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LOCALIZATION OF FUNCTIONS IN
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Abstract

The aim of this paper is to discuss the instantaneous shrinking and localization of the support
of functions in Yx(m,p,q, N) and their applications to some nonlinear parabolic equations
including the porous medium equation u: = Au™ — u%, m > 0, ¢ > 0 and the p-Laplace
equation u¢ = div(|]Vu|P~2Vu) —ud, p > 1, ¢ > 0. In particular, as an application of the
results, the necessary and sufficient condition for the solutions of the above p-Laplace equation
with nonnegative finite Borel measures as initial conditions to have the instantaneous shrinking
property of the support is obtained. This is an answer to an open problem posed by R. Kersner
and A. Shishkov.
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¢1. Introduction

As well known, the solutions of semilinear parabolic equations u; = Au —u?, 0 < g <1
have the ISS (the instantaneous shrinking of the support) property (see [1-5]).

Such property is defined as follows.

Definition 1.1. A function v € LS (Q) is said to have the ISS property, if for any
T > 0, there exists a positive number R = R(T) such that

u(z,t) =0
for a. e. (z,t) € (RN \ Bg) x (1,+00), where RN is the N-dimensional Euclidean space,
and Q = RN x (0, +00).
Up to the present, there have been many papers which are devoted to the generations

to other kinds of equations (see [6-11]). One of the typical examples of them is the porous
medium equation

ug = Au™ —uf, m>0, ¢>0 (1.1)
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(see [6,8,9]). Another typical example is the p-Laplace equation
uy = div(|VuP~2Vu) — uf, p>1, ¢>0 (1.2)
(see [10]).

We easily check that the solutions of (1.1) and (1.2) belong to Y (m, p, ¢, N) (see Section
10) which is defined as follows.

Definition 1.2. Let m > 0, p > 1, ¢ > 0 and A > 1. A nonnegative function u €
Ya(m,p,q, N) if and only if u € L>(0, +oo; L*(RN)) satisfies the following conditions (a)—
(c):

(a) For any ¢ € (0,1), we have

u € L®(8,+00; L°(RY)), |Vu| € LY, (0, +o0; LF. (RY)).

loc loc

(b) There exists a positive number Ay such that, for all « € (0,400) and all ¢ €
C>(0, +o0; Cg° (RN)) with ¢ > 0, we have

ess sup o (z, t)u' T (x, t)dx + o, sup // [V{pulm=Drel/pypaga
s<t<T JRN 0<5<1J JQur(u>6)

< A1{ // [P e [utTt 4+ aP 7P (1 4 a)|[VoPu™P=DFe — (o + 1)¢PudT|dadt
QS,T

+ ¢p(x,s)ua+1(x,s)dm}
RN
for a. e. s € (0,T) with0 < T < 400, where a, = a(l + a)[m(p — 1) + o] P, Qsr(u >
§)={(z,t) € Qs : u(x,t) > 6}, and Qs 7=RY x (s,T) for 0 < s < T < +o0.
(¢) There exists a positive number Ao such that, for all 5 € (0, min{1;m(p — 1);¢}) and
all € C°°(0,400; C5° (RN)) with ¢ > 0, we have

ess sup ¢ (z,t)yu' =P (z,t)dx + B, sup // \V{gulmP=D=Al/ry P dgdt
s<t<T JRN 0<<1 Qs,7(u>6)

< Ao / / (67 elu' =7+ 1P = B)|[VoPumPTITE 4 (1 = B)gPut P dadt

+ ¢ (2, T)u* =P (x, T)d:v}
RN

for a. e. T € (s,400) with s > 0, where B, = (1 — B)m(p—1) — B]~P.

Our main results are the following theorems and their applications.

Theorem 1.1. Assume that u € Yx(m,p,q,N), 0 >0 and 0 < ¢ < 1. If g <m(p—1),
then the function u has the ISS property, where 8 = m(p — 1) — 1 + pA/N.

Theorem 1.2. Assume that u € Yx(m,p,q,N), 0 >0 and 0 < g< 1. If ¢ > m(p—1),
then the function u has no the ISS property.

Remark 1.1. If u € Yx(m,p,q,N) with § > 0 and 0 < ¢ < 1, then ¢ < m(p — 1) is the
necessary and sufficient condition for the function u to have the ISS property.

The above conclusions can be applied to some nonlinear partial differential equations
including (1.1) and (1.2). For example, let us see Remark 1.2 as follows.
Remark 1.2. Assume that u is a solution of the Cauchy problem

up = div(|VuP2Vu) —u?, p>1, 1>¢>0,
{u(I,O) = ug(z), r € RV,
Then we have the following conclusions (i) and (ii).
(i) If up is a non-zero nonnegative finite Borel measure in RY, then u € Y1(1,p, g, N)
(see Proposition 10.1). If p— 2+ p/N > 0 and 0 < ¢ < 1, then Theorem 1.1 and Theorem

(1.3)
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1.2 imply that the solution w of the Cauchy problem (1.3) has the ISS property if and only
if ¢ < p—1. This is a very interesting answer to an open problem posed by R. Kersner and
A. Shishkov in [10].

(ii) If up € LARM)(1 < A < +00) is a non-zero nonnegative function, then u €
Ya(1,p,q, N) (see Proposition 10.2). If p— 2+ pA/N > 0 and 0 < ¢ < 1, then, by Theorem
1.1 and Theorem 1.2, the solution w of the Cauchy problem (1.3) has the ISS property if
and only if ¢ < p — 1. Clearly, Theorem 3 proved by R. Kersner and A. Shishkov in [10] is
extended.

Remark 1.3. Similarly to Remark 1.2, Theorem 1.1 and Theorem 1.2 also can be applied
to the equation (1.1). Here we omit the details.

All results as above hold only for 0 < ¢ < 1. In fact, in the case ¢ > 1, we have the
following Theorems.

Theorem 1.3. Let u € Yy(m,p,q,N). If min{m(p — 1);q} > 1, then

|supp u(-, s)| < [suppu(-, t)] fora. e. st with 0<s<t.

Remark 1.4. Theorem 1.3 implies that, if ¢ > 1, then the function v € Y (m,p,q, N)
has no the ISS property in general.

But, for ¢ > 1, we obtain an interesting phenomenon called the LOC (Localization)
property which is defined as follows.

Definition 1.3. A function w € L{S.(Q) is said to have the LOC property, if there exists
a positive number L such that u(z,t) =0 for a. e (x,t)€ (RN \ Br) x (0,+00).

