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Abstract

It is proved that there is no nonconstant harmonic function of finite energy on product of
certain Kählerian manifolds with a pole.
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In the paper [1], Xin Y. L. proved that any finite energy harmonic map from classical

bounded symmetric domains (except ℜIV (2) = H2 × H2) into any complete Riemannian

manifold has to be constant. And he asked if there exists a harmonic map of finite energy

from ℜIV (2) = H2 ×H2 into a Riemannian manifold. In this short note, we will partially

answer this question. Actually, we will prove

Theorem. Let Mm
1 , Mn

2 be complete noncompact Kähler manifolds of complex dimen-

sions m and n respectively. Assume all of the geodesic spheres in M1 (resp. M2) centered at

some point x1 ∈ M1, (resp. x2 ∈ M2) are convex. Then any finite energy harmonic function

on M1 ×M2 has to be constant.

As a consequence, one has

Corollary. There exists no nonconstant harmonic function of finite energy on H2×H2.

The idea of our proof is completely different from Xin’s. His proof mainly makes use

of an integral identity and an explicit computation of Hessian of the distance function on

classical bounded symmetric domains. Unfortunately, this does not work for the present

case. The key point to our proof is an observation saying that any finite energy harmonic

function on complete Kähler manifolds is pluriharmonic. Actually, this is not new. For more

general harmonic maps case, it goes back to the famous argument of Sampson[2]. Sampson

only considered the case where the domain manifolds are compact Kählerian. In fact, his

argument can be easily extended to L2-case[3]. Here, we only need to consider the function

case. For sake of completeness, we will give a complete argument of the function case.
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Lemma 1. Let M be a complete Kähler manifold. Assume u is a harmonic function of

finite energy on M . Then u is pluriharmonic, i.e., ∂∂u = 0.

Proof. Since u is harmonic, du is a harmonic 1-form; so, the local Hodge theorem shows

∂u is a harmonic (1, 0)-form. The finiteness of energy of u also guarantees that ∂u is in

L2-space.

In the following, we make a general discussion: If α is a harmonic L2-form, then α is

both closed and coclosed. Obviously, if one applies this to the above form ∂u, then one has

∂∂u = 0, i.e., u is pluriharmonic.

Take a C∞ cutoff function η as follows:

η(x) = 1, x ∈ Bx0(r);

0 ≤ η(x) ≤ 1, x ∈ Bx0(2r) \Bx0(r);

η(x) = 0, x ∈ M \Bx0(2r);

|dη|(x) ≤ 2

r
, x ∈ M.

Then, one has

0 = ⟨⟨∆α, η2α⟩⟩
= ⟨⟨dα, d(η2α)⟩⟩+ ⟨⟨d⋆α, d⋆(η2α)⟩⟩
= ∥ηdα∥2L2 + 2⟨⟨dα, ηdη ∧ α⟩⟩
+ ⟨⟨d ⋆ α, d(η2 ⋆ α)⟩⟩

= ∥ηdα∥2L2 + 2⟨⟨dα, ηdη ∧ α⟩⟩+ ∥ηd ⋆ α∥2L2

+ 2⟨⟨d ⋆ α, ηdη ∧ (⋆α)⟩⟩
≥ ∥ηdα∥2L2 + ∥ηd⋆α∥2L2 − 2∥ηdα∥L2∥dη ∧ α∥L2

− 2∥ηd⋆α∥L2∥dη ∧ ⋆α∥L2

≥ ∥ηdα∥2L2 + ∥ηd⋆α∥2L2 −
c

r
(∥ηdα∥2L2 + ∥ηd⋆α∥2L2)

1
2 .

Here, c is a positive constant depending only on L2-norm of α. It is not difficult to see that,

for r sufficiently large,

∥ηdα∥2L2 + ∥ηd⋆α∥2L2 = 0,

i.e., α is both closed and coclosed.

In order to prove the theorem , we need the following lemma.

