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Abstract

Let C be a nonempty bounded subset of a p-uniformly convex Banach space X, and T =
{T (t) : t ∈ S} be a Lipschitzian semigroup on C with lim

n→∞
inf
t∈s

|∥T (t)∥| <
√

Np, where Np is

the normal structure coefficient of X. Suppose also there exists a nonempty bounded closed
convex subset E of C with the following properties: (P1)x ∈ E implies ωw(x) ⊂ E; (P2)T is

asymptotically regular on E. The authors prove that there exists a z ∈ E such that T (s)z = z
for all s ∈ S. Further, under the similar condition, the existence of fixed points of Lipschitzian
semigroups in a uniformly convex Banach space is discussed.
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§1. Introduction and Preliminaries

Let C be a nonempty subset of a Banach space X. Then a mapping T : C → C is said
to be a Lipschitzian mapping if, for each integer n ≥ 1, there exists a constant kn > 0
such that ∥Tnx − Tny∥ ≤ kn∥x − y∥ for all x, y ∈ C. A Lipschitzian mapping T is said
to be uniformly k-Lipschitzian if kn = k for all n ≥ 1, nonexpansive if kn = 1 for all
n ≥ 1, respectively. Moreover, a mapping T : C → C is called asymptotically regular[1,19],
if lim

n→∞
∥Tn+1x − Tnx∥ = 0 for all x ∈ C. Edelstein and O’Brien[3] proved that if T is

nonexpansive, then the averaged mappings Ta = aI+(1−a)T , where a ∈ (1, 0) and I is the
identity operator of X, are asymptotically regular on C, i.e., lim

n→∞
∥Tn

a x − Tn+1
a x∥ = 0 for

all x ∈ C.
Recently, Gornicki proved several fixed point theorems[5,6] for asymptotically regular

Lipschitzian mappings. And also Lim and Xu[14] gave the following fixed point theorem for
uniformly k-Lipschitzian mappings in a Banach space with uniformly normal structure.

Theorem 1.1.[14] Suppose X is a Banach space with uniformly normal structure, C is
a nonempty bounded subset of X, and T : C → C is a uniformly k-Lipschitzian mapping
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with k < N(X)1/2, where N(X) is the normal structure coefficient of X. Suppose also there
exists a nonempty bounded closed convex subset E of C with the following property (P):

(P) x ∈ E inplies ωw(x) ⊂ E,

where ωw(x) is the weak ω-limit set of T at x, i.e., the set

{y ∈ X : y = weak − lim
j→∞

Tnjx for some nj ↑ ∞}.

Then T has a fixed point in E.
On the other hand, let C be a nonempty subset of a Banach space X, and S be an

unbounded subset of [0,∞) such that t+h ∈ S for all t, h ∈ S and t−h ∈ S for all t, h ∈ S
with t > h (e.g., S = [0,∞) or S = N , the set of nonnegative integers). Then a one-
parameter family T = {T (t) : t ∈ S} of mapping of C into itself is said to be a Lipschitzian
semigroup on C if T satisfies the following conditions:

(1) T (0)x = x for all c ∈ C; (2) T (t+ s)x = T (t)T (s)x for all t, s ∈ S and x ∈ C;
(3) for each x ∈ C, the mapping s → T (s)x from S into C is continuous when S has

the relative topology of [0,∞); and
(4) for each t ∈ S, there exists a constant kt > 0 such that

∥T (t)x− T (t)y∥ ≤ kt∥x− y∥ for all x, y in C.

A Lipschitzian semigroup T = {T (t) : t ∈ S} on C is called asymptotically regular on a
subset E of C if there exists some h > 0 in S such that

lim
t∈S,t→∞

∥T (t+ r)− T (t)x∥ = 0 for all x ∈ C, and 0 ≤ r ≤ h, r ∈ S.

For each t ∈ S we denote

|∥T (t)|∥ := sup{∥T (t)x− T (t)y∥/∥x− y∥ : x, y ∈ C, x ̸= y}.
We denote by F (T ) the set of common fixed points of T (t), t ∈ S, i.e.,

F (T ) = {x ∈ C : T (s)x = x for all s ∈ S}.
Let E be a nonempty bounded closed convex subset of a Banach space X and let d(E) =

sup{∥x− y∥ : x, y ∈ E} be the diameter of E. For each x ∈ E, let r(x,E) = sup{∥x− y∥ :
y ∈ E} and let r(E) = inf{r(x,E) : x ∈ E}, the Chebyshev radius of E relative to itself.
The normal structure coefficient of X is defined[17] as the number

N(X) = inf{d(E)/r(E) : E bounded closed convex subset of X with d(E) > 0}.
A space X with N(X) > 1 is said to have uniformly normal structure. Recall that a Banach
space with uniformly normal structure is reflexive and that all uniformly convex or uniformly
smooth Banach spaces have uniformly normal structure (cf. e.g., [20]).

