dε(xε) defined on
Ωε, we associate the function d(ε)(x) defined on the fixed open set Ω by dε(xε) = d(ε)(x).
Then, the scaled covariant components of the displacement field u(ε) = (ui(ε)) solve the
variational problem:

Find u(ε) ∈ V(Ω) =
{
v ∈ W1,4(Ω); v = 0 on Γ0 = γ0 × (−1,+1)

}
such that

ε

∫
Ω

gpqij(ε)Ep∥q (ε) (u(ε))Fi∥j (ε) (u(ε),v)
√
g(ε)dx

= ε

∫
Ω

f i(ε)vi
√
g(ε)dx+

∫
Γ+∪Γ−

hi(ε)vi
√
g(ε)dω,

for all v ∈ V(Ω), where
(
f i(ε)

)
are the contravariant componants of the scaled applied

body forces and
(
hi(ε)

)
are the contravariant componants of the scaled applied surface

forces in the covariant basis (ai), where gijpq(ε) are the contravariant components of the
scaled three-dimensional elasticity tensor, where Ep∥q (ε) (u(ε)) are the covariant components
of the scaled symmetric Green-Saint Venant strain tensor whose Gâteaux derivatives at u(ε)
in the direction v are Fi∥j (ε) (u(ε),v).

The associated boundary value problem reads
−T ij

∥j (ε)(x) = f i(ε)(x), x ∈ Ω,

T i3(ε)(x) = hi(ε)(x), x ∈ Γ+,
−T i3(ε)(x) = hi(ε)(x), x ∈ Γ−,

where

T ij(ε) =
(
gpqij(ε) + gpqjt(ε)gsi(ε)us∥t (ε)

)
Ep∥q (ε)(u(ε))

are the contravariant components of the first Piola-Kirchhoff scaled stress tensor whose
scaled covariant derivatives T ij

∥k (ε) are defined by

T ij
∥α (ε) = ∂αT

ij(ε) + T rj(ε)Γi
rα(ε) + T ir(ε)Γj

rα(ε),

T ij
∥3 (ε) =

1

ε
∂3T

ij(ε) + T rj(ε)Γi
r3(ε) + T ir(ε)Γj

r3(ε),

where Γk
ij(ε) are the three-dimensional Christoffel symbols expressed on the fixed open set

Ω.

We next assume that each geometrical datum that depends on ε can be expanded up to
whatever order is necessary in terms of power of x3 and that there exists a formal asymptotic
expansion of the displacement field expressed in the fixed open set Ω by

u(ε) =
1

k
u−k + · · ·+ 1

ε
u−1 + u0 + εu1 + · · · ,

where the terms ur are independent of ε. Then both tensors
(
Ep∥q (ε) (u(ε))

)
and
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(Fi∥j(ε) (u(ε),v)) possess asymptotic expansions begining with different powers of ε:

Eα∥β (ε) (u(ε)) = 1
ε2k

E−2k
α∥β + · · · , Fα∥β (ε) (u(ε),v) =

1
εk
F−k

α∥β (v) + · · · ,
Eα∥3 (ε) (u(ε)) = 1

ε2k+1 E−2k−1
α∥3 + · · · , Fα∥3 (ε) (u(ε),v) =

1
εk+1F−k−1

α∥3 (v) + · · · ,
E3∥3 (ε) (u(ε)) = 1

ε2k+2 E−2k−2
3∥3 + · · · , F3∥3 (ε) (u(ε),v) =

1
εk+2F−k−2

3∥3 (v) + · · · ,
where the terms Er

i∥j and Fr
i∥j are independent of ε.

Furthermore, we require that no compatibility conditions on the data are needed for the
three-dimensional problem: this means that if at the l-th step, l ∈ Z, there exist f i,l and
hi,l+1 independent of ε such as f i,ε = f i(ε) = εlf i,l and hi,ε = hi(ε) = εl+1hi,l+1 and they
must satisfy the compatibility condition∫

ω

pi,l(x1, x2)ηi(x1, x2)dx1dx2 = 0

for η in some functional space on ω, where

pi,l(x1, x2) =
1

2

(∫ 1

−1

f i,l(x1, x2, t)dt+ hi,l+1(x1, x2,+1) + hi,l+1(x1, x2,−1)
)
,

then we assume that f i,l = 0 and hi,l+1 = 0.
The identification of the successive powers of ε in the variational problem (cf. [8]) leads us

to assume that the applied body forces are of order 0 (fε = f0) and that the applied surface
forces are of order 1 (hε = εh1). Then the asymptotic expansion of the displacement field
u(ε) begins with a term u0 independent of x3, and we are next led to solve the following
system: 

(λaαβE0
α∥β (u

0) + (λ+ 2µ)E0
3∥3 (u

0,u1))aγδu0
δ∥3

+2µE0
α∥3 (u

0,u1)(aαγ + aαρaγδu0
δ∥ρ ) = 0,

(λaαβE0
α∥β (u

0) + (λ+ 2µ)E0
3∥3 (u

0,u1))(1 + u0
3∥3 )

+2µaαγE0
α∥3 (u

0,u1)u0
3∥γ = 0,

(1.1)

where the leading term of the asymptotic expansion of the Green-Saint Venant strain tensor
can be written as

2E0
α∥β (u

0) = u0
α∥β + u0

β∥α + aγδu0
γ∥αu

0
δ∥β + u0

3∥αu
0
3∥β ,

2E0
α∥3 (u

0,u1) = u0
α∥3 + u0

3∥α + aγδu0
γ∥αu

0
δ∥3 + u0

3∥αu
0
3∥3 ,

2E0
3∥3 (u

0,u1) = 2u0
3∥3 + aγδu0

γ∥3u
0
δ∥3 + u0

3∥3u
0
3∥3 ,

(1.2)

with

u0
α∥β = ∂βu

0
α − Γζ∗

αβu
0
ζ − bαβu

0
3, u0

α∥3 = ∂3u
1
α + bζαu

0
ζ ,

u0
3∥β = ∂βu

0
3 + bζβu

0
ζ , u0

3∥3 = ∂3u
1
3.

The purpose of this work is to find all the solutions to the system (1.1) which is an alge-
braic system with unknowns u0

i∥3 , and to give the associated variational equations and the

boundary value problems.
The solution given by B. Miara (Section 2){

λaαβE0
α∥β

(
u0

)
+ (λ+ 2µ)E0

3∥3
(
u0,u1

)
= 0,

E0
α∥3

(
u0,u1

)
= 0,

(1.3)

allows us to find (Section 3) the classical variational problem:
Find u0 ∈ V(ω) =

{
η = (ηi) ∈ W1,4(ω); η = 0 on γ0

}
such that for all η(x1, x2) ∈ V(ω)∫

ω

bαβγδE0
α∥β (u

0)F0
γ∥δ (u

0,η)
√
adω =

∫
ω

pi,0ηi
√
adω,
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where bαβγδ is the two-dimensional elasticity tensor and where F0
γ∥δ

(
u0,η

)
is the Gâteaux

derivative of the two-dimensional change of metric tensor E0
α∥β

(
u0

)
at the point u0 in the

direction η.
The associated boundary value problem reads

−T iδ,0
∥δ = pi,0 in ω,

T iδ,0nδ = 0 on γ/γ0,
u0 = 0 on γ0,

where T iδ,0 are the first non vanishing terms of the asymptotic expansion of the first Piola-
Kirchhoff stress tensor[5] given by

T γδ,0 =
{
bαβγδ + bαβδρaσγu0

σ∥ρ

}
E0
α∥β

(
u0

)
,

T 3δ,0 = bαβδρu0
3∥ρ E

0
α∥β

(
u0

)
,

and where the “divergence” of a bidimensional tensor is given by

T iδ,0
∥δ = ∂δT

iδ,0 + Γδ∗
rδT

ir,0 + Γi∗
rδT

rδ,0

with Γ3∗
k3 = 0, Γk∗

33 = 0, Γ3∗
γδ = bγδ and Γγ∗

δ3 = −bγδ .

