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Abstract

This paper gives a Fan,s type minimax theorem, a nearest point theorem and two existence
theorems of solutions for a kind of generalized quasi-variational inequalities in H-spaces without
any linear structure.
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§1. Introduction

In 1972, Ky Fan researched the minimax inequality

min
y∈C

sup
x∈C

f(x, y) ≤ sup
x∈C

f(x, x)

and estabished the following minimax theorem:

Theorem 1.1.[6] Let E be a Hausdorff topological vector space, X a nonempty compact

convex subset of E and ϕ : X×X −→ R a function. If the following conditions are fulfilled :

(i) for each y ∈ X, ϕ(·, y) is lower semicontinuous,

(ii) for each x ∈ X, ϕ(x, ·) is quasi-concave,

then there exists a point x0 ∈ X such that

sup
y∈X

ϕ(x0, y) = min
x∈X

sup
y∈X

ϕ(x, y) ≤ sup
x∈X

ϕ(x, x).

Since then, this interesting result has attracted much attention (see e.g. [2–5,12]). In a

recent paper[3], Chu gave the following result on Fan,s minimax inequality:
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Theorem 1.2.[3] Let C be a nonempty compact convex subset of a locally convex topo-

logical vector space. If f : C × C −→ R is a continuous function such that for each fixed

y ∈ C the set {x ∈ C : f(x, y) > t} is acyclic or empty for all t ∈ R, then there exists a

point ȳ ∈ C such that

min
y∈C

max
x∈C

f(x, y) ≤ max
x∈C

f(x, ȳ) ≤ max
x∈C

f(x, x).

The objects of the note are to research the Fan,s minimax inequality under different

conditions, nearest point problem and existence problem of solutions for a kind of generalized

quasi-variational inequalities in H-spaces without any linear structure.

In order to establish our main results, we give some concepts and notations.

To begin with we explain the notion of an H-space introduced by Horvath and Bardaro-

Ceppitelli[1,9−11] and related concepts on H-spaces.

Let X be a topological space and F(X) the family of all nonempty finite subset of X.

Let {ΓA} be a family of some nonempty contractible subsets of X indexed by A ∈ F(X)

such that ΓA ⊂ ΓA′ whenever A ⊂ A′. The pair (X, {ΓA}) is called an H-space. Given an

H-space (X, {ΓA}), a nonempty subset D of X is called

(1) H-convex if ΓA ⊂ D for all A ∈ F(D);

(2) weakly H-convex if ΓA ∩D is nonempty contractible for each A ∈ F(D);

(3) H-compact if for each A ∈ F(X), there exists a compact weakly H-convex subset DA

of X such that D ∪A ⊂ DA.

An H-space (X, {ΓA}) is called
(4) a locally convex H-space if X is a uniform space and if there exists a base {Vi : i ∈ I}

for the uniform structure U such that for each i ∈ I, Vi(x) = {y ∈ X : (y, x) ∈ Vi} is

H-convex for each x ∈ X (see [15]);

(5) an l.c.-space (see [8]) if X is a uniform space and if there exists a base {Vi : i ∈ I} for

the uniform structure such that for each i ∈ I, the set {x ∈ X : E ∩ Vi[x] ̸= ∅} is H-convex

whenever E is H-convex, where Vi[x] = {y ∈ X : (x, y) ∈ Vi}.
Remark 1.1. The concept of an l.c.-space is different from a locally convex H-space.

But an l.c.-space (X, {ΓA}) with Γ{x} = {x} for all x ∈ X must be a locally convex H-space.

Otherwise, a nonempty convex subset X of a locally convex topological vector space must

be an l.c.- space with ΓA = coA for all A ∈ F(X), and hence (X, {coA}) must be a locally

convex H-space.

Let X be a topological space. We denote by 2X the family of all subsets of X. If A ⊂ X,

we shall denote by cl(A) the closure of A. A topological space is called acyclic if all of its

reduced Čech homology groups over rationals vanish. In particular, any contractible space

is acyclic, and thus any convex or star-shaped set is acyclic.

Let X,Y be two topological spaces, f : X −→ R and S, T : X −→ 2Y two multivalued

mappings.