In 1993, Tan and Xu[11] showed a fixed point theorem for uniformly Lipschitzian semi-
groups in a p-uniformly convex Banach space. And also Zeng[9] established a fixed point
theorem for Lipschitzian semigroups without convexity in a Hilbert space. Thus, their re-
sults generalized Mizoguchi and Takahashi’s result [21,Theorem 1]. On the other hand, Tan
and Xu[11] presented a new fixed point theorem for uniformly k-Lipschitzian semigroups in
a uniformly convex Banach space. Further, Zeng[8] obtained one fixed point theorem for
asymptotically regular Lipschitzian semigroups in a p-uniformly convex Banach space and
the other fixed point theorem for asymptotically regular Lipschitzian semigroups in a uni-
formly convex Banach space. Zeng’s results[8] extended the results of Gornicki[6], and Tan
and Xu[11] to the asymptotically regular Lipschitzian semigroup setting. In addition, see
also [10].

The purpose of the present paper is to prove the following result: Let C be a nonempty
bounded subset of a p-uniformly convex Banach space X, and T = {T (t) : t ∈ S} be
a Lipschitzian semigroup on C with lim

t→∞
inf
t∈S

|∥T (t)|∥ <
√
Np, where NP is the normal

structure coefficient of X. Suppose also there exists a nonempty bounded closed convex
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subset E of C with the following properties: (P1) x ∈ E implies ωw(x) ⊂ E; (P2) T is
asymptotically regular on E. Then F (T ) is nonempty. Further, under the similar condition,
we discuss the existence of fixed points of Lipschitzian semigroups in a uniformly convex
Banach space. Our results extend the above theorem of Lim and Xu[14] to the case of
Lipschitzian semigroups, and improve and generalize the theorems of Zeng[8] by removing
the restriction, the asymptotic regularity of T on C.

We shall need the following lemmas in the sequel.
Lemma 1.1.[4] Suppose X is a Banach space with uniformly normal structure. Then for

every bounded sequence {xn}∞n=1 in X, there exists y in co({xn : n ≥ 1}) such that

lim
n→∞

sup ∥xn − y∥ ≤ Ñ(X)A({xn}),

where Ñ(X) = N(X)−1, co(D) is the closure of the convex hull of D ⊂ X, and

A({xn}) = lim
n→∞

(sup{∥xi − xj∥ : i, j ≥ n})

is the asymptotic diameter of {xn}∞n=1.
Recall that the modulus of convexity of a Banach space X is the function δx defined on

[0,2] by δx(ε) = inf
{
1−

∥∥∥ 1
2 (x+ y)

∥∥∥ : x, y ∈ Bx with ∥x− y∥ ≥ ε
}
, where Bx is the closed

unit ball of X. X is said to be uniformly convex if δx(ε) > 0 for all ε ∈ (0, 2], Also recall
that X is said to have the modulus of convexity of power type p ≥ 2 (and X is said to be
p-uniformly convex ) if there exists a constant d > 0 such that

δx(ε) ≥ dεp for ε ∈ (0, 2].

The Hilbert space H is 2-uniformly convex (indeed, δH(ε) = 1− (1− ( 12ε)
2)1/2 ≥ 1

8ε
2) and

an Lp space (1 < p < ∞) is max (2, p)-uniformly convex.
Lemma 1.2.[15,16] Let X be a p-uniformly convex Banach space. Then there exists a

constant dp > 0 such that

∥tx+ (1− t)y∥p ≤ t∥x∥p + (1− t)∥y||p − dpWp(t)∥x− y∥p

for all x, y in X and 0 ≤ t ≤ 1, where Wp(t) = t(1− t)p + tp(1− t).
When X is particularly an Lp space, we have the following lemma.
Lemma 1.3.[7,12,15,16] Suppose that X is an Lp space, 1 < p < ∞. Then

∥tx+ (1− t)y∥q ≤ t∥x∥q + (1− t)∥y∥q − dpWq(t)∥x− y∥q

for all x, y in X and 0 ≤ t ≤ 1, where q = max(2, p), Wq(t) = tq(1− t) + t(1− t)q and

dp =

{
(1 + tp−1

p /)(1 + t)p−1 if 2 < p < ∞,

p− 1 if 1 < p ≤ 2,

with tp being the unique solution of the equation

(p− 2)tp−1 + (p− 1)tp−2 − 1 = 0, t ∈ (0, 1).