We note that the linearization of the variational problem written for a shell completely
clamped on its lateral boundary (i.e. γ0 = γ) leads to the “classical” linear model whose
existence and uniqueness of the solution has been proved in [3]:

Find u0 ∈ Vm(ω) = H1
0 (ω)×H1

0 (ω)× L2(ω) such that for all η(x1, x2) ∈ Vm(ω),∫
ω

bαβγδe0α∥β (u
0)e0γ∥δ (η)

√
adω =

∫
ω

pi,0ηi
√
adω,

where e0α∥β (u
0) is the linearized change of metric tensor.

A second solution to the system (1.1) (Section 4){
u0
α∥3 = 0,

u0
3∥3 = −1,

(1.4)

gives the new limiting variational problem (Theorem 4.1):

Find u0 ∈ V(ω) such that for all η(x1, x2) ∈ V(ω),∫
ω

aαβγδẼ0
α∥β

(
u0

)
F̃0

γ∥δ
(
u0,η

)√
adω =

∫
ω

pi,0ηi
√
adω,

where Ẽ0
α∥β (u

0) = E0
α∥β (u

0)− 1
2

λ
λ+2µaαβ and where

F̃0
α∥β (u

0,η) =
(
Ẽ0
α∥β (u

0)
)′

η = F0
α∥β (u

0,η).

The associated boundary value problem reads

−T̃ γδ,0
∥δ = pγ,0 in ω,

−T̃ 3δ,0
∥δ = p3,0 − 1

2λbγδa
γδ in ω,

T̃ γδ,0nδ = λ
2a

γδnδ on γ/γ0,

T̃ 3δ,0nδ = 0 on γ/γ0,
u0 = 0 on γ0,

where T̃ iδ,0 (which is not the leading term of the asymptotic expansion of the first Piola-
Kirchoff stress tensor) is given by
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T̃ γδ,0 = (aαβγδ + aαβτδaργu0
ρ∥τ )E

0
α∥β (u

0)− λ

2
aδτaγρu0

ρ∥τ ,

T̃ 3δ,0 = aαβγδu0
3∥γ E

0
α∥β

(
u0

)
− λ

2
aγδu0

3∥γ .

The linearization of the variational equation reads:
Find u0 ∈ Vl(ω) =

{
η = (ηi) ∈ H1(ω); η = 0 on γ0

}
such that for all η(x1, x2) ∈ Vl(ω)∫

ω

aαβγδe0α∥β
(
u0

)
e0γ∥δ (η)

√
adω − 1

2

∫
ω

λaγδ
(
aρτu0

ρ∥γ η
0
τ∥δ + u0

3∥γ η
0
3∥δ

)√
adω

=
1

2

∫
ω

λaγδe0γ∥δ (η)
√
adω +

∫
ω

pi,0ηi
√
adω.

So, it does not lead to the linear model. In each case, the linear one and the nonlinear one,
a linear term in u0 and perturbation terms of volume and surface forces appear.

Finally, the system (1.1) has also the set of solutions (Section 5)
(
u0
α∥3

)
τ
=

(
aαβ + u0

α∥β

)
wβ

τ ,(
u0
3∥3

)
τ
= u0

3∥αw
α
τ − 1,

τ = 1, 2

where

(
w1

1

w2
1

)
and

(
w1

2

w2
2

)
are the components of the eigenvectors (defined up to a multi-

plicative constant) of the 2× 2 matrix

AE :=

(
aα1E0

α∥1 (u
0) aα1E0

α∥2 (u
0)

aα2E0
α∥1 (u

0) aα2E0
α∥2 (u

0)

)
.

The new variational formulations associated with these solutions are then given by (Theorem
5.2):

Find u0 ∈ Ṽ(ω) =
{
η = (ηi) ∈ W1,4(ω); η = 0 on γ0

}
such that for all η ∈ Ṽ(ω),∫

ω

{
bαβγδE0

α∥β (u
0) + d1

( λ

λ+ 2µ
aγδ − wγ

1w
δ
1

)}
F0

γ∥δ
(
u0,η

)√
adω =

∫
ω

pi,0ηi
√
adω,

where d1 is the eigenvalue of the matrix −µ(I + 2AE) associated with the eigenvector w1.
We get the same kind of models with the eigenvalue d2 of the matrix −µ(I+2AE) associated
with the eigenvector w2.

The associated boundary value problems read
−T̄ iδ,0

∥δ = pi,0 in ω,

T̄ iδ,0nδ = 0 on γ/γ0,
u0 = 0 on γ0,

where the contravariant components of the limiting stress tensor associated with these lim-
iting membrane shell models are given by

T̄ γδ,0 = (bαβγδ + bαβδρaσγu0
σ∥ρ )E

0
α∥β

(
u0

)
− dτ (w

γ
τw

δ
τ + wδ

τw
ρ
τa

σγu0
σ∥ρ )

+
dτλ

λ+ 2µ
(aγδ + aδρaσγu0

σ∥ρ ),

T̄ 3δ,0 =

(
bαβδρE0

α∥β
(
u0

)
− dτw

δ
τw

ρ
τ +

dτλ

λ+ 2µ
aδρ

)
u0
3∥ρ

with no summation on τ indices.
Once again, the linearization of these new variational problems does not lead to the linear

model.



312 CHIN. ANN. OF MATH. Vol.22 Ser.B

§2. About the Asymptotic Analysis of Shells

Let Ωε = ω × ]−ε; +ε[, we denote xε = (xε
i ) a point of Ω̄ε and let ∂ε

i = ∂/∂xε
i . Let ϕ be

the injective mapping (this is the case when ε is small enough[2]), defined by

ϕ : xε = (xε
i ) ∈ Ω̄ε 7−→ ϕ (xε) = φ (xε

1;x
ε
2) + xε

3a3 (x
ε
1;x

ε
2) .

When ε is small enough, the three vectors defined by gε
i = ∂ε

iϕ are linearly independent,
therefore they define a covariant basis at each point of Ω̄ε. The associated contravariant basis(
gj,ε

)
is defined by gj,ε.gε

i = δij . We can then define the covariant components gεij = gε
i .g

ε
j

and the contravariant ones gij,ε = gi,ε.gj,ε of the metric tensor. We also define the volume
element

√
gεdxε and the surface element det (∇ϕ) |∇ϕ−tn| dsε where gε = det

(
gεij

)
, as well

as the three-dimensional Christoffel symbols Γp,ε
ij = gp,ε.∂ε

jg
ε
i = Γp,ε

ji . Note that, for the

mapping ϕ defined above, Γ3,ε
α3 = Γk,ε

33 = 0.