In addition, we have

Theorem 1.4. Assume that § >0, ¢ > 1, u € Yx(m,p,q,N), and

u(z,t) -0 a. e in RY\Bgr, as t— 0" (1.4)

for some positive constant Ry. If ¢ < m(p — 1), then the function u has the LOC property.

Theorem 1.5. Assume that § > 0 and v € Yx(m,p,q,N) is a non-zero nonnegative
function. If ¢ > m(p — 1) > 1, then the function u has no the LOC property.

Remark 1.5. The conclusions in Theorem 1.4 and Theorem 1.5 are optimal.

Such LOC property for some nonlinear parabolic equations including (1.1) and (1.2) has
obtained by R. Kersner in [12] and Yuan Hongjun in [13, 14].

Remark 1.6. Similarly to Remark 1.2, as an application of Theorem 1.4 and Theorem
1.5, one can in fact extend some results in [12-14]. We omit the details here.

In order to prove Theorem 1.1 and Theorem 1.4 we need the following Theorem 1.6 and
Theorem 1.7.

Theorem 1.6. Assume that u € Yy(m,p,q,N). If 6 > 0, then

1\ 1/6
u(z,t) < CMf/NH (z) for a.e. (xz,t) € Q.

Here and thoughout this paper, C' stands for a positive constant depending only on m,

p, ¢, N, A\, A; and As; and v stands for a positive constant depending only on m, p, q, A,

A1, Ay and M)y; and M), =ess sup f]RN Mz, t)da.
0<t<400

Theorem 1.7. Assume that uw € Yy(m,p,q,N) and 6§ > 0. If 0 < g < min{l;m(p— 1)},
then there exists a time Ty such that

u(z,t) =0 for a. e (x,t) € RN x (Tp, +00).

Remark 1.7. Theorem 1.7 implies that u € Y (m, p,q, N) has the extinction property,
providied that 0 < ¢ < min{l;m(p — 1)}. Similarly to Remark 1.2, Theorem 1.7 can be
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applied to some nonlinear parabolic equations including (1.1) and (1.2). The details are
omitted here.

Remark 1.8. Our method in this paper can be applied to study other problem including
finite propagation of perturbations for nonlinear parabolic equations. The details are also
omitted here.

Remark 1.9. The conclusion in Theorem 1.5 seems to be true even if ¢ = m(p—1). But
we are not able to prove it yet. This is an interesting problem.

The proofs of Theorem 1.6 and Theorem 1.7 are completed in Sections 3-4, respectively.
In the process of proving Theorem 1.6 and Theorem 1.7 we need some fundamental lemmas
in Section 2. Using Theorem 1.6 and Theorem 1.7 we shall prove Theorem 1.1 in Section 5.
The proofs of Theorem 1.2-Theorem 1.5 are given in Sections 6-9, respectively. In the last
Section 10, we shall prove that the solutions of (1.1) and (1.2) belong to Yx(m,p, g, N).

§2. Fundamental Lemmas

Lemma 2.1. Ifh: R+ [0, 4+00) is a nonnegative bounded function on [a1,by] X [az, ba] X
- X [ay, by] such that

!
Ai
h(p1,p2,--- o) < ah(Ra, Ro, -+, Ry) + Z (m +Bz') (2.1)
i=1 ¢ *

for all p;, R; with a; < p; < R; <b; (i =1,2,---,1), where a, o; (i =1,2,---,1), A; (i =
1,2,-+- 1) and B; (i=1,2,---,1) are positive constants, and a < 1, then

l
A;
h(plap%"' 7pl) SCZ(W—FBZ) (2.2)
i=1 v K

forall p;, R; witha; < p; < R; <b; (i=1,2,---,1), where C is a positive constant depending
only on a; (1 =1,2,--- 1) and a.

Remark 2.1. The proof is similar to that given for the case [ = 1 in [15]. Therefore we
omit it.

Lemma 2.2. Lety, (n =0,1,2,---) be a sequence of real numbers satisfying the following
inequalities 0 < y, 41 < cb"yito forn =0,1,2,--, where c >0, 0 >0 and b > 1. Then

Yn < c[(1+a)"—1]/ab[(1+a)"—1—m]/02y(()1+a)”

forn=0,1,2,---. In particular, we have the following conclusions.
(i) The following inequality holds:

lim y711/(1+a)” < cl/abl/azyo.

n—-+4o0o

(i) If yo < ¢~ Y/7b=1/"  then Tim g, = 0.

The proof can be found in [16].

Lemma 2.3. Assume thatp > 1,0 > 1, u € Wol’p(Q), and Q is a bounded and smooth
domain in RN. Then we have

(i) If p < N, then |[ullpnxe/v-n (o) < C1l|Vullpe) where Cy is a positive constant
depending only on p and N.

(ii) If p > N, then ||u||~ ) < CQHVuH?p(Q)HquL;?Q) for~y > o, where Cy = max{y(N —
1)/N;1+(p—1)0/N}®, and
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The proof can be found in [16].

Lemma 2.4. Assume that u € L>(0,T;LY(Q)), v € L>(0,T;L°(Q)) (0 € [1,00)),
¢ € C&(Qr) are nonnegative functions, Q is a bounded domain in RN, Qr = Q x (0,7T).
If vs = max{v;d} € LP(0,T; WHP(Q)) (p > 1) for every 6 € (0,1) satisfying the following

conditions:
S = sup // |V (¢v)|Pdxdt < +o00,
0<s<1J Jar(v>s)

then the following conclusions hold.
(i) If p < N, then

/N
// UP/N(qu)pdzdt < C3S<GSS sup / u(x,t)dx)p ’
Qr 0<t<T JQ

where C3 1is positive constant depending only on p and N.
(ii) If p > N, then

// ut P07 (¢v)P/ O dadt
Qr
1-p/©
§C4S’(ess sup /u(m,t)dx) ’ FY(GSS sup /(qbv(a:,t))"dx
Q Q

)p(lf@)/d@

0<t<T 0<t<T

for all v > o with
1 1 1 1 1
—=—-o(--—+ %), 2.4
Yy o o p + N (24)

where Cy 1s a positive constant depending only on p, N and oy.

The proof is omitted here.