Remark 1.1. Casini and Maluta[2] proved that the normal structure coefficient Np of
an Lp space (1 < p ≤ 2) satisfies Np ≥ √

p.
Let C be a nonempty bounded subset of a Banach space X, and the Lipschitzian semi-

group T = {T (t) : t ∈ S} on C be asymptotically regular at some u ∈ C and satisfy

lim
t→∞

inf
t∈S

∥|T (t)|∥ = k.

Let {tn} ⊂ S be a positive sequence that increases monotonously to +∞ and satisfies

lim
t→∞

inf
t∈S

∥|T (t)|∥ = lim
n→∞

∥|T (tn)|∥ = k.

Now we define a function r(.) : C → [0,∞] as follows:

r(x) = lim
n→∞

sup ∥x− T (tn)u∥ for each x ∈ C.
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Lemma 1.4. If r(x) = 0, then x ∈ F (T ).
Finally, we remind the readers of the following fact: the notation ωw(x) stands for the

weak ω-limit set of T at x, i.e., the set

{y ∈ X : y = weak− lim
tα→∞

T (tα)x for some subset {tα} ⊂ S}.

§2. Fixed Point Theorem for Lipschitzian
Semigroups in p-Uniformly Convex Banach Spaces

Theorem 2.1. Let C be a nonempty bounded subset of a p-uniformly convex Banach space
X, and T = {T (t) : t ∈ S} be a Lipschitzian semigroup on C with lim

t→∞
inf
t∈S

|∥T (t)|∥ <
√
Np,

where Np is the normal structure coefficient of X. Suppose also there exists a nonempty
bounded closed convex subset E of C with the following properties:

(P1) x ∈ E implies ωw(x) ⊂ E;
(P2) T is asymptotically regular on E.

Then there exists a z ∈ E such that T (s)z = z for all s ∈ S.
Proof. Let {tn} be a positive sequence which increases monotonously to +∞ and satisfies

lim
t→∞

inf
t∈S

∥|T (t)|∥ = lim
n→∞

∥|T (tn)|∥ = k <
√
Np. (2.1)

Without loss of generality, let k ≥ 1. Take any x0 in E and consider, for each integer
n ≥ 1, the sequence {T (tj)x0}j≥n. According to Lemma 1.1, for every bounded sequence
{T (tj)x0}j≥n we have a yn ∈ co{T (tj)x0 : j ≥ n} (here co denotes the closed convex hull)
such that

lim
j→∞

sup ∥T (tj)x0 − y∥ ≤ 1

Np
·A({T (tj)x0}j≥n), (2.2)

where A(zn) denotes the asymptotic diameter of the sequence {zn}, i.e., the number

lim
n→∞

(sup{zi − zj : i, j ≥ n}).

Since X is reflexive, {yn} admits a subsequence {yn′} converging weakly to some x1 ∈ X.
Form (2.2) and the w-l.s.c. of the functional lim

n→∞
sup ∥T (tn)x0 − y∥, it follows that

lim
n→∞

sup ∥T (tn)x0 − x1∥ ≤ 1

NP
·A({T (tn)x0}). (2.3)

It is also easily seen that x1 belongs to the set
∞∩

n=1
co{T (tj)x0 : j ≥ n} and that

∥z − x1∥ ≤ lim
n→∞

sup ∥z − T (tn)x0∥ for all z ∈ X. (2.4)

Observing the property (P1) and the fact that
∞∩

n=1
co{T (tj)x0 : j ≥ n} = coω′

w(x0), which

is easy to be proven by using the Separation Theorem[22], we know that x1 actually lies in
E, where ω′

w(x0) is the weak ω-limit set of the sequence {T (tn)x0}, i.e., the set

{y ∈ X : y = weak− lim
j→∞

T (tnj )x0 for some nj ↑ ∞}.

So, we can repeat the above process and obtain a sequence {xn}∞n=1 in E with the properties:
for all integer m ≥ 1,

lim
n→∞

sup ∥T (tn)xm−1 − xm∥ ≤ 1

Np
·A({T (tn)xm−1}), (2.5)

∥z − xm∥ ≤ lim
n→∞

sup ∥z − T (tn)xm−1∥ for all z ∈ X. (2.6)
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For each integer m ≥ 0, we write

Dm = lim
n→∞

sup ∥xm − T (tn)xm∥, rm = lim
n→∞

sup ∥xm+1 − T (tn)xm∥.

