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INSTANTANEOUS SHRINKING AND
LOCALIZATION OF FUNCTIONS IN

Yλ(m,p,q,N) AND THEIR APPLICATIONS**
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Abstract

The aim of this paper is to discuss the instantaneous shrinking and localization of the support
of functions in Yλ(m, p, q,N) and their applications to some nonlinear parabolic equations
including the porous medium equation ut = ∆um − uq , m > 0, q > 0 and the p-Laplace

equation ut = div(|∇u|p−2∇u) − uq , p > 1, q > 0. In particular, as an application of the
results, the necessary and sufficient condition for the solutions of the above p-Laplace equation
with nonnegative finite Borel measures as initial conditions to have the instantaneous shrinking

property of the support is obtained. This is an answer to an open problem posed by R. Kersner
and A. Shishkov.
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§1. Introduction

As well known, the solutions of semilinear parabolic equations ut = ∆u− uq, 0 < q < 1
have the ISS (the instantaneous shrinking of the support) property (see [1–5]).

Such property is defined as follows.
Definition 1.1. A function u ∈ L∞

loc(Q) is said to have the ISS property, if for any
τ > 0, there exists a positive number R = R(τ) such that

u(x, t) = 0

for a. e. (x, t) ∈ (RN \ BR) × (τ,+∞), where RN is the N -dimensional Euclidean space,
and Q ≡ RN × (0,+∞).

Up to the present, there have been many papers which are devoted to the generations
to other kinds of equations (see [6–11]). One of the typical examples of them is the porous
medium equation

ut = ∆um − uq, m > 0, q > 0 (1.1)
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(see [6, 8, 9]). Another typical example is the p-Laplace equation

ut = div(|∇u|p−2∇u)− uq, p > 1, q > 0 (1.2)

(see [10]).
We easily check that the solutions of (1.1) and (1.2) belong to Yλ(m, p, q,N) (see Section

10) which is defined as follows.
Definition 1.2. Let m > 0, p > 1, q > 0 and λ ≥ 1. A nonnegative function u ∈

Yλ(m, p, q,N) if and only if u ∈ L∞(0,+∞;Lλ(RN )) satisfies the following conditions (a)–
(c):

(a) For any δ ∈ (0, 1), we have

u ∈ L∞(δ,+∞;L∞(RN )), |∇u| ∈ Lp
loc(0,+∞;Lp

loc(R
N )).

(b) There exists a positive number Λ1 such that, for all α ∈ (0,+∞) and all ϕ ∈
C∞(0,+∞; C∞

0 (RN )) with ϕ ≥ 0, we have

ess sup
s<t<T

∫
RN

ϕp(x, t)u1+α(x, t)dx+ αp sup
0<δ<1

∫ ∫
Qs,T (u>δ)

|∇{ϕu[m(p−1)+α]/p}|pdxdt

≤ Λ1

{∫ ∫
Qs,T

[ϕp−1|ϕt|uα+1 + α1−p(1 + α)|∇ϕ|pum(p−1)+α − (α+ 1)ϕpuq+α]dxdt

+

∫
RN

ϕp(x, s)uα+1(x, s)dx
}

for a. e. s ∈ (0, T ) with 0 < T < +∞, where αp = α(1 + α)[m(p − 1) + α]−p, Qs,T (u >
δ)={(x, t) ∈ Qs,T : u(x, t) > δ}, and Qs,T=RN × (s, T ) for 0 < s < T < +∞.

(c) There exists a positive number Λ2 such that, for all β ∈ (0,min{1;m(p − 1); q}) and
all ϕ ∈ C∞(0,+∞; C∞

0 (RN )) with ϕ ≥ 0, we have

ess sup
s<t<T

∫
RN

ϕp(x, t)u1−β(x, t)dx+ βp sup
0<δ<1

∫ ∫
Qs,T (u>δ)

|∇{ϕu[m(p−1)−β]/p}|pdxdt

≤ Λ2

{∫ ∫
Qs,T

[ϕp−1|ϕt|u1−β + β1−p(1− β)|∇ϕ|pum(p−1)−β + (1− β)ϕpuq−β ]dxdt

+

∫
RN

ϕp(x, T )u1−β(x, T )dx
}

for a. e. T ∈ (s,+∞) with s > 0, where βp = β(1− β)[m(p− 1)− β]−p.
Our main results are the following theorems and their applications.
Theorem 1.1. Assume that u ∈ Yλ(m, p, q,N), θ > 0 and 0 < q < 1. If q < m(p − 1),

then the function u has the ISS property, where θ = m(p− 1)− 1 + pλ/N .
Theorem 1.2. Assume that u ∈ Yλ(m, p, q,N), θ > 0 and 0 < q < 1. If q ≥ m(p − 1),

then the function u has no the ISS property.
Remark 1.1. If u ∈ Yλ(m, p, q,N) with θ > 0 and 0 < q < 1, then q < m(p− 1) is the

necessary and sufficient condition for the function u to have the ISS property.
The above conclusions can be applied to some nonlinear partial differential equations

including (1.1) and (1.2). For example, let us see Remark 1.2 as follows.
Remark 1.2. Assume that u is a solution of the Cauchy problem{

ut = div(|∇u|p−2∇u)− uq, p > 1, 1 > q > 0,
u(x, 0) = u0(x), x ∈ RN .

(1.3)

Then we have the following conclusions (i) and (ii).
(i) If u0 is a non-zero nonnegative finite Borel measure in RN , then u ∈ Y1(1, p, q,N)

(see Proposition 10.1). If p − 2 + p/N > 0 and 0 < q < 1, then Theorem 1.1 and Theorem
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1.2 imply that the solution u of the Cauchy problem (1.3) has the ISS property if and only
if q < p− 1. This is a very interesting answer to an open problem posed by R. Kersner and
A. Shishkov in [10].

(ii) If u0 ∈ Lλ(RN )(1 ≤ λ < +∞) is a non-zero nonnegative function, then u ∈
Yλ(1, p, q,N) (see Proposition 10.2). If p− 2 + pλ/N > 0 and 0 < q < 1, then, by Theorem
1.1 and Theorem 1.2, the solution u of the Cauchy problem (1.3) has the ISS property if
and only if q < p− 1. Clearly, Theorem 3 proved by R. Kersner and A. Shishkov in [10] is
extended.

Remark 1.3. Similarly to Remark 1.2, Theorem 1.1 and Theorem 1.2 also can be applied
to the equation (1.1). Here we omit the details.

All results as above hold only for 0 < q < 1. In fact, in the case q ≥ 1, we have the
following Theorems.

Theorem 1.3. Let u ∈ Yλ(m, p, q,N). If min{m(p− 1); q} ≥ 1, then

|suppu(·, s)| ≤ |suppu(·, t)| for a. e. s, t with 0 < s < t.

Remark 1.4. Theorem 1.3 implies that, if q ≥ 1, then the function u ∈ Yλ(m, p, q,N)
has no the ISS property in general.

But, for q ≥ 1, we obtain an interesting phenomenon called the LOC (Localization)
property which is defined as follows.

Definition 1.3. A function u ∈ L∞
loc(Q) is said to have the LOC property, if there exists

a positive number L such that u(x, t) = 0 for a. e. (x, t) ∈ (RN \BL)× (0,+∞).

In addition, we have

Theorem 1.4. Assume that θ > 0, q ≥ 1, u ∈ Yλ(m, p, q,N), and

u(x, t) → 0 a. e. in RN \BR0 as t→ 0+ (1.4)

for some positive constant R0. If q < m(p− 1), then the function u has the LOC property.

Theorem 1.5. Assume that θ > 0 and u ∈ Yλ(m, p, q,N) is a non-zero nonnegative
function. If q > m(p− 1) > 1, then the function u has no the LOC property.

Remark 1.5. The conclusions in Theorem 1.4 and Theorem 1.5 are optimal.

Such LOC property for some nonlinear parabolic equations including (1.1) and (1.2) has
obtained by R. Kersner in [12] and Yuan Hongjun in [13, 14].