§3. Proof of Theorem 1.6

Let 0 < s <7 <T < +o0. Forn=1,2,---, denote T}, = 7 — 5:=%, In = (T, T), and
hyn, € C*°(0,+00) such that

hn =0 1in (O,Tn), hn =1 in In+17 (3 1)
0<hy <1, |hy| <28 in (0, 400), '
and &g € C$°(RY) such that
§p=0 in RY\Bopi  &p=1 Br, (3.2)
0<ér<1, |Vér|<%, in RV '

Choosing ¢(x,t) = Er(z)hy,(t) in (b) of Definition 1.2 and using (3.1) and (3.2) we compute

ess sup / (Erhn)Put(z,t)dr + o sup // \V{€rhpumP=DFel/PLPdgqt
Qs T(u>5)

s<t<T 0<o<1

27’7,
< ¢ / / u*ttdxdt + CaR™P / / umP=DFe g dt (3.3)
T—S8 Bag

for all @ > max{l' A—m(p—1)}, where Q =R x (T,,,T). This implies that

s s [ (€ahput(ods < 2 [t daa o+ Cor a0
s<t<T JRN

T—S

Letting R — +00, we get

2n
ess sup / REurt (z, t)da < ¢ // u* T dzdt. (3.4)
RN

s<t<T T—S
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Denote
ag = max{l; A —m(p—1); A — 1;2lm(p — 1) — 1|/(p — D}. (3.5)
Then the following inequalities hold:

/ / PO N Fatm(p—1) gy gy < ap—z(@ / / ua+1dxdt)1+p/N (3.6)
QnJrl T—S5 Qp

for all a > ayp.
We prove only the case p < N, and the proof in the case p > N is similar and omitted.
In the case p < N, using (i) in Lemma 2.4 and (3.3) we compute

// [(thn)Pua+l]P/N [thnu(m(p_1)+a)/p]pdxdt

p—2 o2 wt! (p—1)+a—X PN
<a dadt + CaTR™P M, ||ul|}

T—s =(Qs,1)

for all & > «ap. Letting R — oo, we obtain (3.6) in the case p < N. Therefore, the
inequalities (3.6) hold for all o > .
Let [ be a fixed positive integer such that

W =1 Njm(p—1) ~ 1/p > oo,
where k =1+ p/N. Then, choosing & = k™ —1 — N[m(p — 1) — 1]/p in (3.6) we get

// ukm+1,N[m(p71)71]/pdzdt < C[Qnﬁp72]n < 1 // unnN[m(pl)l]/pdzdt)
Qni1 T—38 Q,

for all n > [. This implies that

nn#»l
( / / uw“—N[m(p—l)—ll/Pda:dt)1/
Qn+l
1
S( C )“"(2%;)_2)1)"(// uﬁl_N[m(p—l)—l]/dedt)1/N7
T—3S8 197}

n—1 Fay —
where a,, = > (£)",
i=0 =0
C I_N /5!
o <N\ K =Nimp=1)=1l/pg dt) . 3.7
el (@r.r) < ((T_S)Nﬁ/p //Tu x (3.7)
Using Young’s inequality we obatin
p/NO
llli=(@.m < 3l + (s [ whdade)™
s, T

Applying Lemma 2.1 we conclude that

TM) p/N®
Il @ = (= g5m7m)

for all 0 < s < 7 < T. Thus the proof of Theorem 1.6 is completed.

¢4. Proof of Theorem 1.7
Let us denote the following functions
{ f(R7 S) = ||UHL°°(BR(y)><(T75,T))7 fT s fBR J? t dxdt,

1/6 ‘m.(p 1) kT g R (r
g(T) = (%) ’ G(R7p7ta SaT) = (pr)p( ) + t7£ )7
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where 0 < p < R < 400, 0 < s <t <T < 400, 0 < 7 < 400, k = min{m(p — 1);1},
Br(y) = {r € RY : |z —y| < R} and y € RY. Then we have

Lemma 4.1. Let u € Yx(m,p,q¢,N), 0 < p; < ps < 400 and 0 < 7 < 51 < 82 < T <
400 with T — sg > 7. If g < k, then

F(p1,s1) < YG(p2, p1, 52,51, 7) 9 (pa, 52) F(pas 52).
Proof. For 0 < p; < ps and 0 < 7 < 51 < $9 < T with T — s > 7, denote two functions
H € C>(0,T) and ¢ € C§°(R") such that

Hit)=1 Vte (T—s,T), H(t)=0, vVte (0,T)\ (T —s2,T); 49

{ogH(t)gL ()] < =<, vt € [0, T]; (4.2)

{1/1(9:) =1 VzeB,y), ¥)=0 Vze RN\ B, (y); (4.3)
0<d(a) <1, VY@< 55, VeeRY '

Taking ¢(x,t) = ¢(z)H(t) in (b) of Definition 1.2 we get

ess  sup /(wH)p(x,t)uHa(x,t)dx
T—so<t<T JRN

+a, sup / / IV { (o Hyulm =D+l 2y i i
0<d<1 QT — sy, 7(u>5)

< A1{ //chsz,T[(wH)plet'uaH +a'"P(1 + )|V (¢ H) [Pum P Dt

— (a+ 1) (v H)Pud"]dxdt + /

(WH)P (2, T — so)u* (z, T — 52)daj}.
RN

Letting @« = A — ¢ > 0, we have
/ / (YH)Purdxdt < C / / [P |Hy|u M9 4 HP |V [Pu™ P~ D=0 dpdr. (4.4)
Qr—s,,T QT —s5,T

On the other hand, it follows from Theorem 1.6 and (4.1) that

1/6
< < . .
Flpzs) < (7o) <0(r) (45)
Using (4.1) and (4.5) we compute
// WP H M dadt < —— g R (1) 9 (pa, 52) F(pa, s2), (4.6)
Qr—sy,T S2 — 81

// HP |V Pume—D=agpdt < — T qme=D=k(7) h=0(p, 5, )F(ps, 52).
Qropr (p2 = pr)? (4.7)
Combining (4.6) and (4.7) with (4.4) we obtain the conclusion of Lemma 4.1. Thus the
proof is completed.

Lemma 4.2. Let u € Yx(m,p,¢,N), 0 < ps < p3 < 400 and 0 < 7 < 89 < 83 < T <
400 with T —s3 > 7. If g < k, then

f(an 82) < VGNH/pw(p37 P2,83, 52, T)Fl/w(p37 83)

for some positive constant v, where w =A+1—k+ N[m(p—1) — k]/p.