The shell whose reference configuration ϕ
(
Ω̄ε

)
is a natural state, is clamped on the

portion ϕ(Γε
0) of its lateral surface ϕ(Γ

ε). On its upper face ϕ(Γε
+) and its lower face ϕ(Γε

−),

it is subjected to applied surface forces whose contravariant components are hi,ε : xε ∈
Γε
+∪Γε

− → R3, and to body forces whose contravariant components are f i,ε : xε ∈ Ωε → R3.

Under the action of these forces, the shell undergoes a displacement field uε
ig

i,ε.
We next write the problem on a fixed open set Ω = ω×]− 1;+1[ (i.e. independent of ε)

and we use the general principles of formal asymptotic analysis[6,7,1]:
(i) We denote by x = (xi) a point of Ω̄, and let ∂i = ∂/∂xi. With the point x ∈ Ω̄, we

associate the point xε = (xε
i ) ∈ Ω̄ε defined by xε

α = xα and xε
3 = εx3, hence ∂ε

α = ∂α and
∂ε
3 = 1

ε∂3.

(ii) With each function dε defined on Ωε, we associate the function d(ε) defined on Ω by

dε(xε) = d(ε)(x), xε ∈ Ωε, x ∈ Ω.

Then the “scaled” displacement field satisfies the variational problem:
Find u(ε) = (ui(ε)) ∈ V(Ω) =

{
v ∈ W1,4(Ω); v = 0 on Γ0

}
such that

ε

∫
Ω

gpqij(ε)Ep∥q (ε) (u(ε))Fi∥j (ε) (u(ε),v)
√
g(ε)dx

= ε

∫
Ω

f i(ε)vi
√
g(ε)dx+

∫
Γ+∪Γ−

hi(ε)vi
√
g(ε)dω (2.1)

for all v ∈ V(Ω), where

gpqij(ε) = λgpq(ε)gij(ε) + µ
(
gpi(ε)gqj(ε) + gpj(ε)gqi(ε)

)
are the contravariant components of the “scaled” three-dimensional elasticity tensor, where

Ep∥q (ε) (u(ε)) =
1

2

{
up∥q (ε) + uq∥p (ε) + gsr(ε)us∥p (ε)ur∥q (ε)

}
are the covariant components of the “scaled” symmetric Green-Saint Venant strain tensor,
and where Fi∥j (ε) (u(ε),v) are their Gâteaux derivatives at the point u(ε) in the direction
v, i.e.

Fi∥j (ε) (u(ε),v) = E ′
i∥j (ε) (u(ε))v

=
1

2

{
vi∥j (ε) + vj∥i (ε) + gsr(ε)

(
us∥i (ε)vr∥j (ε) + vs∥i (ε)ur∥j (ε)

)}
with vi∥β (ε) = ∂βvi − Γk

iβ(ε)vk, vi∥3 (ε) =
1
ε∂3vi − Γσ

i3(ε)vσ.

Let us recall the principle of formal asymptotic analysis used by B. Miara & E. Sanchez-
Palencia[9] in the case of linearly elastic thin shells:
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(iii) We assume that each geometrical datum that depends on ε can be expanded up to
whatever order is necessary in terms of power of x3:

gi(ε) = ai + εx3g
i,1 + · · · ,

gij(ε) = aij + εx3g
ij,1 + · · · ,

gpqij(ε) = apqij + εx3g
pqij,1 + · · · ,

where apqij = λapqaij + µ
{
apiaqj + apjaqi

}
, aij = ai.aj and aα3 = aα.a3 = 0,

Γk
ij(ε) = Γk,0

ij + εx3Γ
k,1
ij + · · · ,

Γγ,0
αβ = Γγ∗

αβ , Γ3,0
αβ = bαβ , Γβ,0

α3 = −bβα, Γ3,0
i3 = Γi,0

33 = 0.

(iv) We assume that there exists a formal asymptotic expansion of the unknown

u(ε) =
1

εk
u−k + · · ·+ u0 + εu1 + · · · .

In her article, B. Miara[8] demonstrates that, for “membrane” thin elastic shells, the
applied body forces are of order 0, f(ε) = f0, the applied surface forces are of order 1,
h(ε) = εh1, and that the displacement field is of order 0, u(ε) = u0.

The identification of the successive powers of ε proves that

∂3u
0 = 0,

and then, by identifying the coefficients of ε−1 in (2.1), we get∫
Ω

(
λaαβE0

α∥β (u
0) + (λ+ 2µ)E0

3∥3 (u
0,u1)

)
F−1

3∥3 (u
0,u1,v)

√
adx

+

∫
Ω

4µaαγE0
α∥3 (u

0,u1)F−1
γ∥3 (u

0,v)
√
adx = 0

for all v ∈ V(Ω), whereF−1
γ∥3 (u

0,v) = 1
2

(
∂3vγ + aβσu0

β∥γ ∂3vσ

)
+ 1

2u
0
3∥γ ∂3v3,

F−1
3∥3 (u

0,u1,v) = aγδu0
δ∥3 ∂3vγ +

(
1 + u0

3∥3

)
∂3v3.

If we choose test functions v = (v1, v2, 0) and then v = (0, 0, v3), the variational problem
above leads us to solve the nonlinear algebraic system in u0

i∥3 (1.1) which can be written as

a matrix in the following way.
With the notations:

A =
(
aαβ

)
, E := E(u0) =

(
E0
α∥β (u

0)
)
, U =

(
u0
1∥1 u0

1∥2
u0
2∥1 u0

2∥2

)
,

E0 := E
(
u0,u1

)
=

(
E0
α∥3 (u

0,u1)
)
, z =

(
u0
3∥α

)
, y =

(
u0
α∥3

)
,

we get U tAU =
(
aγδu0

γ∥αu
0
δ∥β

)
and zzt =

(
u0
3∥αu

0
3∥β

)
, so that we can express the leading

term of the asymptotic expansion of the Green-Saint Venant strain tensor (1.2) by

2E = U + U t + U tAU + zzt,

2E0 =
(
I + U tA

)
y +

(
1 + u0

3∥3

)
z,

2E0
3∥3 = ytAy +

(
1 + u0

3∥3

)2

− 1.
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Therefore, the system of equations (1.1) reads
[
λtr (AE) + (λ+ 2µ)E0

3∥3

]
Ay + 2µA (I + UA) E0 = 0,[

λtr (AE) + (λ+ 2µ)E0
3∥3

] (
1 + u0

3∥3

)
+ 2µztAE0 = 0.

(2.2)

We are now going to find all the solutions u0
i∥3 of this system.

§3. Revisiting the First Limiting Model of Membrane Shells

Let us first recall the results obtained by B. Miara[8] leading to the classical limiting
membrane shell model.