Remark 1.6. Similarly to Remark 1.2, as an application of Theorem 1.4 and Theorem
1.5, one can in fact extend some results in [12–14]. We omit the details here.

In order to prove Theorem 1.1 and Theorem 1.4 we need the following Theorem 1.6 and
Theorem 1.7.

Theorem 1.6. Assume that u ∈ Yλ(m, p, q,N). If θ > 0, then

u(x, t) ≤ CM
p/Nθ
λ

(1
t

)1/θ
for a. e. (x, t) ∈ Q.

Here and thoughout this paper, C stands for a positive constant depending only on m,
p, q, N , λ, Λ1 and Λ2; and γ stands for a positive constant depending only on m, p, q, λ,
Λ1, Λ2 and Mλ; and Mλ = ess sup

0<t<+∞

∫
RN u

λ(x, t)dx.

Theorem 1.7. Assume that u ∈ Yλ(m, p, q,N) and θ > 0. If 0 < q < min{1;m(p− 1)},
then there exists a time T0 such that

u(x, t) = 0 for a. e. (x, t) ∈ RN × (T0,+∞).

Remark 1.7. Theorem 1.7 implies that u ∈ Yλ(m, p, q,N) has the extinction property,
providied that 0 < q < min{1;m(p − 1)}. Similarly to Remark 1.2, Theorem 1.7 can be
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applied to some nonlinear parabolic equations including (1.1) and (1.2). The details are
omitted here.

Remark 1.8. Our method in this paper can be applied to study other problem including
finite propagation of perturbations for nonlinear parabolic equations. The details are also
omitted here.

Remark 1.9. The conclusion in Theorem 1.5 seems to be true even if q = m(p−1). But
we are not able to prove it yet. This is an interesting problem.

The proofs of Theorem 1.6 and Theorem 1.7 are completed in Sections 3–4, respectively.
In the process of proving Theorem 1.6 and Theorem 1.7 we need some fundamental lemmas
in Section 2. Using Theorem 1.6 and Theorem 1.7 we shall prove Theorem 1.1 in Section 5.
The proofs of Theorem 1.2–Theorem 1.5 are given in Sections 6–9, respectively. In the last
Section 10, we shall prove that the solutions of (1.1) and (1.2) belong to Yλ(m, p, q,N).

§2. Fundamental Lemmas

Lemma 2.1. If h : Rl 7→ [0,+∞) is a nonnegative bounded function on [a1, b1]× [a2, b2]×
· · · × [al, bl] such that

h(ρ1, ρ2, · · · , ρl) ≤ ah(R1, R2, · · · , Rl) +
l∑

i=1

( Ai

(Ri − ρi)αi
+Bi

)
(2.1)

for all ρi, Ri with ai ≤ ρi < Ri ≤ bi (i = 1, 2, · · · , l), where a, αi (i = 1, 2, · · · , l), Ai (i =
1, 2, · · · , l) and Bi (i = 1, 2, · · · , l) are positive constants, and a < 1, then

h(ρ1, ρ2, · · · , ρl) ≤ C

l∑
i=1

( Ai

(Ri − ρi)αi
+Bi

)
(2.2)

for all ρi, Ri with ai ≤ ρi < Ri ≤ bi (i = 1, 2, · · · , l), where C is a positive constant depending
only on αi (i = 1, 2, · · · , l) and a.

Remark 2.1. The proof is similar to that given for the case l = 1 in [15]. Therefore we
omit it.

Lemma 2.2. Let yn (n = 0, 1, 2, · · · ) be a sequence of real numbers satisfying the following
inequalities 0 ≤ yn+1 ≤ cbny1+σ

n for n = 0, 1, 2, · · · , where c > 0, σ > 0 and b > 1. Then

yn ≤ c[(1+σ)n−1]/σb[(1+σ)n−1−nσ]/σ2

y
(1+σ)n

0

for n = 0, 1, 2, · · · . In particular, we have the following conclusions.
(i) The following inequality holds :

lim
n→+∞

y1/(1+σ)n

n ≤ c1/σb1/σ
2

y0.

(ii) If y0 < c−1/σb−1/σ2

, then lim
n→+∞

yn = 0.

The proof can be found in [16].

Lemma 2.3. Assume that p ≥ 1, σ ≥ 1, u ∈ W 1,p
0 (Ω), and Ω is a bounded and smooth

domain in RN . Then we have
(i) If p < N , then ||u||LNp/(N−p)(Ω) ≤ C1||∇u||Lp(Ω) where C1 is a positive constant

depending only on p and N .
(ii) If p ≥ N , then ||u||Lγ(Ω) ≤ C2||∇u||ΘLp(Ω)||u||

1−Θ
Lσ(Ω) for γ > σ, where C2 = max{γ(N−

1)/N ; 1 + (p− 1)σ/N}Θ, and
1

γ
=

1

σ
−Θ

(
1

σ
− 1

p
+

1

N

)
.
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The proof can be found in [16].
Lemma 2.4. Assume that u ∈ L∞(0, T ;L1(Ω)), v ∈ L∞(0, T ;Lσ(Ω)) (σ ∈ [1, σ0)),

ϕ ∈ C1
0 (ΩT ) are nonnegative functions, Ω is a bounded domain in RN , ΩT = Ω × (0, T ).

If vδ ≡ max{v; δ} ∈ Lp(0, T ;W 1,p(Ω)) (p > 1) for every δ ∈ (0, 1) satisfying the following
conditions :

S ≡ sup
0<δ<1

∫ ∫
ΩT (v>δ)

|∇(ϕv)|pdxdt < +∞,

then the following conclusions hold.
(i) If p < N , then∫ ∫

ΩT

up/N (ϕv)pdxdt ≤ C3S
(
ess sup

0<t<T

∫
Ω

u(x, t)dx
)p/N

,

where C3 is positive constant depending only on p and N .
(ii) If p ≥ N , then∫ ∫

ΩT

u1−p/Θγ(ϕv)p/Θdxdt

≤ C4S
(
ess sup

0<t<T

∫
Ω

u(x, t)dx
)1−p/Θγ(

ess sup
0<t<T

∫
Ω

(ϕv(x, t))σdx
)p(1−Θ)/σΘ

for all γ > σ with

1

γ
=

1

σ
−Θ

( 1
σ
− 1

p
+

1

N

)
, (2.4)

where C4 is a positive constant depending only on p, N and σ0.
The proof is omitted here.

§3. Proof of Theorem 1.6

Let 0 < s < τ < T < +∞. For n = 1, 2, · · · , denote Tn = τ − τ−s
2n−1 , In = (Tn, T ), and

hn ∈ C∞(0,+∞) such that{
hn = 0 in (0, Tn); hn = 1 in In+1,

0 ≤ hn ≤ 1, |h′n| ≤ 2nC
τ−s in (0,+∞),

(3.1)

and ξR ∈ C∞
0 (RN ) such that{

ξR = 0 in RN \B2R; ξR = 1 BR,
0 ≤ ξR ≤ 1, |∇ξR| ≤ C

R , in RN .
(3.2)

Choosing ϕ(x, t) = ξR(x)hn(t) in (b) of Definition 1.2 and using (3.1) and (3.2) we compute

ess sup
s<t<T

∫
RN

(ξRhn)
pu1+α(x, t)dx+ αp sup

0<δ<1

∫ ∫
Qs,T (u>δ)

|∇{ξRhnu[m(p−1)+α]/p}|pdxdt

≤ C2n

τ − s

∫ ∫
Ωn

uα+1dxdt+ CαR−p

∫ T

s

∫
B2R

um(p−1)+αdxdt (3.3)

for all α ≥ max{1;λ−m(p− 1)}, where Ωn = RN × (Tn, T ). This implies that

ess sup
s<t<T

∫
RN

(ξRhn)
pu1+α(x, t)dx ≤ C2n

τ − s

∫ ∫
Ωn

uα+1dxdt+ CαTR−pMλ||u||m(p−1)+α−λ
L∞(Qs,T ) .