Proof. For 0 < ps <pzand 0 <7 < s9 <83 <T with T — s3> 7, and
T.+1T,

. T :g, n=1,2---,

2n ) 2
p3 — p2 « _ R+ Rona
Rr = Do T Hnt
on 0 2

53 — 52
Tn:Tfsgf

Rn:p2+

n=1,2-,
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by Theorem 1.6, we have
[w]| oo ®Y 5 (T 400)) S V9(T), n=1,2,--

Denote 2, = Bg, (y) x (T,,,T), Q = Bg:(y) x (T;,T), y € RY; and a number of
functions H,, € C®[T,,,T], H} € C®[T,T)], ¥n € C(RY) and ¢} € C§°(RY) such that

(4.8)

H ()*1 VtE( n+17T) Hn(t)zov VtE(O,T)\(T:;,T); 4.9
{osmma, |HI()] < C2, vt € [0,7]; (4.9)
Hi(t)=1 Vie (T ﬂ,WU—QWEQH“%ﬂ; 10
%Sﬂ@SLK () < 22 vie o] (4.10)

Un(@) =1, Vo€ Br,., (@), ¢n( )=0, Vze€RN\ Bg:(y); (411)
0<tp(z) <1, |Viop(z)| < p3 p2 vz € RY; |
V(@) =1, Vo€ Br(v), wi(e) =0, vz € R\ B, (v); (4.12)
0< ¢ x R |V1/1 (1‘) = p3 pz Vo € RY. |

) <1
Choosing ¢(x,t) = ¢ (z)H,(t) in (b) of Definition 1.2 and using (4.8), (4.9) and (4.11), we
get

ess  sup /(d)an)puHo‘(x,t)dx
RN

Tr<t<T

+ oy sup // V{4 g Hyul™ =D Fel/pY P gy
0<o<1 Qrx r(u>0)

= Al{ // [8 HE [ Hy [u ™t + 7P (1 + ) HE Vi, [Pum P =1t
Qrx
~ (a + 1)Y? HPud ) dadt + / WP HPuo Y (z, T*)dm}
n Py
< 2 / / T dzdt + 2 / / umP=OF gt
83 — S2 3 P3 - ,02 *
< 72(p+1)"ozG(p3,p2, 83,82,7T) // uTrdxdt

for all & > max{1; A —m(p — 1)}. This implies that
ess sup / (Y Hp)Pute (z,t)dx
RN

Tr<t<T
+ oy, sup // |V{wanu[m(P*1)+“V?’}|Pdg;dt
0<6<1 Qrx r(u>d)
S72(p+1)"aG(p3,p2,53,52,7') // utkdzdt. (4.13)

Similarly, we also have

ess  sup / (Y H)Purte (z, t)dx
RN

Tn<t<T

+ a, sup // |V {) HulmP=D+al/py P gy
0<6<1J JQr, 1 (u>d)

< 72(p+1)naG(p37p2a5375277—) // ua+kdxdt7
Q
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which implies that

s sup [ (W H)P s < 020G, paysagsar) [ [ utthdear (419)
T,<t<T JRN Q,

for all @ > max{l; A —m(p—1)}.
Let us prove that the following inequality holds:

/ / @D /N +atm(p-1) g4
Qn+1

< ar-? (2"(”“)0@(/)37;)2,53,82,7) // ua“dxdt) (4.15)
Qn

for all & > a, where k = 1+ p/N, g is defined by (3.5).

We consider only the case p > N. The proof for the case p < N is similar, and is omitted
here.

In the case p > N, we denote o = p(a + 1)/[m(p — 1) + o] and then have

1<(p+1)/2<0<p+1, Va>a.
For v and © defined by (2.4), applying (ii) of Lemma 2.4 and (4.13) with (4.14), we compute

J R e B O A AT
Qrr,r

41 1-p/©v
SC’(ess sup / (Y Hp)Pu® dx)
Tr<t<T JRN

p(1-6)/06
~<ess sup / (wanu[m(p_lHa]/p)”dx)
RN

Tr<t<T

0<6<1

2-p/Ov
< 704;072 <C¥G([)37 P25 83, 52, T) // ua+kdxdt>
Qn

p(1-0)/00
-{ess sup // (w;H;)puadedt}
r,<t<1J) Jo,

1+p/N
< ,yap—Q <2(p+1)naG(p37 P2, 53,52, T) // ua-‘rkdxdt)
Qnp

for all & > ag. Therefore, (4.15) holds in the case p > N. Thus (4.15) is proved for all
a > qg.

Let [ be a fixed positive integer such that &' + k — 1+ N[k — m(p — 1)]/p > g, where
k =1+ p/N. Then, choosing o = k" +k —1+ N[k —m(p—1)] in (4.11) we get

n+l
(// u“wl*w*)‘dxdt) e
Qntt
l

1/k
< (VG(P?,:PQ,83,82,T))“"(2(p+1)”nl+p/N)b”(// u”l_w+)‘dmdt> ,
Q

- sup // |V (¢ Hy ™ P Pt
Qrx 7(0<6<1)

where

n—1 7+l n—1 .
1 J+1
ap = § <I€> ) bn = E RN
j=0
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Letting n — +o00 we have
N T ! A 1/k!
|[ul| oo (B,, (1) % (T—52,7)) < W(G “/"(P3,P2753,82,7)/ / u dwdt) .
T—s2 7 Byg(y)

Using Young’s inequality and (4.1), we obatin
! ! 1/k!
F(p2,52) < v =% (pg, s3) <GNH/p(03,P2,53, SQ,T)F(P:S,S?)))

1
< §f(1)2, s9) +YGN®PZ (p3, pa, 83, 52, 7)Y ¥ (p3, 53)

for all 0 < s9 < s3 < T with T'—s3 > 7 and 0 < p2 < ps. Applying Lemma 2.1 we conclude
that

f(PQ» 82) S ,YGNN/pW(p?” P2, 53,52, T)Fl/w(p3, 83)‘
Thus the proof of Lemma 4.2 is completed.
Lemma 4.3. Let u € Yy(m,p,q,N). If

— u(x,t)dxdt < b 4.16
ey Y U (419

for some T € (0,+00), then

u(z,t) =0 (4.17)
for a. e. (z,t) € Briry/2 x (3T/4,T), where R(T) = T*N? and
P B _ 1—k Nk(k —q) _k—q
Bo = Bs , Bi= (1+T) <1+p7w)’ B2 = 7, (4.18)

and by is some positive constant depending only on m, p, \,q, N, A1 and As.
Proof. Let 0 < p; < p2 < p3 < 4o and 0 < 7 < 51 < 82 < 83 < T < +oo with
T — s3 > 7. Applying Lemma 4.1 we get