3.1. The Variational Problem
A first solution (1.3) of system (2.2) leads to the limiting membrane variational problem:

Find u0 ∈ V(ω) =
{
η = (ηi) ∈ W1,4(ω); η = 0 on γ0

}
such that for all η(x1, x2) ∈ V(ω)

independent of x3, ∫
ω

bαβγδE0
α∥β (u

0)F0
γ∥δ (u

0,η)
√
adω =

∫
ω

pi,0ηi
√
adω, (3.1)

where the two-dimensional elasticity tensor is given by

bαβγδ =
2λµ

λ+ 2µ
aαβaγδ + µ

(
aαγaβδ + aαδaβγ

)
,

and where the Gâteaux derivative of the two-dimensional change of metric tensor E0
α∥β

(
u0

)
at the point u0 in the direction η is given by

F0
γ∥δ

(
u0,η

)
=

1

2

(
η0γ∥δ + η0δ∥γ + astu0

s∥δ η
0
t∥γ + astu0

s∥γ η
0
t∥δ

)
,

with the covariant derivatives of the vector η

η0γ∥δ = ∂δηγ − Γρ∗
γδηρ − bγδη3, η03∥δ = ∂δη3 + bρδηρ.

3.2. The Boundary Value Problem
The limiting contravariant components of the “scaled” stress tensor

T ij(ε) =
{
gpqij(ε) + gpqjt(ε)gsi(ε)us∥t (ε)

}
Ep∥q (ε)(u(ε)) (3.2)

associated with the solution (1.3) have been computed in [4, 5]; they are of order 0 for the
terms T iδ and of order 1 for the terms T i3:

T γδ,0 =
{
bαβγδ + bαβδρaσγu0

σ∥ρ

}
E0
α∥β

(
u0

)
,

T 3δ,0 = bαβδρu0
3∥ρ E

0
α∥β

(
u0

)
,

T γ3,1 = −hγ,1(x1, x2,−1)−
∫ x3

−1

fγ,0(x1, x2, t)dt

− (x3 + 1)
(
∂δT

γδ,0 + T γδ,0Γρ∗
δρ + T ρδ,0Γγ∗

ρδ − T 3δ,0bγδ

)
,

T 33,1 = −h3,1(x1, x2,−1)−
∫ x3

−1

f3,0(x1, x2, t)dt

− (x3 + 1)
(
∂δT

3δ,0 + T 3δ,0Γρ∗
δρ + T γδ,0bγδ

)
. (3.3)

Theorem 3.1. (i) The limiting “membrane” problem associated with (3.1) is of the
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divergence form 
−T iδ,0

∥δ = pi,0 in ω,

T iδ,0nδ = 0 on γ/γ0,
u0 = 0 on γ0,

where

T iδ,0
∥δ = ∂δT

iδ,0 + Γδ∗
rδT

ir,0 + Γi∗
rδT

rδ,0.

(ii) Hence we can rewrite the terms T i3,1 as follow :

T i3,1 = −hi,1(x1, x2,−1)−
∫ x3

−1

f i,0(x1, x2, t)dt

+
x3 + 1

2

{
hi,1(x1, x2,+1) + hi,1(x1, x2,−1) +

∫ 1

−1

f i,0(x1, x2, t)dt
}
.

Proof. We rewrite the variational formulation (3.1) as follows:∫
ω

pi,0ηi
√
adω =

∫
ω

bαβγδE0
α∥β (u

0)
(
η0γ∥δ + aστu0

σ∥γ η
0
τ∥δ + u0

3∥γ η
0
3∥δ

)√
adω,

=

∫
ω

{
T γδ,0η0γ∥δ + T 3δ,0η03∥δ

}√
adω.

If we assume T iδ,0 ∈ H1(ω), using a Green formula and the relation ∂δ
√
a = Γρ∗

δρ

√
a we get∫

ω

pi,0ηi
√
adω

= −
∫
ω

(
∂δT

γδ,0 + Γρ∗
δρT

γδ,0 + Tσδ,0Γγ∗
σδ − T 3δ,0bγδ

)
ηγ

√
adω +

∫
γ/γ0

T γδ,0nδηγ
√
adγ

−
∫
ω

(
∂δT

3δ,0 + Γρ∗
δρT

3δ,0 + T γδ,0bγδ

)
η3
√
adω +

∫
γ/γ0

T 3δ,0nδη3
√
adγ

for all η ∈ V(ω). Hence, we deduce that

−T iδ,0
∥δ = pi,0 in L2(ω),

and that

T iδ,0nδ = 0 on γ/γ0.

3.3. Linearization of the First Limiting Model
By linearizing the problem (3.1) written for a completely clamped shell, we find the

“classical” variational formulation of linearly elastic membrane shells:
Find u0 ∈ Vm(ω) = H1

0 (ω) × H1
0 (ω) × L2(ω) such that for all η(x1, x2) ∈ Vm(ω)

independent of x3, ∫
ω

bαβγδe0α∥β (u
0)e0γ∥δ (η)

√
adω =

∫
ω

pi,0ηi
√
adω, (3.4)

where e0α∥β (u
0) is the linearized change of metric tensor defined by

e0α∥β (u
0) =

1

2

(
u0
α∥β + u0

β∥α

)
,

with

u0
α∥β =

1

2

(
∂αu

0
β + ∂βu

0
α

)
− Γζ∗

αβu
0
ζ − bαβu

0
3.
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Theorem 3.2. The associated equations of equilibrium read
−σγδ,0

∥δ = −∂δσ
γδ,0 − Γρ∗

δρσ
γδ,0 − Γγ∗

ρδσ
ρδ,0 = pγ,0 in ω,

−σ3δ,0
∥δ = −bγδσ

γδ,0 = p3,0 in ω,

u0
α = 0 on γ0 = γ,

(3.5)

with σγδ,0 = bαβγδe0α∥β (u
0).

Proof. If we assume that σγδ,0 ∈ H1(ω), then by applying a Green formula to the
variational formulation (3.4) which reads∫

ω

σγδ,0η0γ∥δ
√
adω =

∫
ω

pi,0ηi
√
adω

for all η ∈ Vm(ω), we deduce the boundary value problem.

§4. A Second Limiting Model of Membrane Shells

4.1. The Variational Problem
Theorem 4.1. A second solution to the system (1.1) is{

u0
α∥3 = 0,

u0
3∥3 = −1,

and the associated limiting variational problem reads : Find u0 ∈ V(ω) such that for all
η(x1, x2) ∈ V(ω) independent of x3,∫

ω

aαβγδẼ0
α∥β

(
u0

)
F̃0

γ∥δ
(
u0,η

)√
adω =

∫
ω

pi,0ηi
√
adω (4.1)

with

Ẽ0
α∥β (u

0) = E0
α∥β (u

0)− 1

2

λ

λ+ 2µ
aαβ

=
1

2
(u0

α∥β + u0
β∥α + aγδu0

γ∥αu
0
δ∥β + u0

3∥αu
0
3∥β )−

1

2

λ

λ+ 2µ
aαβ ,

F̃0
γ∥δ

(
u0,η

)
= F0

γ∥δ
(
u0,η

)
=

1

2
(η0γ∥δ + η0δ∥γ + astu0

s∥γ η
0
t∥δ + astu0

s∥δ η
0
t∥γ ).

The formal solution u0 of the variational formulation is a stationary point of the functional

J(η) =
1

2

∫
ω

aαβγδẼ0
α∥β (η)Ẽ

0
γ∥δ (η)

√
adω −

∫
ω

pi,0ηi
√
adω.