Letting R→ +∞, we get

ess sup
s<t<T

∫
RN

hpnu
1+α(x, t)dx ≤ C2n

τ − s

∫ ∫
Ωn

uα+1dxdt. (3.4)
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Denote

α0 = max{1;λ−m(p− 1);λ− 1; 2|m(p− 1)− 1|/(p− 1)}. (3.5)

Then the following inequalities hold:∫ ∫
Ωn+1

up(α+1)/N+α+m(p−1)dxdt ≤ αp−2
( C2n
τ − s

∫ ∫
Ωn

uα+1dxdt
)1+p/N

(3.6)

for all α ≥ α0.
We prove only the case p < N , and the proof in the case p ≥ N is similar and omitted.
In the case p < N , using (i) in Lemma 2.4 and (3.3) we compute∫ ∫

Qs,T

[(ξRhn)
puα+1]p/N [ξRhnu

(m(p−1)+α)/p]pdxdt

≤ αp−2

(
C2n

τ − s

∫ ∫
Ωn

uα+1dxdt+ CαTR−pMλ||u||m(p−1)+α−λ
L∞(Qs,T )

)1+p/N

for all α ≥ α0. Letting R → ∞, we obtain (3.6) in the case p < N . Therefore, the
inequalities (3.6) hold for all α ≥ α0.

Let l be a fixed positive integer such that

κl − 1−N |m(p− 1)− 1|/p ≥ α0,

where κ = 1 + p/N . Then, choosing α = κn − 1−N [m(p− 1)− 1]/p in (3.6) we get∫ ∫
Ωn+1

uκ
n+1−N [m(p−1)−1]/pdxdt ≤ C[2κκp−2]n

(
1

τ − s

∫ ∫
Ωn

uκ
n−N [m(p−1)−1]/pdxdt

)κ

for all n ≥ l. This implies that(∫ ∫
Ωn+l

uκ
n+l−N [m(p−1)−1]/pdxdt

)1/κn+l

≤
( C

τ − s

)an

(2κκp−2)bn
(∫ ∫

Ωl

uκ
l−N [m(p−1)−1]/pdxdt

)1/κl

,

where an =
n−1∑
j=0

(
1
κ

)j+l
, bn =

n−1∑
j=0

j+l
κj+l . Letting n→ +∞ we have

||u||L∞(Qτ,T ) ≤
( C

(τ − s)Nκ/p

∫ ∫
Qs,T

uκ
l−N [m(p−1)−1]/pdxdt

)1/κl

. (3.7)

Using Young’s inequality we obatin

||u||L∞(Qτ,T ) ≤
1

2
||u||L∞(Qs,T ) + C

( 1

(τ − s)Nκ/p

∫ ∫
Qs,T

uλdxdt
)p/Nθ

.

Applying Lemma 2.1 we conclude that

||u||L∞(Qτ,T ) ≤ C
( TMλ

(τ − s)Nκ/p

)p/Nθ

for all 0 < s < τ < T . Thus the proof of Theorem 1.6 is completed.

§4. Proof of Theorem 1.7

Let us denote the following functions{
f(R, s) = ||u||L∞(BR(y)×(T−s,T )), F (R, s) =

∫ T

T−s

∫
BR(y)

uλ(x, t)dxdt,

g(τ) =
(
1
τ

)1/θ
, G(R, ρ, t, s, τ) = gm(p−1)−k(τ)

(R−ρ)p + g1−k(τ)
t−s ,

(4.1)
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where 0 < ρ < R < +∞, 0 < s < t < T < +∞, 0 < τ < +∞, k = min{m(p − 1); 1},
BR(y) = {x ∈ RN : |x− y| < R} and y ∈ RN . Then we have

Lemma 4.1. Let u ∈ Yλ(m, p, q,N), 0 < ρ1 < ρ2 < +∞ and 0 < τ < s1 < s2 < T <
+∞ with T − s2 ≥ τ . If q < k, then

F (ρ1, s1) ≤ γG(ρ2, ρ1, s2, s1, τ)f
k−q(ρ2, s2)F (ρ2, s2).

Proof. For 0 < ρ1 < ρ2 and 0 < τ < s1 < s2 < T with T − s2 ≥ τ , denote two functions
H ∈ C∞(0, T ) and ψ ∈ C∞

0 (RN ) such that{
H(t) = 1 ∀t ∈ (T − s1, T ), H(t) = 0, ∀t ∈ (0, T ) \ (T − s2, T );
0 ≤ H(t) ≤ 1, |H ′(t)| ≤ C

s2−s1
, ∀t ∈ [0, T ];

(4.2){
ψ(x) = 1 ∀x ∈ Bρ1(y), ψ(x) = 0, ∀x ∈ RN \Bρ2(y);

0 ≤ ψ(x) ≤ 1, |∇ψ(x)| ≤ C
ρ2−ρ1

, ∀x ∈ RN .
(4.3)

Taking ϕ(x, t) = ψ(x)H(t) in (b) of Definition 1.2 we get

ess sup
T−s2<t<T

∫
RN

(ψH)p(x, t)u1+α(x, t)dx

+ αp sup
0<δ<1

∫ ∫
QT−s2,T (u>δ)

|∇{(ψH)u[m(p−1)+α]/p}|pdxdt

≤ Λ1

{∫ ∫
QT−s2,T

[(ψH)p−1|ψHt|uα+1 + α1−p(1 + α)|∇(ψH)|pum(p−1)+α

− (α+ 1)(ψH)puq+α]dxdt+

∫
RN

(ψH)p(x, T − s2)u
α+1(x, T − s2)dx

}
.

Letting α = λ− q > 0, we have∫ ∫
QT−s2,T

(ψH)puλdxdt ≤ C

∫ ∫
QT−s2,T

[ψp|Ht|uλ+1−q +Hp|∇ψ|pum(p−1)+1−q]dxdt. (4.4)

On the other hand, it follows from Theorem 1.6 and (4.1) that

f(ρ2, s2) ≤
( γ

T − s2

)1/θ
≤ γg(τ). (4.5)

Using (4.1) and (4.5) we compute∫ ∫
QT−s2,T

ψp|Ht|uλ+1−qdxdt ≤ γ

s2 − s1
· g1−k(τ)fk−q(ρ2, s2)F (ρ2, s2), (4.6)∫ ∫

QT−s2,T

Hp|∇ψ|puλ+m(p−1)−qdxdt ≤ γ

(ρ2 − ρ1)p
· gm(p−1)−k(τ)fk−q(ρ2, s2)F (ρ2, s2).

(4.7)

Combining (4.6) and (4.7) with (4.4) we obtain the conclusion of Lemma 4.1. Thus the
proof is completed.

Lemma 4.2. Let u ∈ Yλ(m, p, q,N), 0 < ρ2 < ρ3 < +∞ and 0 < τ < s2 < s3 < T <
+∞ with T − s3 ≥ τ . If q < k, then

f(ρ2, s2) ≤ γGNκ/pϖ(ρ3, ρ2, s3, s2, τ)F
1/ϖ(ρ3, s3)

for some positive constant γ, where ϖ = λ+ 1− k +N [m(p− 1)− k]/p.
Proof. For 0 < ρ2 < ρ3 and 0 < τ < s2 < s3 < T with T − s3 ≥ τ , and

Tn = T − s2 −
s3 − s2

2n
, T ∗

n =
Tn + Tn+1

2
, n = 1, 2, · · · ,

Rn = ρ2 +
ρ3 − ρ2

2n
, R∗

n =
Rn +Rn+1

2
, n = 1, 2, · · · ,
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by Theorem 1.6, we have

||u||L∞(RN×(Tn,+∞)) ≤ γg(τ), n = 1, 2, · · · . (4.8)

Denote Ωn = BRn(y) × (Tn, T ), Ω∗
n = BR∗

n
(y) × (T ∗

n , T ), y ∈ RN ; and a number of

functions Hn ∈ C∞[Tn, T ], H
∗
n ∈ C∞[T ∗

n , T ], ψn ∈ C∞
0 (RN ) and ψ∗

n ∈ C∞
0 (RN ) such that{

Hn(t) = 1 ∀t ∈ (Tn+1, T ), Hn(t) = 0, ∀t ∈ (0, T ) \ (T ∗
n , T );