F(p1, 1) < YG(pa, p1, 52,51, 7) ¥~ U (p2, 52)F(p2, 52). (4.19)
Using Lemma 4.2 we have
F(pa,52) <AGN®/P% (p3, pa, 53,82, 7)F'/ = (p3, 53). (4.20)

Combining (4.19) and (4.20) we obtain
F(Pl» 81) S ’YG(PZ; P1,52, 51, T)GNK(k_q)/pw(p-?n pP2,53,52, T)F(k_q)/w(p?n 83)F(p2a 82)'

(4.21)
For0<p<R<+400,0<7<s<T <400 with T —s > 7, taking
p+ R T+s
P1 =P, pQZTJ pSZRa S1 =T, S2 = 2 ) 3 =S
in (4.21) we get
R R
F(p7T)§,yG(p+ 7p7T+S7T7T>.GNK/ﬂ2/p(R7p+ 7S7T+S7T>
2 2 2 2
-F%(R¢3F(B%;§,T;5>. (4.22)
From (4.1), it follows that
p+R T+s )_ ( p+R T+s )
G( 2 ’p’ 2 77-77- _G R’ 2 787 2 ’T
9P gl—Fk 2 m(p—1)—1
_ 29 + 9 (7) < 2PG(R, p, 8,7, T). (4.23)

- (R—p)p §—T
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In addition, by (4.1), we also have

F (”“;R, TH) < F(R,s). (4.24)
Combining (4.23) and (4.24) with (4.22) we conclude that
F(p,7) < /GNP (R, p s, 7, 1) 1472 (R, 5) (4.25)

for0<p<R<+oocand 0<7<s<T <+ocowithT —s>r.
Forn=1,2,---, denote
R(T) T
Rn - R T a0 Tn A
(T) + = T
where R(T) = T/ (N®+p1) - Choosing R = Ry, p = Rpy1, s = T), and 7 = Tht1 in (4.25),
we have
F(Rng1, Togr) < vG V2P (R Ry T, Tt Tt/ 2 (R, T) (4.26)
forn=1,2,---. It follows from (4.1) that

G(Rn7Rn+1aTnaTn+1an+1)
_ m(p—1)— 1+N(1—k)/(NO©+pr
< gl k(Tn—i-l) + g (p—1) k(Tn-‘rl) < ,_)/4(p+1)n l ( i o)
a Tn - Tn+1 (Rn - Rn+1)p a T .

Therefore, by (4.26), we get A, 41 < W"T P ALE2 n =12 ... where A, = F(R,,T,),
and b = 4@+DI+NRG2/P) By Lemma 2.2, if

+

= =1,2
p— n = -
4 < )

(YT ~Pr) /B2p1 /B2 Ay < 1, (4.27)
then
lim A, = 0. (4.28)
n—-4o0o

Thus the proof of Lemma 4.3 is proved.
Proof of Theorem 1.7. It follows from Lemma 4.3 that, if

ST
—_— u’(x, t)dzdt < by, (4.29)
T1+B8o 72 J Bper
then
u(z,t) =0 (4.30)
for a. e. (z,t) € Bgiry2 x (3T/4,T), where R(T) = T*N?. Choosing Ty such that
Ty = (MA/QbO)l/ﬁ“we have (4.29) for all T € (Tp,+o0) and all y € RY and then obtain
(4.30) for all T € (Tp,+oco) and all y € RYN. This implies that u(z,t) = 0 for a. e.
(x,t) € RN x (Ty,+00). Thus the proof of Theorem 1.7 is completed.
§5. Proof of Theorem 1.1
From Theorem 1.7, it follows that u(x,t) = 0 for a. e. (z,t) € RY x (Tp, +00). By (a) in
Definition 1.2, we get

—+oo
/ / u(x, t)dzdt < +oo. (5.1)
0 RN

For any T € (0,Tp), by (5.1), there exists a positive constant L = L(T") such that

+oo
/ / u(x, t)dedt < boT P, (5.2)
0 RN\ By
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Let y € RN\ Br, p(r). Then we have Br(r)(y) C RV \ Br. Using (5.2) we obtain (4.16).
By Lemma 4.3, we get u(x,t) = 0 for a. e. (x,t) € Bpr)/2(y) x (3T/4,T) with y €
RN\ Br 4 rery- Thus Theorem 1.1 is proved.

§6. Proof of Theorem 1.2

Let u € Yx(m,p,q, N) be a nonneagtive function which has the ISS property. Then, for
any 7 > 0, there exists a positive constant L = L(7) such that

suppu(-,t) C By, (6.1)
for all ¢ € (7,+00). Take {x as (3.2) and choose ¢(x,t) = Er(z) in (c) of Definition 1.2 to
have

ess sup & (2)u P (z, t)dx
s<t<T JRN

5(1*5) w(m(p=1)=8)/p1|p
" (m(p—1) - 0<5<1 //Q 1 (u>6) Vign 7 dedt

= C{ // S_’T[ﬂlfp(l — B)|VERPu™P=1=F 4 (1 — B)eRutP)dudt

+ /]RN §%(m)ul_5(x,T)dx}

for T' € (s,+00) with s > 7 > 0. This implies that

sup // \V{gumP=D=A)/PYPdradt
QsT u>5)

0<o<1

g Clp _1_ // B)Erut~ ﬂdzdt+/ & (2)u' P (a, T)dm}

for all R > 2L and a. e. T € (s, +oo) with s > 7 > 0. Using Lemma 2.4 we compute

Clm(p—1) = B)?|BL|(T — 1-5
// €0 )5 gy < (m(p — 1) = B)PIBLIT — s)(Ilull i L, ) + HuHLOO(QS,T))'
or B(1—-B)
For 1> ¢ >m(p—1) > 0, letting 3 T m(p — 1), by (6.1), we conclude that |Qsr(u > 0)| =
0 (VI > s > 7). Therefore taking 7 — 0% and s — 0" we get Theorem 1.2.