Remark. This problem can also be written as follows:∫
ω

aαβγδE0
α∥β

(
u0

)
F0

γ∥δ
(
u0,η

)√
adω − 1

2

∫
ω

λaγδ
(
aρτu0

ρ∥γ η
0
τ∥δ + u0

3∥γ η
0
3∥δ

)√
adω

=
1

2

∫
ω

λaγδη0γ∥δ
√
adω +

∫
ω

pi,0ηi
√
adω,

= −
∫
ω

λ
(
Γγ∗
δρa

ρδ + Γδ∗
ρδa

γρ
)
ηγ

√
adω − 1

2

∫
ω

λaγδbγδη3
√
adω

+
1

2

∫
γ/γ0

λaγδηγνδ
√
adγ +

∫
ω

pi,0ηi
√
adω, (4.2)

using the relations

η0γ∥δ = ∂δηγ − Γρ∗
γδηρ − bγδη3, ∂δ

(
aγδ

)
= Γγ∗

δρa
ρδ + Γδ∗

ρδa
γρ and ∂δ

√
a = Γρ∗

δρ

√
a.
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So we obtain the nonlinear classical part of membrane shells:∫
ω

aαβγδE0
α∥β

(
u0

)
F0

γ∥δ
(
u0,η

)√
adω

with a linear term in u0: 1
2

∫
ω
λaγδ

(
aρτu0

ρ∥γ η
0
τ∥δ + u0

3∥γ η
0
3∥δ

)√
adω and perturbation terms

on the body forces

−
∫
ω

λ
(
Γγ∗
δρa

ρδ + Γδ∗
ρδa

γρ
)
ηγ

√
adω − 1

2

∫
ω

λaγδbγδη3
√
adω

and surface forces 1
2

∫
γ/γ0

λaγδηγνδ
√
adγ which only depend on the geometry of the shell.

Proof. Let us assume that, as in the first model,

λtr (AE) + (λ+ 2µ)E0
3∥3 = 0,

the system (2.2) reads {
2µ(I + U tA)tAE0 = 0,
2µztAE0 = 0.

When the displacement field u0 vanishes, the matrix (I + U tA) = I is invertible. So we
assume that at least in a suitable neighbourhood of u0 = 0 (i.e. for small displacements),
the matrix (I + U tA) is invertible. We then deduce that the vector E0 vanishes and thus we
are led back to the system (1.3).

In order to find other solutions of the system (2.2) and therefore other limiting models,
we must choose λtr (AE)+(λ+2µ)E0

3∥3 ̸= 0. Moreover, if we assume that E0 = 0, and since

the matrix A is invertible, the system (2.2) then reads{
y =

(
u0
α∥3

)
= 0,

1 + u0
3∥3 = 0.

We still have to check that this solution actually cancels the vector E0:
2E0 =

(
I + U tA

)
y + (1 + u0

3∥3 )z = 0.

So, the solution we have found is a solution to the system (2.2).
Thus, we are now able to give the limiting variational problem associated with this solu-

tion. To do so, we identify the terms ε0 in the variational formulation (2.1) (see [8]):∫
Ω

x3

(
gpqij,1 − bλλa

pqij
)
E0
p∥q (u

0,u1)F−1
i∥j (u

0,u1,v)
√
adx

+

∫
Ω

apqijE0
p∥q (u

0,u1)F0
i∥j (u

0,u1,u2,v)
√
adx

+

∫
Ω

apqijE1
p∥q (u

0,u1,u2)F−1
i∥j (u

0,u1,v)
√
adx

=

∫
Ω

f i,0vi
√
adx+

∫
Γ+∪Γ−

hi,1vi
√
adω (4.3)

for all v ∈ V(Ω), where

F0
i∥3

(
u0,u1,u2,v

)
=

1

2

{
v0i∥3 + v03∥i + ast

(
u0
s∥i v

0
t∥3 + u0

s∥3 v
0
t∥i + u1

s∥i v
−1
t∥3 + u1

s∥3 v
−1
t∥i

)
+ x3

(
bαρa

ρβ + bβρa
αρ
) (

u0
α∥i v

−1
β∥3 + u0

α∥3 v
−1
β∥i

)}
,
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with v−1
t∥α = 0 and v−1

t∥3 = ∂3vt. Using test functions v(x1, x2, x3) = η(x1, x2) ∈ V(ω)

independent of x3, we get F−1
i∥j (u

0,u1, η) = 0, and since we study the solution for which

E0
α∥3

(
u0

)
= 0, the variational formulation reduces to∫

Ω

{
aαβijE0

α∥β
(
u0

)
+ a33ijE0

3∥3
(
u0,u1

)}
F0

i∥j
(
u0,u1,η

)√
adx = 2

∫
ω

pi,0ηi
√
adω.

Moreover, 2E0
3∥3 = ytAy +

(
1 + u0

3∥3

)2

− 1 = −1, hence we get∫
Ω

(
aαβγδE0

α∥β
(
u0

)
− 1

2
λaγδ

)
F0

γ∥δ
(
u0,η

)√
adx

+

∫
Ω

(
λaαβE0

α∥β
(
u0

)
− λ+ 2µ

2

)
F0

3∥3
(
u0,u1,η

)√
adx = 2

∫
ω

pi,0ηi
√
adω.

Furthermore, η03∥3 = 0. Since η is independent of x3, we get η
−1
t∥3 = ∂3ηt = 0. We then have

F0
3∥3

(
u0,u1,η

)
= aγδu0

γ∥3 η
0
δ∥3 . Moreover, u0

γ∥3 = 0 is a solution to the system (2.2). Thus

we get F0
3∥3

(
u0,u1,η

)
= 0, which leads to the result given in the theorem.

Remark. We note that when the transverse resultant of forces pi,0 is equal to zero the
problem reads: Find u0 ∈ V(ω) such that for all η(x1, x2) ∈ V(ω) independent of x3,∫

ω

aαβγδE0
α∥β

(
u0

)
F0

γ∥δ
(
u0,η

)√
adω − 1

2

∫
ω

λaγδ
(
aρτu0

ρ∥γ η
0
τ∥δ + u0

3∥γ η
0
3∥δ

)√
adω

= −
∫
ω

λ
(
Γγ∗
δρa

ρδ + Γδ∗
ρδa

γρ
)
ηγ

√
adω − 1

2

∫
ω

λaγδbγδη3
√
adω +

1

2

∫
γ/γ0

λaγδηγνδ
√
adγ.

This problem have a nonvanishing solution.
4.2. The Boundary Value Problem
Theorem 4.2. The boundary value problem associated with the variational formulation

(4.1) reads 

−T̃ γδ,0
∥δ = pγ,0 in ω,

−T̃ 3δ,0
∥δ = p3,0 − 1

2λbγδa
γδ in ω,

T̃ γδ,0nδ = λ
2a

γδnδ on γ/γ0,

T̃ 3δ,0nδ = 0 on γ/γ0,
u0 = 0 on γ0,

where T̃ iδ,0 (which is not the leading term of the asymptotic expansion of the first Piola-
Kirchoff stress tensor) is given by

T̃ γδ,0 =
(
aαβγδ + aαβτδaργu0

ρ∥τ

)
E0
α∥β (u

0)− λ

2
aδτaγρu0

ρ∥τ ,

T̃ 3δ,0 = aαβγδu0
3∥γ E

0
α∥β

(
u0

)
− λ

2
aγδu0

3∥γ .