0 ≤ Hn(t) ≤ 1, |H ′
n(t)| ≤ C2n

s3−s2
, ∀t ∈ [0, T ];

(4.9){
H∗

n(t) = 1 ∀t ∈ (T ∗
n , T ), H∗

n(t) = 0, ∀t ∈ (0, T ) \ (Tn, T );
0 ≤ H∗

n(t) ≤ 1, |(H∗
n)

′(t)| ≤ C2n

s3−s2
, ∀t ∈ [0, T ];

(4.10){
ψn(x) = 1, ∀x ∈ BRn+1(y), ψn(x) = 0, ∀x ∈ RN \BR∗

n
(y);

0 ≤ ψn(x) ≤ 1, |∇ψn(x)| ≤ C2n

ρ3−ρ2
, ∀x ∈ RN ;

(4.11){
ψ∗
n(x) = 1, ∀x ∈ BR∗

n
(y), ψ∗

n(x) = 0, ∀x ∈ RN \BRn(y);

0 ≤ ψ∗
n(x) ≤ 1, |∇ψ∗

n(x)| ≤ C2n

ρ3−ρ2
, ∀x ∈ RN .

(4.12)

Choosing ϕ(x, t) = ψn(x)Hn(t) in (b) of Definition 1.2 and using (4.8), (4.9) and (4.11), we
get

ess sup
T∗
n<t<T

∫
RN

(ψnHn)
pu1+α(x, t)dx

+ αp sup
0<δ<1

∫ ∫
QT∗

n,T (u>δ)

|∇{ψRHnu
[m(p−1)+α]/p}|pdxdt

≤ Λ1

{∫ ∫
QT∗

n,T

[ψp
nH

p−1
n |H ′

n|uα+1 + α1−p(1 + α)Hp
n|∇ψn|pum(p−1)+α

− (α+ 1)ψp
nH

p
nu

q+α]dxdt+

∫
RN

ψp
nH

p
nu

α+1(x, T ∗
n)dx

}
≤ C2n

s3 − s2

∫ ∫
Ω∗

n

uα+1dxdt+
C2pnα

(ρ3 − ρ2)p

∫ ∫
Ω∗

n

um(p−1)+αdxdt

≤ γ2(p+1)nαG(ρ3, ρ2, s3, s2, τ)

∫ ∫
Ω∗

n

uα+kdxdt

for all α ≥ max{1;λ−m(p− 1)}. This implies that

ess sup
T∗
n<t<T

∫
RN

(ψnHn)
pu1+α(x, t)dx

+ αp sup
0<δ<1

∫ ∫
QT∗

n,T (u>δ)

|∇{ψnHnu
[m(p−1)+α]/p}|pdxdt

≤ γ2(p+1)nαG(ρ3, ρ2, s3, s2, τ)

∫ ∫
Ω∗

n

uα+kdxdt. (4.13)

Similarly, we also have

ess sup
Tn<t<T

∫
RN

(ψ∗
nH

∗
n)

pu1+α(x, t)dx

+ αp sup
0<δ<1

∫ ∫
QTn,T (u>δ)

|∇{ψ∗
nH

∗
nu

[m(p−1)+α]/p}|pdxdt

≤ γ2(p+1)nαG(ρ3, ρ2, s3, s2, τ)

∫ ∫
Ωn

uα+kdxdt,
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which implies that

ess sup
Tn<t<T

∫
RN

(ψ∗
nH

∗
n)

pu1+α(x, t)dx ≤ γ2(p+1)nG(ρ3, ρ2, s3, s2, τ)

∫ ∫
Ωn

uα+kdxdt (4.14)

for all α ≥ max{1;λ−m(p− 1)}.
Let us prove that the following inequality holds:∫ ∫

Ωn+1

up(α+1)/N+α+m(p−1)dxdt

≤ γαp−2

(
2n(p+1)αG(ρ3, ρ2, s3, s2, τ)

∫ ∫
Ωn

uα+kdxdt

)κ

(4.15)

for all α ≥ α0, where κ = 1 + p/N , α0 is defined by (3.5).
We consider only the case p ≥ N . The proof for the case p < N is similar, and is omitted

here.
In the case p ≥ N , we denote σ = p(α+ 1)/[m(p− 1) + α] and then have

1 ≤ (p+ 1)/2 ≤ σ ≤ p+ 1, ∀α ≥ α0.

For γ and Θ defined by (2.4), applying (ii) of Lemma 2.4 and (4.13) with (4.14), we compute∫ ∫
QTn

∗ ,T

[(ψnHn)
puα+1]1−p/Θγ [ψnHnu

(m(p−1)+α)/p]p/Θdxdt

≤ C
(
ess sup

T∗
n<t<T

∫
RN

(ψnHn)
puα+1dx

)1−p/Θγ

·

(
ess sup

T∗
n<t<T

∫
RN

(ψnHnu
[m(p−1)+α]/p)σdx

)p(1−Θ)/σΘ

· sup
0<δ<1

∫ ∫
QT∗

n,T (0<δ<1)

|∇(ψnHnu
α+m(p−1))|pdxdt

≤ γαp−2

(
αG(ρ3, ρ2, s3, s2, τ)

∫ ∫
Ωn

uα+kdxdt

)2−p/Θγ

·
{
ess sup

Tn<t<T

∫ ∫
Ωn

(ψ∗
nH

∗
n)

puα+1dxdt

}p(1−Θ)/σΘ

≤ γαp−2

(
2(p+1)nαG(ρ3, ρ2, s3, s2, τ)

∫ ∫
Ωn

uα+kdxdt

)1+p/N

for all α ≥ α0. Therefore, (4.15) holds in the case p ≥ N . Thus (4.15) is proved for all
α ≥ α0.

Let l be a fixed positive integer such that κl + k − 1 + N [k −m(p − 1)]/p ≥ α0, where
κ = 1 + p/N . Then, choosing α = κn + k − 1 +N [k −m(p− 1)] in (4.11) we get(∫ ∫

Ωn+l

uκ
n+l−ϖ+λdxdt

)1/κn+l

≤ (γG(ρ3, ρ2, s3, s2, τ))
an(2(p+1)κκ1+p/N )bn

(∫ ∫
Ωl

uκ
l−ϖ+λdxdt

)1/κl

,

where

an =
n−1∑
j=0

(
1

κ

)j+l

, bn =
n−1∑
j=0

j + l

κj+l
.
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Letting n→ +∞ we have

||u||L∞(Bρ2 (y)×(T−s2,T )) ≤ γ
(
GNκ/p(ρ3, ρ2, s3, s2, τ)

∫ T

T−s2

∫
Bρ3 (y)

uκ
l−ϖ+λdxdt

)1/κl

.

Using Young’s inequality and (4.1), we obatin

f(ρ2, s2) ≤ γf (κ
l−ϖ)/κl

(ρ3, s3)
(
GNκ/p(ρ3, ρ2, s3, s2, τ)F (ρ3, s3)

)1/κl

≤ 1

2
f(ρ2, s2) + γGNκ/pϖ(ρ3, ρ2, s3, s2, τ)F

1/ϖ(ρ3, s3)

for all 0 < s2 < s3 < T with T − s3 ≥ τ and 0 < ρ2 < ρ3. Applying Lemma 2.1 we conclude
that

f(ρ2, s2) ≤ γGNκ/pϖ(ρ3, ρ2, s3, s2, τ)F
1/ϖ(ρ3, s3).