(6) f is called upper semicontinuous (resp. lower semicontinuous) if for each r ∈ R, the

set {x ∈ X : f(x) ≥ r} (resp. {x ∈ X : f(x) ≤ r}) is closed;
(7) if X is an H-space, f is called H-quasiconcave (resp. H-quasiconvex), if for each r ∈ R,

the set {x ∈ X : f(x) > r} (resp. {x ∈ X : f(x) < r}) is H-convex;

(8) T is called upper semicontinuous if for each x ∈ X and each open set V ⊂ Y with

T (x) ⊂ V , there exists an open neighborhood U of x such that T (z) ⊂ V for each z ∈ U ;
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(9) T is called almost upper semicontinuous if for each x ∈ X and each open set V ⊂ Y

with T (x) ⊂ V , there exists an open neighborhood U of x such that T (z) ⊂ clV for all

z ∈ U ;

(10) for each y ∈ Y , we denote T−1(y) = {x ∈ X : y ∈ T (x)}, which is called a lower

section of T ;

(11) the multivalued mappings S ∩ T , clT : X −→ 2Y are defined by

S ∩ T (x) = S(x) ∩ T (x), clT (x) = cl (T (x)), ∀x ∈ X.

§2. Main Results

Now, we establish our main results.

Theorem 2.1. Let (X, {ΓA}) be a compact Hausdorff locally convex H-space, A : X −→
2X an almost upper semicontinuous multivalued mapping with nonempty H-convex values

and open lower sections and ϕ : X×X −→ R ∪ {±∞} a function. If the following conditions

are fulfilled :

(i) for each y ∈ X, ϕ(x, y) is lower semicontinuous in x,

(ii) for each x ∈ X, ϕ(x, y) is H-quasiconcave in y and clA(x) is acyclic,

(iii) for each x ∈ X, ϕ(x, x) ≤ γ(γ ∈ R),

(iv) the set W = {x ∈ X : sup
y∈A(x)

ϕ(x, y) > γ} is paracompact,

then there exists a point x̄ ∈ X such that x̄ ∈ cl(A(x̄)) and

ϕ(x̄, y) ≤ γ

for all y ∈ A(x̄).

Proof. Define a multivalued mapping P : X −→ 2X by

P (x) = {y ∈ A(x) : ϕ(x, y) > γ}, ∀x ∈ X.

Then P (x) is H-convex for all x ∈ X by (ii) and the H-convexity of A(x). Moreover, for

each y ∈ X,

P−1(y) = {x ∈ X : y ∈ P (x)} = A−1(y)
∩

{x ∈ X : ϕ(x, y) > γ}

is open in X since A has open lower sections and ϕ(x, y) is lower semicontinuous in x.

Consequently, the set

W =
{
x ∈ X : sup

y∈A(x)

ϕ(x, y) > γ
}
= {x ∈ X : P (x) ̸= ∅} =

∪
y∈X

P−1(y)

is open. By virtue of Theorem 2[8], there exists a continuous mapping f : W −→ X such

that f(x) ∈ P (x) for all x ∈ W .

Define a multivalued mapping T : X −→ 2X by

T (x) =

{
{f(x)}, if x ∈ W,
clA(x), if x ∈ X \W.

Since A : X −→ 2X is almost upper semicontinuous and X is compact, the mapping

clA : X −→ 2X is upper semicontinuous. Hence for each open subset V of X, the set

{x ∈ X : T (x) ⊂ V } = {x ∈ W : f(x) ∈ V }
∪

{x ∈ X \W : clA(x) ⊂ V }

= {x ∈ W : f(x) ∈ V }
∪

{x ∈ X : clA(x) ⊂ V }
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is open. Consequently, T : X −→ 2X is an upper semicontinuous multivalued mapping with

closed acyclic values. By virtue of Lemma 2.1[15], there exists a point x̄ ∈ X such that

x̄ ∈ T (x̄). By (iii), we know that x̄ ∈ clA(x̄) and P (x̄) = ∅, i.e.

ϕ(x̄, y) ≤ γ

for all y ∈ A(x̄). This completes the proof.

Theorem 2.2. Let (X, {ΓA}) be an Hausdorff locally convex H-space and D a H-compact

subset of X. Let A : X −→ 2D be an almost upper semicontinuous multivalued mapping with

nonempty H-convex values and open lower sections and ϕ : X ×X −→ R a function. If the

following conditions are fulfilled :

(i) for each y ∈ X, ϕ(x, y) is lower semicontinuous in x,

(ii) for each x ∈ X, ϕ(x, y) is H-quasiconcave in y and clA(x) is acyclic,

(iii) for each x ∈ X, ϕ(x, x) ≤ γ(γ ∈ R),

(iv) the set W = {x ∈ X : sup
y∈A(x)

ϕ(x, y) > γ} is paracompact,

then there exists a point x̄ ∈ clD such that x̄ ∈ cl(A(x̄)) and

ϕ(x̄, y) ≤ γ

for all y ∈ A(x̄).