Proof. We write the variational problem (4.1) as (4.2).
By applying a Green formula, we get∫

ω

λaγδη0γ∥δ
√
adω

=

∫
ω

λ
[
−∂δ

(
aγδ

√
a
)
ηγ − Γγ∗

ρδa
ρδ
√
aηγ − bγδa

γδ
√
aη3

]
dω +

∫
γ/γ0

λaγδnδηγ
√
adγ
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for all η ∈ V(ω). Since ∂βa
α = −Γα∗

ρβa
ρ + bαβa

3 (Gauss formula), we get

∂δ
(
aγδ

√
a
)
=

(
−Γγ∗

δρa
ρδ − Γδ∗

δρa
γρ + Γρ∗

δρa
γδ
)√

a = −Γγ∗
δρa

ρδ
√
a,

hence ∫
ω

λaγδη0γ∥δ
√
adω = −

∫
ω

λbγδa
γδη3

√
adω +

∫
γ/γ0

λaγδnδηγ
√
adγ.

Moreover,

2

∫
ω

aαβγδE0
α∥β

(
u0

) (
η0γ∥δ + aρτu0

ρ∥γ η
0
τ∥δ + u0

3∥γ η
0
3∥δ

)√
adω

−
∫
ω

λaγδ
(
aρτu0

ρ∥γ η
0
τ∥δ + u0

3∥γ η
0
3∥δ

)√
adω = 2

∫
ω

{
T̃ γδ,0η0γ∥δ + T̃ 3δ,0η03∥δ

}√
adω.

The variational formulation (4.2) then reads∫
ω

{
T̃ γδ,0η0γ∥δ + T̃ 3δ,0η03∥δ

}√
adω

=

∫
ω

pi,0ηi
√
adω − 1

2

∫
ω

λbγδa
γδη3

√
adω +

1

2

∫
γ/γ0

λaγδnδηγ
√
adγ.

If we assume that T̃ iδ,0 ∈ H1(ω), then by applying a Green formula we get for all η ∈ V(ω)

−
∫
ω

(
∂δT̃

γδ,0 + Γρ∗
δρT̃

γδ,0 + T̃ σδ,0Γγ∗
σδ − T̃ 3δ,0bγδ

)
ηγ

√
adω +

∫
γ/γ0

T̃ γδ,0nδηγ
√
adγ

−
∫
ω

(
∂δT̃

3δ,0 + Γρ∗
δρT̃

3δ,0 + T̃ γδ,0bγδ

)
η3
√
adω +

∫
γ/γ0

T̃ 3δ,0nδη3
√
adγ

=

∫
ω

pi,0ηi
√
adω − 1

2

∫
ω

λbγδa
γδη3

√
adω +

1

2

∫
γ/γ0

λaγδnδηγ
√
adγ.

4.3. Linearization of the Second Limiting Model

By linearizing, the variational problem (4.1) reads:

Find u0 ∈ Vl(ω) = {η ∈ H1(ω); η = 0 on γ0} such that∫
ω

aαβγδe0α∥β
(
u0

)
e0γ∥δ (η)

√
adω − 1

2

∫
ω

λaγδ
(
aρτu0

ρ∥γ η
0
τ∥δ + u0

3∥γ η
0
3∥δ

)√
adω

=

∫
ω

ãαβγδe0α∥β
(
u0

)
e0γ∥δ (η)

√
adω − 1

2

∫
ω

λaγδu0
3∥γ η

0
3∥δ

√
adω

=
1

2

∫
ω

λaγδe0γ∥δ (η)
√
adω +

∫
ω

pi,0ηi
√
adω (4.4)

for all η ∈ Vl(ω), where ãαβγδ = λaαβaγδ +
(
µ− λ

2

) (
aαγaβδ + aαδaβγ

)
, and so we are not

led to the linear model (3.4) of membrane shells.

Remark. The symmetric matrix ã is positive definite for materials like steel (λ =
10.105kg/cm2 and µ = 8, 2.105kg/cm2), iron (λ = 9, 9.105kg/cm2 and µ = 7, 8.105kg/cm2),
bronze (λ = 6, 2.105kg/cm2 and µ = 3, 8.105kg/cm2), glass (λ = 2, 2.105kg/cm2 and µ =
2, 2.105kg/cm2), nickel (λ = 1, 3.105kg/cm2 and µ = 0, 85.105kg/cm2).

Theorem 4.3. The limiting problem associated with the linearized variational formula-
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tion (4.4) reads

−t̃γδ,0∥δ = −∂δ t̃
γδ,0 − Γρ∗

δρ t̃
γδ,0 − Γγ∗

σδ t̃
σδ,0 + t̃3δ,0bγδ = pγ,0 in ω,

−t̃3δ,0∥δ = −∂δ t̃
3δ,0 − Γρ∗

δρ t̃
3δ,0 − bγδ t̃

γδ,0 = p3,0 − 1
2λbγδa

γδ in ω,

t̃γδ,0nδ = λ
2a

γδnδ on γ/γ0,

t̃3δ,0nδ = 0 on γ/γ0,
u0 = 0 on γ0,

where the linearized stress tensor t̃γδ,0 is given by

t̃γδ,0 = ãαβγδe0α∥β (u
0), t̃3δ,0 = −λ

2
aδρu0

3∥ρ .

§5. The Other Limiting Models of Membrane Shells

In order to find the other membrane shell models, we must now assume that{
λaαβE0

α∥β
(
u0

)
+ (λ+ 2µ)E0

3∥3
(
u0,u1

)
̸= 0,

E0
α∥3 (u

0,u1) ̸= 0.

Theorem 5.1. The other solutions of the system (1.1) are given by the relations
(
u0
α∥3

)
=

(
aαγ + u0

α∥γ

)
wγ ,(

u0
3∥3

)
= u0

3∥γ w
γ − 1,

(5.1)

where

(
w1

w2

)
when they exist are the components of each eigenvector (defined up to a mul-

tiplicative constant) of the 2× 2 matrix(
aα1E0

α∥1 (u
0) aα1E0

α∥2 (u
0)

aα2E0
α∥1 (u

0) aα2E0
α∥2 (u

0)

)
.

Proof. If we denote d = λtr(AE) + (λ+ 2µ)E0
3∥3 , the system (2.2) then reads{

2µ (I + UA) E0 + dy = 0,

2µztAE0 + d
(
1 + u0

3∥3

)
= 0.

(5.2)

The first equation of the system (5.2) also reads

2µAE0 + d
(
A−1 + U

)−1
y = 0,

hence, when we multiply this equation by zt, we get

2µztAE0 + dzt
(
A−1 + U

)−1
y = 0,

and when we substract the second equation of the system (5.2), we get

dzt
(
A−1 + U

)−1
y = d(1 + u0

3∥3 ).

Moreover, since we consider the case d ̸= 0, we get(
1 + u0

3∥3

)
= zt

(
A−1 + U

)−1
y. (5.3)
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In order to express the values of y we rewrite E0 as

2E0 =
(
I + U tA

)
y +

(
1 + u0

3∥3

)
z

=
{(

I + U tA
) (

A−1 + U
)
+ zzt

} (
A−1 + U

)−1
y

=
{
A−1 + U + U t + U tAU + zzt

} (
A−1 + U

)−1
y

=
(
A−1 + 2E

) (
A−1 + U

)−1
y.