Lemma 2. Let M be a complete noncompact manifold (not necessarily Kählerian) and

its all spheres ∂Bx0(R) be convex with respect to some points x0 ∈ M . Assume that f is a

nonnegative, subharmonic and L1 function, then f has to be zero.

Proof. Consider the integral
∫
∂Bx0 (R)

f as a function of R, and compute its derivatives.
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Then, using Stokes’ formula, one has

d

dR

∫
∂Bx0 (R)

f = lim
∆R→0

1

∆R

[ ∫
∂Bx0 (R+∆R)

f −
∫

∂Bx0 (R)

f
]

= lim
∆R→0

1

∆R

∫
Bx0 (R+∆R)\Bx0 (R)

div(f∇r)

= lim
∆R→0

1

∆R

∫
Bx0 (R+∆R)\Bx0 (R)

(∂f
∂r

+ f∆r
)

=

∫
∂Bx0 (R)

(∂f
∂r

+ f∆r
)
.

Here, r is the distance function to x0. Again, since all ∂Bx0(R) are convex, equivalently,

this says ∆r ≥ 0. So, again using Stokes’ formula, one has

d

dR

∫
∂Bx0 (R)

f ≥
∫

∂Bx0 (R)

∂f

∂r
=

∫
Bx0 (R)

∆f ≥ 0.

Namely,
∫
∂Bx0 (R)

f is a monotone increasing function with respect to R. But, f ’s L1-ness

forces
∫
∂Bx0 (R)

f to be identically a zero function, and so is f .

Proof of Theorem. Let z = (z1, z2, · · · , zm) and w = (w1, w2, · · · , wn) be local coordi-

nates of M1 and M2. Then, the condition of energy finiteness of u is∫
M1

(∫
M2

(∑
|∂ziu|2 +

∑
|∂wk

u|2
)
⋆ 1

)
⋆ 1 < +∞.

Here, ⋆1 represents the volume elements of M1 and M2 respectively. By Lemma 1, one has

∂zi∂zju = ∂zi∂wk
u = ∂zi∂wk

u = ∂wk
∂wl

u = 0 for 1 ≤ i, j ≤ m, 1 ≤ k, l ≤ m,

By means of symmetry of the variables z, w, we only consider the integral∫
M1

(∫
M2

∑
|∂wk

u|2(z, w) ⋆ 1
)
⋆ 1 < ∞.

By Fubini’s Theorem, one has, for almost all z ∈ M1,∫
M2

∑
|∂wk

u|2(z, w) ⋆ 1 < +∞.

Actually, since u is smooth, we can assume that the above fact is valid for all z ∈ M1 and

the above integral is smooth with respect to the variable z ∈ M1. (If necessary, one can

change the above integral domain M2 into any compact subset of M2. It is easy to see that

the following computation and the reasonings still are valid.) Set

f(z) =

∫
M2

∑
|∂wk

u|2(z, w) ⋆ 1.

Obviously, ∫
M1

f(z) ⋆ 1 < +∞,

i.e., f ∈ L1. Compute ∆zf(z) (since our computation is pointwise and M1 is Kählerian,
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without loss of generality, one can assume ∆z = 4
∑

∂zi∂zi)∑
∂zi∂zif(z)

=

∫
M2

∑
∂zi∂zi

∑
|∂wk

u|2(z, w) ⋆ 1

=

∫
M2

∑
(∂zi(∂zi∂wk

u∂wk
u) + ∂zi(∂wk

u∂zi∂wk
u)) ⋆ 1

=

∫
M2

∑
|∂zi∂wk

u|2 ⋆ 1 ≥ 0.

Here, we use u’s pluriharmonicity and independence of z and w. Thus, f , as a function on

M1, satisfies the conditions of Lemma 2. So, f is a zero function, i.e.,

∂wk
u = 0.

The same reasoning derives

∂ziu = 0.

So, u is constant.
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