§7. Proof of Theorem 1.3

Let u € Y(m,p,q, N) be a nonneagtive function which has the ISS property. Then, for
any 7 > 0, there exists a positive constant L = L(7) such that

suppu(-,t) C B, Vt € (7,400). (7.1)
Take &g as (3.2) and choose ¢(x,t) = Eg(x) in (c) of Definition 1.2 to have

ess sup / & (2)u' P (z, t)dx

s<t<T
) sup // |V{§Ru(m1’ - B)/p}|pdxdt
m(p ) P o<s<t Qo1 (u>6)

-1 -r
<c{ /] STﬂl P(1 - B)|VERlPu™ P08 4 (1 - B)ehuP)drdt

—|—/ h(x 1ﬂxT)dx}
RN
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for a. e. T € (s,+00) with s > 7 > 0. This implies that

ess sup 8 (x)ur P (a, tdx<C // B)Eput™ 5dmdt+/ 2 (x)ur P (a, T)dx}
RN s, T

s<t<T
for all R > 2L. For max{m(p — 1);¢q} > 1, letting 8 1 1, by (7.1), we conclude that
|suppu(-, )| < [suppu(-,T)]
for a. e. 5,7 with s < T. Thus, we get Theorem 1.3.

¢8. Proof of Theorem 1.4

In order to prove Theorem 1.4 we need following results.
Lemma 8.1. Assume that u € Yx(m,p,q,N), m(p—1) > 1 and ¢ > 0. If (1.4) holds,

then
C T 1/A
[ull Lo (B, (y)x (0,7 S(i/ / um(p_l)JrA_ldmdt)
B0 = R=p)N5 Jy Sy

f07"allT>Oa,ndallyERJ\'\BR_FR0 with R > p > 0, where § = ( —1)—1—|—p)\/N.
Proof. For R > p > 0, let y € RV \ Bg, 1R, denote R, = p + n=12---, and
&, € C°(RY) such that

&=0 in RN\ Bp(y); & =1 Bg,,(y),
0<& <1, |V&|< %5, in RV,

Choosing ¢(x,t) = &,(x) in (b) of Definition 1.2 we get

ess sup (&)Purt(z,t)dx + o, sup // [V{&ulmP=DFel/Py P g at
s<t<T JrN 0<s<1.) JQ. 1 (u>s)

<& / / [01P(1 + )| V&, [Pum @D 4 / Eu (z, 5)d
s, T RN

for a. e. s € (0,T) with T'> 0. Using (1.4) and (8.1) and letting s — 0T, we get

ess sup / (&n)Pul T (z,t)dz + o, sup // |V{&,ulmP=D+el/Pyipdaqt
0<t<T 0<é<1J JQor(u>0)

wm =Dt go g 8.2
R )P // v (8.2)

for all & > max{A;1;A —m(p — 1)}, where Q,, = Bgr, (y) x (0,7).
Similarly to (3.6), by (8.2), we have

// Pt D) /N+atm(p=1) g 1 < 2pnap // w =1 godt )Hp/ (8.3)
Qpia Qn

forall « > ap,and n=1,2,---
Let [ be a fixed positive integer such that ! — 1 > «ag, where K = 1 + p/N, and «y is
defined by (3.5). Then, choosing o = k™ — 1 in (8.3) we get

// um"+1_1+m(p—1)d$dt < 0[217”/{1)5]”(# // u"“n_l"’m(p_l)da:dt)ﬁ
- (R=p)* ) Ja,

for all n > [. This implies that

// KT —14+m(p— l)dxdt)l/m
Qi
1/w!
< ( ) (2PF P bn // ' —14+m(p— 1)dmdt) ,
(R—p)» Q

271 )

(8.1)
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where

Letting n — 400 we have

1 L tm(p— 1/x!
[lullLoe (B, () x(0.1)) < C(i(pr)Nﬁ //B o yr —tme 1>dxdt) .
RrR\Y 5

Using Young’s inequality we obatin

1 C T 1) /X
lullLoe (B, () x(0.1)) < *HuIILw(BR(y)x(o,T»Jr(7(}2_/))1%/ /B ( A=) 1dxdt> :
rR(Y

Applying Lemma 2.1 we conclude that

. . 1/
L (=l A AP )
L>=(B,(y)x(0,T)) (R=p)N% Jo JBaw)

Thus the proof of Lemma 8.1 is completed.
Lemma 8.2. Assume that u € Yyx(m,p,q,N), m(p —1) > ¢ > 1. Then we have

/ / wITLdadt < CM,y,.
Q

Proof. Let R >0 and 0 < s < T < +oo and denote £ € C§°(RY) such that

gR =0 in RN \ B2Rv SR =1 BR7 (8 4)
0<ér<1, |V&|I<E, in RM. '

Choosing ¢(x,t) = Eg(z) in (b) of Definition 1.2 we get

ess sup / ult(z,t)dz + a;, sup // IV {€gulmP=D+el/Py P agdt
s<t<T JRN 0<6<1 Qs.1(u>6)

< Al{ // (@' 7P(1 4 @) h, |VERIPUTP=DT (o 4 1)eBRPuIT | dadt

+ ERRPut (z, s)dx}
RN

for a. e. s € (0,7T) with T > 0. By (8.4), we get

// uitdadt < Ca' P(1+a)R7P // um P dt + C Pt (z, s)dx

Qs T s, T RN
for « > A — 1> 0. Letting R — +o0, by m(p — 1) > 1, we have
// wItdxdt < C u® T (z, 8)dx
s, T RN

forall > A —12>0. Letting a | (A — 1) we get

// u?™dydt < C’/ u(x, s)dx
s, T RN

for a. e. s € (0,T) with 0 < T < 4o0. Taking s — 07 and T'— +oco we get

/ / wItAldedt < CM,.
Q

Thus the proof is completed.
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Proposition 8.1. Assume that u € Yx(m,p,q,N), 1 < g < m(p—1). If (1.4) holds,
then there exists a positive constant L1 depending only on m,p,q, \, N, A1, Ao and M) such
that

u(z,t) =0 for a. e (x,t)€ (RY\ By,) x (0,1].
Proof. Applying Lemma 8.1 we get

/A
1)—14X
l[ull L= (B, @)% (0,7)) < <(R o) N+p/ /BR m(p— dxdt) (8.5)

forallT>0andally€R \BR+R0 with R > p > 0.
Denote R, = & + 2—", n=1,2,---. Then (8.5) implies that

C2(p+N)n 1/
) Ly (-1 -1 dt)
HUHL (BRn+1 (y)X(O’T)) - RN+p / /BR (v) ’ 7

which implies that A,4; < C2P+NIMR=P/AAIT where o = [m(p — 1) — 1]/A > 0 and
Ap = ||ullL(Bg, (y)x(0,1)), 0 <T < 1. By Lemma 2.2, if