By replacing E0 in the first equation of the system (5.2) by the expression found above, we
get {

µ (I + UA)
(
A−1 + 2E

) (
A−1 + U

)−1
+ dI

}
y = 0,

hence

µ
(
A−1 + U

)
(I + 2AE)

(
A−1 + U

)−1
y = −dy.

Let M = A−1 + U . Then, the equation above reads

(I + 2AE)M−1y = − d

µ
M−1y.

Let M−1y be an eigenvector of the matrix (I + 2AE) associated with the eigenvalue − d
µ .

Then, if w is one of the two eigenvectors (defined up to a multiplicative constant) of the
2× 2 matrix AE and χ is its associated eigenvalue, and if we note M−1y = w, then we get
− d

µ = 1 + 2χ. Thus, we just have to compute the eigenvalues and the eigenvectors of AE.

Next, we can give the expression of the vector y = Mw:

u0
α∥3 = yα = (aαγ + u0

α∥γ )w
γ .

And then, using the equation (5.3) we get

1 + u0
3∥3 = ztw = u0

3∥γ w
γ .

5.1. The Variational Problems
Associated with each eigenvector w of the matrix AE given in Theorem 5.1, we get a

displacement field whose covariant components solve the following variational problem.
Theorem 5.2. The limiting variational problems associated with the solutions (5.1) read :

Find u0 ∈ Ṽ(ω) such that for all η ∈ Ṽ(ω),∫
ω

{
bαβγδE0

α∥β
(
u0

)
+ d

( λ

λ+ 2µ
aγδ − wγwδ

)}
F0

γ∥δ
(
u0,η

)√
adω =

∫
ω

pi,0ηi
√
adω, (5.4)

where (w1, w2) are the components of the eigenvector (defined up to a multiplicative constant)

of the matrix

(
aα1E0

α∥1 (u
0) aα1E0

α∥2 (u
0)

aα2E0
α∥1 (u

0) aα2E0
α∥2 (u

0)

)
associated with the eigenvalue χ, and where

d = −µ(1 + 2χ).
Proof. As we did in the proof of Theorem 4.1, we use the variational formulation obtained

by identifying the terms in ε0 in (2.1), and we get (4.3).
For test functions v(x1, x2, x3) = η(x1, x2) independent of x3,

F−1
i∥j

(
u0,u1,η

)
= 0

and the variational formulation reduces to∫
Ω

apqijE0
p∥q

(
u0,u1

)
F0

i∥j
(
u0,u1,η

)√
adx = 2

∫
ω

pi,0ηi
√
adω.
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Let us expand the left part of this relation:∫
Ω

apqijE0
p∥q

(
u0,u1

)
F0

i∥j
(
u0,u1,η

)√
adx

=

∫
Ω

{
aαβijE0

α∥β
(
u0

)
+ 2aα3ijE0

α∥3
(
u0,u1

)
+ a33ijE0

3∥3
(
u0,u1

)}
F0

i∥j
(
u0,u1,η

)√
adx

=

∫
Ω

{
aαβγδE0

α∥β
(
u0

)
+ λaγδE0

3∥3
(
u0,u1

)}
F0

γ∥δ
(
u0,η

)√
adx

+

∫
Ω

4µaαγE0
α∥3

(
u0,u1

)
F0

γ∥3
(
u0,u1,η

)√
adx

+

∫
Ω

{
λaαβE0

α∥β
(
u0

)
+ (λ+ 2µ)E0

3∥3
(
u0,u1

)}
F0

3∥3
(
u0,u1,η

)√
adx.

Let us now write the F0
i∥3

(
u0,u1,η

)
in the following way:

2F0
γ∥3

(
u0,u1,η

)
=

(
η0γ∥3 + η03∥γ

)
+ x3g

st,1
(
u0
s∥γ η

−1
t∥3 + u0

s∥3 η
−1
t∥γ

)
+ ast

(
u0
s∥γ η

0
t∥3 + u0

s∥3 η
0
t∥γ + u1

s∥γ η
−1
t∥3 + u1

s∥3 η
−1
t∥γ

)
=

(
η0γ∥3 + η03∥γ

)
+ aσρ

(
u0
σ∥γ η

0
ρ∥3 + u0

σ∥3 η
0
ρ∥γ

)
+ u0

3∥3 η
0
3∥γ ,

hence if we denote ξ =

(
η03∥1
η03∥2

)
, τ =

(
η01∥3
η02∥3

)
,F0 =

(F0
1∥3

F0
2∥3

)
and H =

(
η01∥1 η01∥2
η02∥1 η02∥2

)
,

we get

2F0 =
(
I + U tA

)
τ +

(
1 + u0

3∥3

)
ξ +HtAy,

and in the same way,

F0
3∥3

(
u0,u1,η

)
= η03∥3 + x3g

st,1u0
s∥3 η

−1
t∥3 + astu0

s∥3 η
0
t∥3 + astu1

s∥3 η
−1
t∥3 = aγδu0

γ∥3 η
0
δ∥3 ,

hence

F0
3∥3 = τ tAy.

So we deduce∫
Ω

{
λaαβE0

α∥β
(
u0

)
+ (λ+ 2µ)E0

3∥3
(
u0,u1

)}
F0

3∥3
(
u0,u1,η

)√
adx

=

∫
Ω

dτ tAy
√
adx,∫

Ω

4µaαγE0
α∥3

(
u0,u1

)
F0

γ∥3
(
u0,u1,η

)√
adx

=

∫
Ω

2µ
{
τ t (I +AU) +

(
1 + u0

3∥3

)
ξt + ytAH

}
AE0

√
adx.

The first equation of the system (5.2) multiplied by τ tA reads

2µτ t (I +AU)AE0 + dτ tAy = 0,
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so by adding the integrals above, we deduce∫
Ω

{
λaαβE0

α∥β
(
u0

)
+ (λ+ 2µ)E0

3∥3
(
u0,u1

)}
F0

3∥3
(
u0,u1,η

)√
adx

+

∫
Ω

4µaαγE0
α∥3

(
u0,u1

)
F0

γ∥3
(
u0,u1,η

)√
adx

=

∫
Ω

2µ
{(

1 + u0
3∥3

)
ξt + ytAH

}
AE0

√
adx

=

∫
Ω

{
ztwξt +wt

(
A−1 + U t

)
AH

}
2µAE0

√
adx.

Finally, ∫
Ω

apqijE0
p∥q

(
u0,u1

)
F0

i∥j
(
u0,u1,η

)√
adx

=

∫
Ω

{
aαβγδE0

α∥β
(
u0

)
+ λaγδE0

3∥3
(
u0,u1

)}
F0

γ∥δ
(
u0,η

)√
adx

+

∫
Ω

{
ztwξt +wt

(
A−1 + U t

)
AH

}
2µAE0

√
adx.

To obtain the variational formulations, we still have to give the expressions of 2µAE0 and
E0
3∥3 . By using the first equation of the system (5.2),

2µAE0 = −d
(
A−1 + U

)−1
y = −dw.