Thus the proof of Lemma 4.2 is completed.
Lemma 4.3. Let u ∈ Yλ(m, p, q,N). If

1

T 1+β0

∫ T

T/2

∫
BR(T )

uλ(x, t)dxdt ≤ b0 (4.16)

for some T ∈ (0,+∞), then

u(x, t) = 0 (4.17)

for a. e. (x, t) ∈ BR(T )/2 × (3T/4, T ), where R(T ) = Tλ/Nθ, and

β0 =
β1 − β2
β2

, β1 =
(
1 +

1− k

θ

)(
1 +

Nκ(k − q)

pϖ

)
, β2 =

k − q

ϖ
, (4.18)

and b0 is some positive constant depending only on m, p, λ, q,N , Λ1 and Λ2.
Proof. Let 0 < ρ1 < ρ2 < ρ3 < +∞ and 0 < τ < s1 < s2 < s3 < T < +∞ with

T − s3 ≥ τ . Applying Lemma 4.1 we get

F (ρ1, s1) ≤ γG(ρ2, ρ1, s2, s1, τ)f
k−q(ρ2, s2)F (ρ2, s2). (4.19)

Using Lemma 4.2 we have

f(ρ2, s2) ≤ γGNκ/pϖ(ρ3, ρ2, s3, s2, τ)F
1/ϖ(ρ3, s3). (4.20)

Combining (4.19) and (4.20) we obtain

F (ρ1, s1) ≤ γG(ρ2, ρ1, s2, s1, τ)G
Nκ(k−q)/pϖ(ρ3, ρ2, s3, s2, τ)F

(k−q)/ϖ(ρ3, s3)F (ρ2, s2).
(4.21)

For 0 < ρ < R < +∞, 0 < τ < s < T < +∞ with T − s ≥ τ , taking

ρ1 = ρ, ρ2 =
ρ+R

2
, ρ3 = R; s1 = τ, s2 =

τ + s

2
, s3 = s

in (4.21) we get

F (ρ, τ) ≤ γG
(ρ+R

2
, ρ,

τ + s

2
, τ, τ

)
·GNκβ2/p

(
R,

ρ+R

2
, s,

τ + s

2
, τ
)

· F β2(R, s)F
(ρ+R

2
,
τ + s

2

)
. (4.22)

From (4.1), it follows that

G
(ρ+R

2
, ρ,

τ + s

2
, τ, τ

)
= G

(
R,

ρ+R

2
, s,

τ + s

2
, τ
)

=
2pg1−k(τ)

(R− ρ)p
+

2gm(p−1)−1(τ)

s− τ
≤ 2pG(R, ρ, s, τ, τ). (4.23)
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In addition, by (4.1), we also have

F

(
ρ+R

2
,
τ + s

2

)
≤ F (R, s). (4.24)

Combining (4.23) and (4.24) with (4.22) we conclude that

F (ρ, τ) ≤ γG1+Nκβ2/p(R, ρ, s, τ, τ)F 1+β2(R, s) (4.25)

for 0 < ρ < R < +∞ and 0 < τ < s < T < +∞ with T − s ≥ τ .
For n = 1, 2, · · · , denote

Rn = R(T ) +
R(T )

2n
, Tn =

T

4
+
T

4n
, n = 1, 2, · · · ,

where R(T ) = T r/(NΘ+pr). Choosing R = Rn, ρ = Rn+1, s = Tn and τ = Tn+1 in (4.25),
we have

F (Rn+1, Tn+1) ≤ γG1+Nκβ2/p(Rn, Rn+1, Tn, Tn+1, Tn+1)F
1+β2(Rn, Tn) (4.26)

for n = 1, 2, · · · . It follows from (4.1) that

G(Rn, Rn+1, Tn, Tn+1, Tn+1)

≤ g1−k(Tn+1)

Tn − Tn+1
+
gm(p−1)−k(Tn+1)

(Rn −Rn+1)p
≤ γ4(p+1)n

(
1

T

)1+N(1−k)/(NΘ+pr)

.

Therefore, by (4.26), we get An+1 ≤ γbnT−β1A1+β2
n , n = 1, 2, · · · , where An = F (Rn, Tn),

and b = 4(p+1)(1+Nκβ2/p). By Lemma 2.2, if

(γT−β1)1/β2b1/β
2
2A0 < 1, (4.27)

then

lim
n→+∞

An = 0. (4.28)

Thus the proof of Lemma 4.3 is proved.
Proof of Theorem 1.7. It follows from Lemma 4.3 that, if

1

T 1+β0

∫ T

T/2

∫
BR(T )

uλ(x, t)dxdt ≤ b0, (4.29)

then

u(x, t) = 0 (4.30)

for a. e. (x, t) ∈ BR(T )/2 × (3T/4, T ), where R(T ) = Tλ/Nθ. Choosing T0 such that

T0 = (Mλ/2b0)
1/β0we have (4.29) for all T ∈ (T0,+∞) and all y ∈ RN and then obtain

(4.30) for all T ∈ (T0,+∞) and all y ∈ RN . This implies that u(x, t) = 0 for a. e.
(x, t) ∈ RN × (T0,+∞). Thus the proof of Theorem 1.7 is completed.

§5. Proof of Theorem 1.1

From Theorem 1.7, it follows that u(x, t) = 0 for a. e. (x, t) ∈ RN × (T0,+∞). By (a) in
Definition 1.2, we get ∫ +∞

0

∫
RN

uλ(x, t)dxdt < +∞. (5.1)

For any T ∈ (0, T0), by (5.1), there exists a positive constant L = L(T ) such that∫ +∞

0

∫
RN\BL

uλ(x, t)dxdt < b0T
1+β0 . (5.2)



372 CHIN. ANN. OF MATH. Vol.22 Ser.B

Let y ∈ RN \ BL+R(T ). Then we have BR(T )(y) ⊂ RN \ BL. Using (5.2) we obtain (4.16).
By Lemma 4.3, we get u(x, t) = 0 for a. e. (x, t) ∈ BR(T )/2(y) × (3T/4, T ) with y ∈
RN \BL+R(T ). Thus Theorem 1.1 is proved.

§6. Proof of Theorem 1.2

Let u ∈ Yλ(m, p, q,N) be a nonneagtive function which has the ISS property. Then, for
any τ > 0, there exists a positive constant L = L(τ) such that

suppu(·, t) ⊂ BL (6.1)

for all t ∈ (τ,+∞). Take ξR as (3.2) and choose ϕ(x, t) = ξR(x) in (c) of Definition 1.2 to
have

ess sup
s<t<T

∫
RN

ξpR(x)u
1−β(x, t)dx

+
β(1− β)

(m(p− 1)− β)p
sup

0<δ<1

∫ ∫
Qs,T (u>δ)

|∇{ξRu(m(p−1)−β)/p}|pdxdt

≤ C
{∫ ∫

Qs,T

[β1−p(1− β)|∇ξR|pum(p−1)−β + (1− β)ξpRu
q−β ]dxdt

+

∫
RN

ξpR(x)u
1−β(x, T )dx

}
for T ∈ (s,+∞) with s ≥ τ > 0. This implies that

sup
0<δ<1

∫ ∫
Qs,T (u>δ)

|∇{ξRu(m(p−1)−β)/p}|pdxdt

≤ C(p− 1− β)p

β(1− β)

{∫ ∫
Qs,T

(1− β)ξpRu
q−βdxdt+

∫
RN

ξpR(x)u
1−β(x, T )dx

}
for all R > 2L and a. e. T ∈ (s,+∞) with s ≥ τ > 0. Using Lemma 2.4 we compute∫ ∫

Qs,T

ξpRu
m(p−1)−βdxdt ≤

C(m(p− 1)− β)p|BL|(T − s)(||u||q−β
L∞(Qs,T )) + ||u||1−β

L∞(Qs,T ))

β(1− β)
.

For 1 > q ≥ m(p− 1) > 0, letting β ↑ m(p− 1), by (6.1), we conclude that |Qs,T (u > 0)| =
0 (∀T > s > τ). Therefore taking τ → 0+ and s→ 0+ we get Theorem 1.2.