Ay < (CR™P/M)~V/og=(wtN)/o® (8.6)
then we have
Jim Ay = [[ull e (8w x0,1)) = 0- (8.7)

On the other hand, using Theorem 1.6 and (8.5), we compute

C T 1/A v
. o P — R
[lullLoe (Br()x(0.1)) < {(2R_R)N+p/0 /Bm(y)“ . = RN+p

forall 0 <7 <1 and all y € RN \ Baryp,. This implies
ull Lo (Br(y)x0,1)) < VRN (8.8)
Choose R = R, > 1 such that
YR;N"P < 271 (CR;P/M) TV egrlo, (8.9)

From (8.8) and (8.9), it follows that (8.6) holds for all R > R, with y € RN \ Bagyg,,
and then (8.7) holds for all R > R, with y € R \ Bagypg,. Therefore, we conclude that
u(w,t) = 0 for all y € RN \ Bg, 4ok, . Thus the proof of Proposition 8.1 is completed.

Let us denote the following functions

T+1
I(R;y) = |[ullL=(Bry)x1,7+1)); J(R;y) :/ / ( )um(pfl)w‘*ldacdt7 (8.10)
Br(y

where T'> 0 and R > p > 0, and y € RY. Then we have

Lemma 8.3. Assume that u € Yyx(m,p,q,N), and 1 < g <m(p—1). If

u(z,t) =0 (8.11)
for a. e. (z,t) € (RN \ Br,) x (0,1] for some positive constant Ly, then
v m(p—1)— . .
J(p13y) < ——— 1™ pasy) I (p23 )

(p2 — p1)P
for ally € RN\ By, 11, with po > p; > 0.

Proof. For 0 < p; < py with y € Bagry1,, denote a function ¢ € C§°(RY) such that

Vie)=1 Ve B, (), vx)=0, Ve R\ B, () o
0< @) <1, |Vi(a) < < vz € RV, (8.12)

p2—p1’
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Taking ¢(x,t) = 1 (z) in (b) of Definition 1.2 we get

ess  sup PP (2, t)u' T (z, t)dx + o, sup // [V {pulm =D Fel/Py P dgat
s<t<T+1JRN 0<d<1 Qs,7(u>0)

saf [ @ vuan e (g e
Qs T+1

+/sz 1/J(m)u“+1(x,s)dx}

fora. e. s > 1. Letting s | land a =m(p—1) —¢+ A—1> 0, by (8.10) and (8.11), we
have

T+1
/ / PP P DFA gyt < ¢ / / WP DA a g g (8.13)
Q1,741 (p2 - pl)p 1 By, (y)

On the other hand, by (8.10), we get

T+1
/ / wPn DT gy < IO (o) T (pos ). (8.14)
1 By (y)

Combining (8.13) and (8.14) we obtain the conclusion of Lemma 8.3. Thus Lemma 8.3 is
proved.

Lemma 8.4. Assume that u € Yx(m,p,q,N), m(p—1) > 1 and ¢ > 0. If (8.11) holds,
then

I(p2;y) <

v (..
(ps — Pz)(Nﬂ?)//\J psiy)

for ally € RN\ By, 1, with p3 > pa > 0.

The proof is similar to that of Lemma 8.1. Therefore, we omit it.

Proposition 8.2. Assume that v € Yx(m,p,q,N), and 1 < ¢ < m(p —1). If (8.13)
holds, then

v 1+84 .

T g :
g’
for ally € RN\ Bgy, with R > p > 0, where

53:p+(N+p)(m§p—l)—q)’ /3’4:%.

Proof. For R > p>0and y € RV \ Bg,1,, using Lemma 8.3 we get

J(p;y) <

. 2 m(p—1)— R + p )
J(pry) < I 0TI =5y J(Byy). 8.15
(p7y)_ (R—p)P ( ) ,y) ( 7y) ( )
In addition, it follows from Lemma 8.4 that
R+ P 07 UM o
I(Ty) S mopmean (). (8.16)

Combining (8.16) with (8.15) we get the conclusion of Proposition 8.2. Thus Proposition
8.2 is proved.
Proof of Theorem 1.4. Using Proposition 8.1 we get

u(z,t) =0 (8.17)

for a. e. (z,t) € (RN \ Bz,) x (0,1], where L; is a positive constant depending only on
m,p,q, A\, A1 and Ay and M.
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For R >0 and y € RN\ Byp,,, using Proposition 8.2 we have

~
J(p;y) < WJHM (p2;y)- (8.18)
Let us define R,, = g + Qn%, n = 0,1,2,---. Then, from (8.18), we have A, <
QZZZ”A}LJF& forn=1,2,---, where A4, = J(Ry,;y). By Lemma 2.2 , if
Ag < (yR™Fe)7V/PagPa/B5 (8.19)
then
T+1
lim A, = lim J(R,;y) = / / um PV gt = 0. (8.20)
n—-+4o0o n—-+4o0o 1 BR/Q(y)
On the other hand, using Theorem 1.6 and Lemma 8.2 we compute
T+1
— —14+xr-1 m(p—1)—
Ao = /1 /B e < ) / /Q widzdt < o (8.21)
for some positive constant 79. Choose R = R, such that
Yo < (WR;ﬂs)—l/ﬂQ—Ba/Bi. (8.22)

Therefore, from (8.21) and (8.22) we obtain that (8.19) holds for all R > R,, and then
(8.20) holds for all R > R, with y € RN \ Bagyp,, . This implies that u(y,t) = 0 for a. e.
(y,t) € (RN \ Bag,+1,) x (1, T +1). Thus Theorem 1.4 is completed.

§9. Proof of Theorem 1.5

Let w € Ya(m,p,q, N) be a nonneagtive function which has the LOC property. Then
there exists a positive constant L such that
suppu(-,t) C B, for a.e. te(0,+00). (9.1)

In order to prove Theorem 1.5 we need the following lemmas.

Lemma 9.1. Suppose that w € Yx(m,p,q,N) and (9.1) holds. If m(p —1) > 1, then
u(z,t) < mpln=t for a. e. (x,t) € Q, where v is a positive constant depending only on
m,p,q, N, A\, Ay, Ay and L.