By using the definition of d,

E0
3∥3

(
u0,u1

)
=

d

λ+ 2µ
− λ

λ+ 2µ
tr (AE) .

The integral above then reads∫
Ω

apqijE0
p∥q

(
u0,u1

)
F0

i∥j
(
u0,u1,η

)√
adx

=

∫
Ω

{
bαβγδE0

α∥β
(
u0

)
+

λ

λ+ 2µ
aγδd

}
F0

γ∥δ
(
u0,η

)√
adx

−
∫
Ω

dwt
{
zξt +

(
I + U tA

)
H
}
w
√
adx.

Moreover, (
F0

γ∥δ
(
u0,η

))
=

1

2

(
H +Ht + U tAH +HtAU + zξt + ξzt

)
,

and consequently, if we notice that

wt
(
zξt +

(
I + U tA

)
H
)
w = wt

(
ξzt +Ht (I +AU)

)
w,

we get

wt
{
zξt +

(
I + U tA

)
H
}
w = F0

γ∥δ
(
u0,η

)
wγwδ.

The variational formulations then read∫
Ω

{
bαβγδE0

α∥β
(
u0

)
+ d

(
λ

λ+ 2µ
aγδ − wγwδ

)}
F0

γ∥δ
(
u0,η

)√
adx = 2

∫
ω

pi,0ηi
√
adω.

5.2. The Boundary Value Problems
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Theorem 5.3. The boundary value problems associated with the variational formulation
(5.4) read 

−T̄ iδ,0
∥δ = pi,0 in ω,

T̄ iδ,0nδ = 0 on γ/γ0,
u0 = 0 on γ0,

where the contravariant components of the limiting stress tensor associated with these limit-
ing membrane shell models are given by

T̄ γδ,0 = (bαβγδ + bαβδρaσγu0
σ∥ρ )E

0
α∥β

(
u0

)
− d(wγwδ + wδwρaσγu0

σ∥ρ )

+
dλ

λ+ 2µ
(aγδ + aδρaσγu0

σ∥ρ ),

T̄ 3δ,0 =
(
bαβδρE0

α∥β
(
u0

)
− dwδwρ +

dλ

λ+ 2µ
aδρ

)
u0
3∥ρ ,

T̄ i3,1 = −hi,1(x1, x2,−1)−
∫ x3

−1

f i,0(x1, x2, t)dt+ (x3 + 1)pi,0.

Proof. By identifying the terms of order 0 of the “scaled” first Piola-Kirchhoff stress
tensor, we get

T̄ γδ,0 = (apqγδ + apqδtasγu0
s∥t )E

0
p∥q

(
u0,u1

)
,

and therefore

T̄ γδ,0 = (aαβγδ + aαβδρaσγu0
σ∥ρ )E

0
α∥β

(
u0

)
+ 2µaαδaσγu0

σ∥3 E
0
α∥3

(
u0,u1

)
+ λ(aγδ + aδρaσγu0

σ∥ρ )E
0
3∥3

(
u0,u1

)
.

Moreover E0
3∥3

(
u0,u1

)
= d

λ+2µ − λ
λ+2µa

αβE0
α∥β

(
u0

)
, so

T̄ γδ,0 = (bαβγδ + bαβδρaσγu0
σ∥ρ )E

0
α∥β

(
u0

)
+ 2µaαδaσγu0

σ∥3 E
0
α∥3

(
u0,u1

)
+

dλ

λ+ 2µ
(aγδ + aδρaσγu0

σ∥ρ ).

Furthermore 2µAE0 = −dw and y =
(
A−1 + U

)
w, hence

2µaαδaσγu0
σ∥3 E

0
α∥3

(
u0,u1

)
= Ay (2µAE0)t = −d (I +AU)wwt

= −d

(
w1w1 + w1wρaσ1u0

σ∥ρ w1w2 + w2wρaσ1u0
σ∥ρ

w1w2 + w1wρaσ2u0
σ∥ρ w2w2 + w2wρaσ2u0

σ∥ρ

)
= −d(wγwδ + wδwρaσγu0

σ∥ρ ).

We thus get the expression of the T̄ γδ,0.
In the same way,

T̄ 3δ,0 = {apq3δ + apqδtas3u0
s∥t }E

0
p∥q

(
u0,u1

)
= aαβδρu0

3∥ρ E
0
α∥β

(
u0

)
+ 2µaαδ(1 + u0

3∥3 )E
0
α∥3

(
u0,u1

)
+ λaδρu0

3∥ρ E
0
3∥3

(
u0,u1

)
.

Moreover E0
3∥3 (u

0,u1) = d
λ+2µ − λ

λ+2µa
αβE0

α∥β
(
u0

)
, so

T̄ 3δ,0 = bαβδρu0
3∥ρ E

0
α∥β

(
u0

)
+ 2µaαδ(1 + u0

3∥3 )E
0
α∥3

(
u0,u1

)
+

dλ

λ+ 2µ
aδρu0

3∥ρ .

Furthermore, by using the relations 2µAE0 = −dw and (1 + u0
3∥3 ) = ztw, we get

2µaαδ
(
1 + u0

3∥3

)
E0
α∥3

(
u0,u1

)
= (1 + u0

3∥3 )2µAE0 = −dwztw = −dwδwρu0
3∥ρ .
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Finally, we get the expression of the T̄ 3δ,0.

T̄ γ3,0 = {apqγ3 + apq3tasγu0
s∥t }E

0
p∥q

(
u0,u1

)
= λaαβaσγu0

σ∥3 E
0
α∥β

(
u0

)
+ 2µ{aαγ + aαρaσγu0

σ∥ρ }E
0
α∥3

(
u0,u1

)
+ (λ+ 2µ)aσγu0

σ∥3 E
0
3∥3

(
u0,u1

)
= (λaαβE0

α∥β
(
u0

)
+ (λ+ 2µ)E0

3∥3
(
u0,u1

)
)aσγu0

σ∥3

+ 2µ
{
aαγ + aαρaσγu0

σ∥ρ

}
E0
α∥3

(
u0,u1

)
,

which is exactly the first equation of the system (1.1), hence T̄ γ3,0 = 0.

T̄ 33,0 = {apq33 + apq3tas3u0
s∥t }E

0
p∥q

(
u0,u1

)
= λaαβ(1 + u0

3∥3 )E
0
α∥β

(
u0

)
+ 2µaαρu0

3∥ρ E
0
α∥3

(
u0,u1

)
+ (λ+ 2µ)(1 + u0

3∥3 )E
0
3∥3

(
u0,u1

)
= (λaαβE0

α∥β
(
u0

)
+ (λ+ 2µ)E0

3∥3
(
u0,u1

)
)(1 + u0

3∥3 ) + 2µaαρu0
3∥ρ E

0
α∥3

(
u0,u1

)
,

which is exactly the second equation of the system (1.1), hence T̄ 33,0 = 0.
The expressions of the T̄ i3,1 are obtained in the same way as in [5].
The variational formulations (5.4) also read∫

ω

{T̄ γδ,0η0γ∥δ + T̄ 3δ,0η03∥δ }
√
adω =

∫
ω

pi,0ηi
√
adω,

and if we assume that T̄ iδ,0 ∈ H1(ω) then the end of the proof resembles that of Theorem
3.1.

Remark. The linearization of the variational formulation has still to be established.
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