§7. Proof of Theorem 1.3

Let u ∈ Yλ(m, p, q,N) be a nonneagtive function which has the ISS property. Then, for
any τ > 0, there exists a positive constant L = L(τ) such that

suppu(·, t) ⊂ BL, ∀t ∈ (τ,+∞). (7.1)

Take ξR as (3.2) and choose ϕ(x, t) = ξR(x) in (c) of Definition 1.2 to have

ess sup
s<t<T

∫
RN

ξpR(x)u
1−β(x, t)dx

+
β(1− β)

(m(p− 1)− β)p
sup

0<δ<1

∫ ∫
Qs,T (u>δ)

|∇{ξRu(m(p−1)−β)/p}|pdxdt

≤ C
{∫ ∫

Qs,T

[β1−p(1− β)|∇ξR|pum(p−1)−β + (1− β)ξpRu
q−β ]dxdt

+

∫
RN

ξpR(x)u
1−β(x, T )dx

}
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for a. e. T ∈ (s,+∞) with s ≥ τ > 0. This implies that

ess sup
s<t<T

∫
RN

ξpR(x)u
1−β(x, t)dx ≤ C

{∫ ∫
Qs,T

(1−β)ξpRu
q−βdxdt+

∫
RN

ξpR(x)u
1−β(x, T )dx

}
for all R > 2L. For max{m(p− 1); q} ≥ 1, letting β ↑ 1, by (7.1), we conclude that

|suppu(·, s)| ≤ |suppu(·, T )|
for a. e. s, T with s < T . Thus, we get Theorem 1.3.

§8. Proof of Theorem 1.4

In order to prove Theorem 1.4 we need following results.
Lemma 8.1. Assume that u ∈ Yλ(m, p, q,N), m(p − 1) > 1 and q > 0. If (1.4) holds,

then

||u||L∞(Bρ(y)×(0,T )) ≤
( C

(R− ρ)N+p

∫ T

0

∫
BR(y)

um(p−1)+λ−1dxdt
)1/λ

for all T > 0 and all y ∈ RN \BR+R0 with R > ρ > 0, where θ = m(p− 1)− 1 + pλ/N .

Proof. For R > ρ > 0, let y ∈ RN \ BR0+R, denote Rn = ρ + R−ρ
2n , n = 1, 2, · · · , and

ξn ∈ C∞
0 (RN ) such that{

ξn = 0 in RN \BRn(y); ξn = 1 BRn+1(y),

0 ≤ ξn ≤ 1, |∇ξn| ≤ C2n

R−ρ , in RN .
(8.1)

Choosing ϕ(x, t) = ξn(x) in (b) of Definition 1.2 we get

ess sup
s<t<T

∫
RN

(ξn)
pu1+α(x, t)dx+ αp sup

0<δ<1

∫ ∫
Qs,T (u>δ)

|∇{ξnu[m(p−1)+α]/p}|pdxdt

≤ Λ1

{∫ ∫
Qs,T

[α1−p(1 + α)|∇ξn|pum(p−1)+α +

∫
RN

ξpnu
α+1(x, s)dx

}
for a. e. s ∈ (0, T ) with T > 0. Using (1.4) and (8.1) and letting s→ 0+, we get

ess sup
0<t<T

∫
RN

(ξn)
pu1+α(x, t)dx+ αp sup

0<δ<1

∫ ∫
Q0,T (u>δ)

|∇{ξnu[m(p−1)+α]/p}|pdxdt

≤ Cα

(R− ρ)p

∫ ∫
Ωn

um(p−1)+αdxdt (8.2)

for all α ≥ max{λ; 1;λ−m(p− 1)}, where Ωn = BRn(y)× (0, T ).
Similarly to (3.6), by (8.2), we have∫ ∫

Ωn+1

up(α+1)/N+α+m(p−1)dxdt ≤
( C2pnαp

(R− ρ)p

∫ ∫
Ωn

uα+m(p−1)dxdt
)1+p/N

(8.3)

for all α ≥ α0, and n = 1, 2, · · · .
Let l be a fixed positive integer such that κl − 1 ≥ α0, where κ = 1 + p/N , and α0 is

defined by (3.5). Then, choosing α = κn − 1 in (8.3) we get∫ ∫
Ωn+1

uκ
n+1−1+m(p−1)dxdt ≤ C[2pκκpκ]n

( 1

(R− ρ)p

∫ ∫
Ωn

uκ
n−1+m(p−1)dxdt

)κ
for all n ≥ l. This implies that(∫ ∫

Ωn+l

uκ
n+l−1+m(p−1)dxdt

)1/κn+l

≤
( C

(R− ρ)p

)an

(2pκκpκ)bn
(∫ ∫

Ωl

uκ
l−1+m(p−1)dxdt

)1/κl

,
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where

an =
n−1∑
j=0

( 1
κ

)j+l

, bn =
n−1∑
j=0

j + l

κj+l
.

Letting n→ +∞ we have

||u||L∞(Bρ(y)×(0,T )) ≤ C
( 1

(R− ρ)Nκ

∫ ∫
BR(y)×(0,T )

uκ
l−1+m(p−1)dxdt

)1/κl

.

Using Young’s inequality we obatin

||u||L∞(Bρ(y)×(0,T )) ≤
1

2
||u||L∞(BR(y)×(0,T )) +

( C

(R− ρ)Nκ

∫ T

0

∫
BR(y)

uλ+m(p−1)−1dxdt
)1/λ

.

Applying Lemma 2.1 we conclude that

||u||L∞(Bρ(y)×(0,T )) ≤
( C

(R− ρ)Nκ

∫ T

0

∫
BR(y)

uλ+m(p−1)−1dxdt
)1/λ

.

Thus the proof of Lemma 8.1 is completed.
Lemma 8.2. Assume that u ∈ Yλ(m, p, q,N), m(p− 1) > q ≥ 1. Then we have∫ ∫

Q

uq+λ−1dxdt ≤ CMλ.

Proof. Let R > 0 and 0 < s < T < +∞ and denote ξR ∈ C∞
0 (RN ) such that{

ξR = 0 in RN \B2R; ξR = 1 BR,
0 ≤ ξR ≤ 1, |∇ξR| ≤ C

R , in RN .
(8.4)

Choosing ϕ(x, t) = ξR(x) in (b) of Definition 1.2 we get

ess sup
s<t<T

∫
RN

ξpRu
1+α(x, t)dx+ αp sup

0<δ<1

∫ ∫
Qs,T (u>δ)

|∇{ξRu[m(p−1)+α]/p}|pdxdt

≤ Λ1

{∫ ∫
Qs,T

[α1−p(1 + α)hn|∇ξR|pum(p−1)+α − (α+ 1)ξpRh
p
nu

q+α]dxdt

+

∫
RN

ξpRh
p
nu

α+1(x, s)dx
}

for a. e. s ∈ (0, T ) with T > 0. By (8.4), we get∫ ∫
Qs,T

ξpRu
q+αdxdt ≤ Cα1−p(1 + α)R−p

∫ ∫
Qs,T

um(p−1)+αdxdt+ C

∫
RN

ξpRu
α+1(x, s)dx

for α > λ− 1 ≥ 0. Letting R→ +∞, by m(p− 1) ≥ 1, we have∫ ∫
Qs,T

uq+αdxdt ≤ C

∫
RN

uα+1(x, s)dx

for all α > λ− 1 ≥ 0. Letting α ↓ (λ− 1) we get∫ ∫
Qs,T

uq+λ−1dxdt ≤ C

∫
RN

uλ(x, s)dx

for a. e. s ∈ (0, T ) with 0 < T < +∞. Taking s→ 0+ and T → +∞ we get∫ ∫
Q

uq+λ−1dxdt ≤ CMλ.

Thus the proof is completed.
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Proposition 8.1. Assume that u ∈ Yλ(m, p, q,N), 1 ≤ q < m(p − 1). If (1.4) holds,
then there exists a positive constant L1 depending only on m, p, q, λ,N,Λ1, Λ2 and Mλ such
that

u(x, t) = 0 for a. e. (x, t) ∈ (RN \BL1)× (0, 1].