Proof. For 0 < s <7 < T, using (3.7) and applying the Young inequality we compute

| < IH I +( C // i dt)p/N[m(p—l)—l]
UL (0, ) < =lull Lo, P T .
(@n1) =5 (Qr1) (1 — s)Nw/p Qur

By Lemma 2.1 we conclude that

C p/N[m(p—1)—1]
HUHLOO(QT’T) < (7(7_ — S)Nn/p // da:dt)
s, T

for all 0 < s < 7 < T. This implies that

lullL=(@r/20) < FijpmGr=n=11"
Thus the proof of Lemma 9.1 is completed.

Lemma 9.2. Suppose that u € Yx(m,p,q,N) and (9.1) holds. If ¢ > m(p —1) > 1,
then u(z,t) = 0 for a. e. (x,t) € RN x (T}, +00), where Ty is some time depending only on
m,p,q, N, A\, Ay, Ay and L.

Proof. Let 8 be a positive number such that

5:max{;;1—N[q_n;(p_1)]} (9.2)
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and take £g as (3.2) and ¢(x,t) = Eg(x) in (¢) of Definition 1.2 to have

ess sup E%(x)ul_ﬁ(a:,t)da?
s<t<T JRN
1—
+M // IV {€pu(mP=D=B)/PYP gt
m(p—1)— 0<6<1 Qs.7(u>0)

(m
<cf / /QS,TW"’O = B)IVERPum P 4 (1 = B)eRut ] dadt

+/RN f%(x,T)ulfﬂ(x,T)dx}

for s € (r,T) with 7 < T' < 4o00. This implies that

ess sup {R( z)ul =P (z,t)dx + sup // \V{€gumP=D=R)/PY|Pdydt
s<t<T 0<6<1 Qs,7(u>9)

<0{// (1-5 {puqﬁdzdt+/ & (z 15zT)d}

for all R > 2L. For ¢ > m(p — 1), using Lemma 2.2, we conclude that

// ™ P—1)=B+p(1=B)/N q.. 04
Qs (L)

14+p/N
<C // u?Pdxdt —l—/ ut =P (x,T)dx , (9.3)
Qs,7(L) Br

where 0 < s < T and Qs,r(L) = Br x (s,T).
Denote

azm(p—l)—ﬁ—i—w’

where  is defined by (9.2). Then, by (9.3), we get

// u’dzdt < C’{ // u”“’dzdt}m + C’{/ ulfB(I,T)d:r}K, (9.4)
Qs,7(L) Qs,7(L) Br

where k =1+ p/N. Using Lemma 9.1 we compute
u(z,t) < o (9.5)

V:q_ﬂ—UZOa

for a.e. (z,t) € Q1 400, and

1-p
1-8 < 71
/BL w Pz, T)dx < /BL (7t1/[m(1’*1)*1]) dx

< g T~ A=A/ Im(p=1)—1] (9.6)
for a. e. T € (0, +00); and

o+v
Qur(L) Qur(r) N

< P D/Imp—1)—1] (9.7)

for 0 < s < T, where 79,73 and 4 are positive constants depending not on s, 7. Combining
(9.5) with (9.7) we get

// ”J”’dasdt // u’ dxdt
5T T
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for all s,T with 71 < s < T, where T} is some positive number. From (9.4), it follows that

], J wwn
wdxdt < C w Pz, T)dx
2JJq.r() {BL }

for all T'> s > T;. Using (9.6) and letting 7' — +o00 we have

1
- // u’dzdt =0
2 Qs,JrOC(L)

for all s € (T1,+00). Thus Lemma 9.2 is proved.

Proof of Theorem 1.5. By Lemma 9.2, we get u(z,t) = 0 for a. e. (v,t) € RY x
(Ty,+00). This implies that |[suppu(-,t)] =0 for a. e. t € (T, +00). Using Theorem 1.3
we conclude that |suppu(-,t)| =0 for a. e. t € (0,71). Thus we get u(x,t) = 0 for a. e.
(z,t) € Q. This contradicts the assumptions of Theorem 1.5. Thus the proof of Theorem
1.5 is completed.

§10. The Applications to Nonlinear Parabolic Equations

In this section we shall prove that the solutions of (1.1) and (1.2) belong to Y (m,p,q,N)
with some m, p, ¢, N in general.

Let up be a non-zero nonnegative function satisfying one of the following conditions:

(H1) wg is a finite Borel measure in RY;

(H2) wo € LMNRY) for some 1 < \ < +o0.

We shall consider the following problems.

up = div(|VuP=2Vu) —u?, p>1, ¢>0, (A)
u(z,0) = uo(z), T € RNv

up = Au™ —u?, m>0, q>0, (B)
u(z,0) = ug(z), =€ RN.

First, we consider the Cauchy problem (A) in the cases (H1) and (H2).

(i) In the case (HI).

By the existence and non-existence proved by H. Brezis and A. Friedman in [17] and by
Zhao Junning in [18], if p— 2+ p/N > 0 and ¢ < p — 1 + p/N, then the Cauchy problem
(A) has a nonnegative solution u € C(Q) N L*°(0, 00; L' (RY)) satisfying

/RN O(z, t)u(x,t)dx 7/ &(z, s)u(z, s)dx

RN

= // [u®; — |VulP"2VuV® — dulldrdr (10.1)

for all s,¢ with 0 < s < ¢, and for all & € LP(0,+o00; Wy *(RN)) with &, € L2 (Q).

In particular, we have

Proposition 10.1. Let u be a solution of (A), and p—2+p/N >0 andqg<p—1+p/N.
If (H1) holds, then v € Y1(1,p,q,N).

The proof is similar to that given in [19]. Therefore we omit it.

(ii) In the case (H2).

By the existence proved by E. Di Benedetto in [19], if p — 2+ pA/N > 0 and ¢ <
p — 1 + pA/N, then the Cauchy problem (A) has a nonnegative solution v € C(Q) N
L>(0, 00; LM (RY)) satisfying (10.1).

Similarly to Proposition 10.1, we also have
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Proposition 10.2. Letu be a solution of (A), and p—2+pA/N > 0 and g < p—1+pA/N.
If (H1) holds, then u € Yx(1,p,q,N).

In addition we consider the Cauchy problem (B) in the cases (H1) and (H2).

Similarly to Propositions 10.1-10.2, we have

Proposition 10.3. Let u be a solution of (B), and m —1+2/N >0 and ¢ <m+2/N.
If (H1) holds, then u € Y1(m,2,q,N).

Proposition 10.4. Let u be a solution of (B), and m—1+2X/N > 0 and ¢ < m+2A\/N.
If (H2) holds, then u € Yx(m,2,q,N).
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