Proof. Since D is an H-compact subset of X, there exists a compact weakly H-convex

subset E of X such that D ⊂ E. Note that (E, {E
∩

ΓA}) is a compact Hausdorff locally

convex H-space and the set

W1 =
{
x ∈ E : sup

y∈A(x)

ϕ(x, y) > γ
}

= E
∩{

x ∈ X : sup
y∈A(x)

ϕ(x, y) > γ
}

= E
∩

W

is closed in W . Hence W1 is paracompact since W is paracompact. By Theorem 2.1 there

exists a point x̄ ∈ E ⊂ X such that x̄ ∈ cl(A(x̄)) ⊂ clD and

ϕ(x̄, y) ≤ γ

for all y ∈ A(x̄). This completes the proof.

Remark 2.1. Theorem 2.1 and Theorem 2.2 are two new existence theorems for solutions

of generalized quasi-variational inequalities.

Theorem 2.3. Let (Y, {ΓA}) be a Hausdorff locally convex H-space and X a compact

weakly H-convex subset of Y . Let ϕ : X × Y −→ R be an upper semicontinuous function

such that for each y ∈ Y , the set {x ∈ X : ϕ(x, y) > t} is acyclic or empty for all t ∈ R.

Then

inf
y∈X

sup
x∈X

ϕ(x, y) ≤ sup
x∈X

ϕ(x, x).

If, in addition, ϕ(x, .) is lower semicontinuous on X for each x ∈ X, then there exists a

point ȳ ∈ X such that

sup
x∈X

ϕ(x, ȳ) ≤ sup
x∈X

ϕ(x, x).
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Proof. Let M = sup
x∈X

ϕ(x, x). If M = +∞, the conclusion holds, obviously. Now, we

assume M < +∞. If

inf
y∈X

sup
x∈X

ϕ(x, y) > M,

we may take a real number r ∈ R such that

inf
y∈X

sup
x∈X

ϕ(x, y) > r > M.

Define a multivalued mapping T : Y −→ 2X by

T (y) = {x ∈ X : ϕ(x, y) ≥ r}, ∀y ∈ Y .

Then T (y) ̸= ∅ for all y ∈ X. By the upper semicontinuity of ϕ, T has closed graph in

Y ×X so that T is upper semitinuous because X is compact. For each y ∈ X, since the set

{x ∈ X : ϕ(x, y) > t} is acyclic or empty for all t ∈ R, T (y) is acyclic by Lemma 1.3[12]. By

Lemma 2.1[15] there exists a point y0 ∈ X such that y0 ∈ T (y0), i.e.

ϕ(y0, y0) ≥ r > M = sup
x∈X

ϕ(x, x).

It is a contradiction. Hence

inf
y∈X

sup
x∈X

ϕ(x, y) ≤ M = sup
x∈X

ϕ(x, x).

If, in addition, ϕ(x, .) is lower semicontinuous on X for each x ∈ X, then so is the function

g(y) = sup
x∈X

ϕ(x, y) (in X),

and hence there exists a point ȳ ∈ X such that

sup
x∈X

ϕ(x, ȳ) = inf
y∈X

sup
x∈X

ϕ(x, y) ≤ sup
x∈X

ϕ(x, x)

since X is compact. This completes the proof.

Remark 2.2. Theorem 2.3 improves and extends Theorem 2.7[3] (i.e. Theorem 1.2) to

H-spaces.

Theorem 2.4. Let (Y, {ΓA}) be a Hausdorff locally convex H-space and X a compact

metrizable weakly H-convex subset of Y with the metric d. Let f : Y −→ X be a continuous

mapping such that for each y ∈ Y , the set {x ∈ X : d(x, f(y)) < t} is acyclic or empty for

all t ∈ R. Then there exists a point ȳ ∈ X such that

d(ȳ, f(ȳ)) = min
x∈X

d(x, f(ȳ)).

Proof. Let ϕ(x, y) = d(y, f(y))−d(x, f(y)) for all (x, y) ∈ X ×X. Then ϕ : X×X −→ R

is a continuous function. For each r ∈ R and each y ∈ X, the set

{x ∈ X : ϕ(x, y) > r} = {x ∈ X : d(x, f(y)) < d(y, f(y))− r}

is acyclic or empty. By Theorem 2.3 there exists a point ȳ ∈ X such that

sup
x∈X

ϕ(x, ȳ) ≤ sup
x∈X

ϕ(x, x),

i.e.

sup
x∈X

[d(ȳ, f(ȳ))− d(x, f(ȳ))] ≤ 0,
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i.e.

d(ȳ, f(ȳ)) ≤ inf
x∈X

d(x, f(ȳ)).

Hence

d(ȳ, f(ȳ)) = min
x∈X

d(x, f(ȳ)).

This completes the proof.

Remark 2.3. Theorem 2.4 improves and extends Theorem 1 and Theorem 2 of [7].
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