Proof. Applying Lemma 8.1 we get

||u||L∞(Bρ(y)×(0,T )) ≤

(
C

(R− ρ)N+p

∫ T

0

∫
BR(y)

um(p−1)−1+λdxdt

)1/λ

(8.5)

for all T > 0 and all y ∈ RN \BR+R0 with R > ρ > 0.
Denote Rn = R

2 + R
2n , n = 1, 2, · · · . Then (8.5) implies that

||u||L∞(BRn+1
(y)×(0,T )) ≤

(C2(p+N)n

RN+p

∫ T

0

∫
BRn (y)

um(p−1)−1+λdxdt
)1/λ

,

which implies that An+1 ≤ C2(p+N)nR−p/λA1+σ
n+1, where σ = [m(p − 1) − 1]/λ > 0 and

An = ||u||L∞(BRn (y)×(0,T )), 0 < T ≤ 1. By Lemma 2.2, if

A0 < (CR−p/λ)−1/σ2−(p+N)/σ2

, (8.6)

then we have

lim
n→+∞

An = ||u||L∞(BR/2(y)×(0,T )) = 0. (8.7)

On the other hand, using Theorem 1.6 and (8.5), we compute

||u||L∞(BR(y)×(0,T )) ≤
{ C

(2R−R)N+p

∫ T

0

∫
B2R(y)

um(p−1)−1+λdxdt
}1/λ

≤ γ

RN+p

for all 0 < T ≤ 1 and all y ∈ RN \B2R+R0 . This implies

||u||L∞(BR(y)×(0,T )) ≤ γR−N−p. (8.8)

Choose R = R∗ > 1 such that

γR−N−p
∗ ≤ 2−1 · (CR−p/λ

∗ )−1/σ2−p/σ2

. (8.9)

From (8.8) and (8.9), it follows that (8.6) holds for all R ≥ R∗ with y ∈ RN \ B2R+R0 ,
and then (8.7) holds for all R ≥ R∗ with y ∈ RN \ B2R+R0 . Therefore, we conclude that
u(x, t) = 0 for all y ∈ RN \BR0+2R∗ . Thus the proof of Proposition 8.1 is completed.

Let us denote the following functions

I(R; y) = ||u||L∞(BR(y)×(1,T+1)); J(R; y) =

∫ T+1

1

∫
BR(y)

um(p−1)+λ−1dxdt, (8.10)

where T > 0 and R > ρ > 0, and y ∈ RN . Then we have
Lemma 8.3. Assume that u ∈ Yλ(m, p, q,N), and 1 ≤ q < m(p− 1). If

u(x, t) = 0 (8.11)

for a. e. (x, t) ∈ (RN \BL1)× (0, 1] for some positive constant L1, then

J(ρ1; y) ≤
γ

(ρ2 − ρ1)p
Im(p−1)−q(ρ2; y)J(ρ2; y)

for all y ∈ RN \Bρ2+L1 with ρ2 > ρ1 > 0.
Proof. For 0 < ρ1 < ρ2 with y ∈ B2R+L1 , denote a function ψ ∈ C∞

0 (RN ) such that{
ψ(x) = 1 ∀x ∈ Bρ1(y), ψ(x) = 0, ∀x ∈ RN \Bρ2(y);

0 ≤ ψ(x) ≤ 1, |∇ψ(x)| ≤ C
ρ2−ρ1

, ∀x ∈ RN .
(8.12)
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Taking ϕ(x, t) = ψ(x) in (b) of Definition 1.2 we get

ess sup
s<t<T+1

∫
RN

ψp(x, t)u1+α(x, t)dx+ αp sup
0<δ<1

∫ ∫
Qs,T (u>δ)

|∇{ψu[m(p−1)+α]/p}|pdxdt

≤ Λ1

{∫ ∫
Qs,T+1

[α1−p(1 + α)|∇ψ|pum(p−1)+α − (α+ 1)ψpuq+α]dxdt

+

∫
RN

ψ(x)uα+1(x, s)dx
}

for a. e. s > 1. Letting s ↓ 1 and α = m(p − 1) − q + λ − 1 > 0, by (8.10) and (8.11), we
have∫ ∫

Q1,T+1

ψpum(p−1)+λ−1dxdt ≤ C

(ρ2 − ρ1)p

∫ T+1

1

∫
Bρ2 (y)

u2m(p−1)+λ−1−qdxdt. (8.13)

On the other hand, by (8.10), we get∫ T+1

1

∫
Bρ2 (y)

u2m(p−1)+λ−1−qdxdt ≤ Im(p−1)−q(ρ2; y)J(ρ2; y). (8.14)

Combining (8.13) and (8.14) we obtain the conclusion of Lemma 8.3. Thus Lemma 8.3 is
proved.

Lemma 8.4. Assume that u ∈ Yλ(m, p, q,N), m(p− 1) > 1 and q > 0. If (8.11) holds,
then

I(ρ2; y) ≤
γ

(ρ3 − ρ2)(N+p)/λ
J1/λ(ρ3; y)

for all y ∈ RN \B2ρ3+L1 with ρ3 > ρ2 > 0.

The proof is similar to that of Lemma 8.1. Therefore, we omit it.

Proposition 8.2. Assume that u ∈ Yλ(m, p, q,N), and 1 ≤ q < m(p − 1). If (8.13)
holds, then

J(ρ; y) ≤ γ

(R− ρ)β3
J1+β4(ρ2; y)

for all y ∈ RN \BR+L1
with R > ρ > 0, where

β3 = p+
(N + p)(m(p− 1)− q)

λ
, β4 =

m(p− 1)− q

λ
.

Proof. For R > ρ > 0 and y ∈ RN \BR+L1 , using Lemma 8.3 we get

J(ρ; y) ≤ γ

(R− ρ)p
Im(p−1)−q

(R+ ρ

2
; y
)
J(R; y). (8.15)

In addition, it follows from Lemma 8.4 that

I
(R+ ρ

2
; y
)
≤ γ

(R− ρ)(N+p)/λ
J1/λ(R; y). (8.16)

Combining (8.16) with (8.15) we get the conclusion of Proposition 8.2. Thus Proposition
8.2 is proved.

Proof of Theorem 1.4. Using Proposition 8.1 we get

u(x, t) = 0 (8.17)

for a. e. (x, t) ∈ (RN \ BL1) × (0, 1], where L1 is a positive constant depending only on
m, p, q, λ,Λ1 and Λ2 and Mλ.
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For R > 0 and y ∈ RN \B2R+L1 , using Proposition 8.2 we have

J(ρ; y) ≤ γ

(R− ρ)β3
J1+β4(ρ2; y). (8.18)

Let us define Rn = R
2 + R

2n+1 , n = 0, 1, 2, · · · . Then, from (8.18), we have An+1 ≤
2nβ3γ
Rβ3

A1+β4
n for n = 1, 2, · · · , where An = J(Rn; y). By Lemma 2.2 , if

A0 < (γR−β3)−1/β42−β3/β
2
4 , (8.19)

then

lim
n→+∞

An = lim
n→+∞

J(Rn; y) =

∫ T+1

1

∫
BR/2(y)

um(p−1)+λ−1dxdt = 0. (8.20)

On the other hand, using Theorem 1.6 and Lemma 8.2 we compute

A0 =

∫ T+1

1

∫
BR(y)

um(p−1)+λ−1dxdt ≤ ||u||m(p−1)−q
L∞(Q1,T+1)

∫ ∫
Q

uqdxdt ≤ γ0 (8.21)

for some positive constant γ0. Choose R = R∗ such that

γ0 < (γR−β3
∗ )−1/β42−β3/β

2
4 . (8.22)

Therefore, from (8.21) and (8.22) we obtain that (8.19) holds for all R ≥ R∗, and then
(8.20) holds for all R ≥ R∗ with y ∈ RN \ B2R+BL1

. This implies that u(y, t) = 0 for a. e.

(y, t) ∈ (RN \B2R∗+L1)× (1, T + 1). Thus Theorem 1.4 is completed.

§9. Proof of Theorem 1.5

Let u ∈ Yλ(m, p, q,N) be a nonneagtive function which has the LOC property. Then
there exists a positive constant L such that

suppu(·, t) ⊂ BL for a. e. t ∈ (0,+∞). (9.1)

In order to prove Theorem 1.5 we need the following lemmas.
Lemma 9.1. Suppose that u ∈ Yλ(m, p, q,N) and (9.1) holds. If m(p − 1) > 1, then

u(x, t) ≤ γ1

tm(p−1)−1 for a. e. (x, t) ∈ Q, where γ1 is a positive constant depending only on
m, p, q,N, λ,Λ1,Λ2 and L.

Proof. For 0 < s < τ < T , using (3.7) and applying the Young inequality we compute

||u||L∞(Qτ,T ) ≤
1

2
||u||L∞(Qτ,T ) +

( C

(τ − s)Nκ/p

∫ ∫
Qs,T

dxdt
)p/N [m(p−1)−1]

.

By Lemma 2.1 we conclude that

||u||L∞(Qτ,T ) ≤
( C

(τ − s)Nκ/p

∫ ∫
Qs,T

dxdt
)p/N [m(p−1)−1]

for all 0 < s < τ < T . This implies that

||u||L∞(QT/2,T ) ≤
C

T 1/[m(p−1)−1]
.

Thus the proof of Lemma 9.1 is completed.
Lemma 9.2. Suppose that u ∈ Yλ(m, p, q,N) and (9.1) holds. If q > m(p − 1) > 1,

then u(x, t) = 0 for a. e. (x, t) ∈ RN × (T1,+∞), where T1 is some time depending only on
m, p, q,N, λ,Λ1,Λ2 and L.

Proof. Let β be a positive number such that

β = max
{1
2
; 1− N [q −m(p− 1)]

p

}
(9.2)
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and take ξR as (3.2) and ϕ(x, t) = ξR(x) in (c) of Definition 1.2 to have

ess sup
s<t<T

∫
RN

ξpR(x)u
1−β(x, t)dx

+
β(1− β)

(m(p− 1)− β)p
sup

0<δ<1

∫ ∫
Qs,T (u>δ)

|∇{ξRu(m(p−1)−β)/p}|pdxdt

≤ C
{∫ ∫

Qs,T

[β1−p(1− β)|∇ξR|pum(p−1)−β + (1− β)ξpRu
q−β ]dxdt

+

∫
RN

ξpR(x, T )u
1−β(x, T )dx

}
for s ∈ (τ, T ) with τ < T < +∞. This implies that

ess sup
s<t<T

∫
RN

ξpR(x)u
1−β(x, t)dx+ sup

0<δ<1

∫ ∫
Qs,T (u>δ)

|∇{ξRu(m(p−1)−β)/p}|pdxdt

≤ C

{∫ ∫
Qs,T

(1− β)ξpRu
q−βdxdt+

∫
RN

ξpR(x)u
1−β(x, T )dx

}
for all R > 2L. For q > m(p− 1), using Lemma 2.2, we conclude that∫ ∫

Qs,T (L)

um(p−1)−β+p(1−β)/Ndxdt

≤ C

{∫ ∫
Qs,T (L)

uq−βdxdt+

∫
BL

u1−β(x, T )dx

}1+p/N

, (9.3)

where 0 < s < T and Qs,T (L) = BL × (s, T ).
Denote

σ = m(p− 1)− β +
p(1− β)

N
, ν = q − β − σ ≥ 0,

where β is defined by (9.2). Then, by (9.3), we get∫ ∫
Qs,T (L)

uσdxdt ≤ C
{∫ ∫

Qs,T (L)

uσ+νdxdt
}κ

+ C
{∫

BL

u1−β(x, T )dx
}κ

, (9.4)

where κ = 1 + p/N . Using Lemma 9.1 we compute

u(x, t) ≤ γ2 (9.5)

for a.e. (x, t) ∈ Q1,+∞, and∫
BL

u1−β(x, T )dx ≤
∫
BL

( γ1
t1/[m(p−1)−1]

)1−β

dx

≤ γ3T
−(1−β)/[m(p−1)−1] (9.6)

for a. e. T ∈ (0,+∞); and∫ ∫
Qs,T (L)

uσ+νdxdt ≤
∫ ∫

Qs,T (L)

( γ1
tm(p−1)−1

)σ+ν

dxdt

≤ γ4s
(β−1)/[m(p−1)−1] (9.7)

for 0 < s < T , where γ2, γ3 and γ4 are positive constants depending not on s, T . Combining
(9.5) with (9.7) we get

C
{∫ ∫

Qs,T (L)

uσ+νdxdt
}κ

≤ 1

2

∫ ∫
Qs,T (L)

uσdxdt
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for all s, T with T1 < s < T , where T1 is some positive number. From (9.4), it follows that

1

2

∫ ∫
Qs,T (L)

uσdxdt ≤ C
{∫

BL

u1−β(x, T )dx
}κ

for all T > s > T1. Using (9.6) and letting T → +∞ we have

1

2

∫ ∫
Qs,+∞(L)

uσdxdt = 0

for all s ∈ (T1,+∞). Thus Lemma 9.2 is proved.

Proof of Theorem 1.5. By Lemma 9.2, we get u(x, t) = 0 for a. e. (x, t) ∈ RN ×
(T1,+∞). This implies that |suppu(·, t)| = 0 for a. e. t ∈ (T1,+∞). Using Theorem 1.3
we conclude that |suppu(·, t)| = 0 for a. e. t ∈ (0, T1). Thus we get u(x, t) = 0 for a. e.
(x, t) ∈ Q. This contradicts the assumptions of Theorem 1.5. Thus the proof of Theorem
1.5 is completed.

§10. The Applications to Nonlinear Parabolic Equations

In this section we shall prove that the solutions of (1.1) and (1.2) belong to Yλ (m,p,q,N)
with some m, p, q, N in general.

Let u0 be a non-zero nonnegative function satisfying one of the following conditions:

(H1) u0 is a finite Borel measure in RN ;

(H2) u0 ∈ Lλ(RN ) for some 1 ≤ λ < +∞.

We shall consider the following problems.{
ut = div(|∇u|p−2∇u)− uq, p > 1, q > 0,
u(x, 0) = u0(x), x ∈ RN ,

(A){
ut = ∆um − uq, m > 0, q > 0,
u(x, 0) = u0(x), x ∈ RN .

(B)

First, we consider the Cauchy problem (A) in the cases (H1) and (H2).

(i) In the case (H1).

By the existence and non-existence proved by H. Brezis and A. Friedman in [17] and by
Zhao Junning in [18], if p − 2 + p/N > 0 and q < p − 1 + p/N , then the Cauchy problem
(A) has a nonnegative solution u ∈ C(Q) ∩ L∞(0,∞;L1(RN )) satisfying∫

RN

Φ(x, t)u(x, t)dx−
∫
RN

Φ(x, s)u(x, s)dx

=

∫ ∫
Qs,t

[uΦt − |∇u|p−2∇u∇Φ− Φuq]dxdτ (10.1)

for all s, t with 0 < s < t, and for all Φ ∈ Lp(0,+∞;W 1,p
0 (RN )) with Φt ∈ L2

loc(Q).

In particular, we have

Proposition 10.1. Let u be a solution of (A), and p−2+p/N > 0 and q < p−1+p/N .
If (H1) holds, then u ∈ Y1(1, p, q,N).

The proof is similar to that given in [19]. Therefore we omit it.

(ii) In the case (H2).

By the existence proved by E. Di Benedetto in [19], if p − 2 + pλ/N > 0 and q <
p − 1 + pλ/N , then the Cauchy problem (A) has a nonnegative solution u ∈ C(Q) ∩
L∞(0,∞;Lλ(RN )) satisfying (10.1).

Similarly to Proposition 10.1, we also have
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Proposition 10.2. Let u be a solution of (A), and p−2+pλ/N > 0 and q < p−1+pλ/N .
If (H1) holds, then u ∈ Yλ(1, p, q,N).

In addition we consider the Cauchy problem (B) in the cases (H1) and (H2).
Similarly to Propositions 10.1–10.2, we have
Proposition 10.3. Let u be a solution of (B), and m− 1 + 2/N > 0 and q < m+ 2/N .

If (H1) holds, then u ∈ Y1(m, 2, q,N).
Proposition 10.4. Let u be a solution of (B), and m−1+2λ/N > 0 and q < m+2λ/N .

If (H2) holds, then u ∈ Yλ(m, 2, q,N).
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