By the property (P2) it is easy to prove

lim
j→∞

sup ∥T (ti + tj)xm − T (tj)xm∥ = 0 for all i ≥ 1.

By choosing two appropriate subsequences {pi}, {qj} of {n}∞n=1, we obtain from (2.1) and
(2.5),

rm = lim
i→∞

sup ∥xm+1 − T (ti)xm∥ ≤ 1

Np
lim

n→∞
(sup(∥T (ti)xm − T (tj)xm∥ : i, j ≥ n))

≤ 1

Np
lim

pi→∞
sup( lim

qj→∞
sup(∥|T (tpi)|∥ ∥xm − T (tqj )xm∥+ ∥T (tpi + tqj )xm − T (tqj )xm∥))

≤ k

Np
Dm for m = 0, 1, 2, · · · . (2.7)

On the other hand, by Lemma 1.4 we have for each integer i, j ≥ 1,

∥(1− λ)x1 + λT (tj)x1 − T (ti)x0∥p + dpWp(λ)∥x1 − T (tj)x1∥p

≤ λ(∥T (tj)x1 − T (tj + ti)x0∥+ ∥T (tj + ti)x0 − T (ti)x0∥)p

+ (1− λ)∥x1 − T (ti)x0∥p. (2.8)

Using (2.4) and the asymptotic regularity of T on E, we derive

∥λ(x1 − T (tj)x1)∥p + dpWp(λ)∥x1 − T (tj)x1∥p ≤ [λ∥|T (tj)|∥p + (1− λ)] · rp0 ,
and hence λpDp

1 + dpWp(λ)D
p
1 ≤ [λkp + (1− λ)] · rp0 . Now letting λ → 1−, we get D1 ≤ kr0.

It follows from (2.7) that D1 ≤ k2

Np
·D0. By induction, we obtain Dm+1 ≤ Am+1

p ·D0, where

Ap = k2

Np
< 1. By the triangle inequality we infer

∥xm+1 − xm∥ ≤ Dm + rm ≤
(
1 +

k

Np

)
·Am

p ·D0 → 0

as m → ∞. Therefore, {xm} is a Cauchy sequence in E. Let z = lim
m→∞

xm. Obviously, we

deduce

lim
i→∞

sup ∥z − T (ti)z∥ ≤ lim
i→∞

sup
[
∥z − xm∥+ ∥T (ti)z − T (ti)xm∥+ ∥T (ti)xm − xm∥

]
≤ (1 + k)∥z − xm∥+Am

p ·D0 → 0 as m → ∞.

Finally, by Lemma 1.4, we have T (s)z = z for all s ∈ S.
Corollary 2.1. Let C be a nonempty bounded subset of a p-uniformly convex Banach

space X, and T be a Lipschitzian mapping of C into itself with lim
n→∞

inf |∥Tn|∥ <
√
Np,

where Np is the normal stricture coefficient of X. Suppose also there exists a nonempty
bounded closed convex subset E of C with the following properties:

(P1) x ∈ E implies ωw(x) ⊂ E;
(P2) T : C → C is asymptotically regular on E.

Then the set of fixed points of T is nonempty.
Corollary 2.2. Let C be a nonempty bounded subset of an Lp space (1 < p < +∞), and

T = {(T (t) : t ∈ S} be a Lipschitzian semigroup on C with lim
t→∞

inf
t∈S

|∥T (t)|∥ <
√
Np, where

Np is the normal structure coefficient of space Lp. Suppose also there exists a nonempty
bounded closed convex subset E of C with the following properties :

(P1) x ∈ E implies ωw(x) ⊂ E;
(P2) T is asymptotically regular on E.

Then there exists a z ∈ E such that T (s)z = z for all s ∈ S.
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§3. Fixed Point Theorem for Lipschitzian
Semigroups in Uniformly Convex Banach Spaces

Recall that a Banach space X is strictly convex if its unit sphere does not contain any
line segment, that is, X is strictly convex if the following implication holds:[

∥x∥ = 1, ∥y∥ = 1, and
∥∥∥1
2
(x+ y)

∥∥∥ = 1 ⇒ x = y
]
.

In order to measure the degree of strict convexity (rotundity) of X, we define its modulus
of convexity δx : [0, 2] → [0, 1] by

δx(ε) = inf
{
1− 1

2
∥x− y∥ : ∥x∥ ≤ 1, ∥y∥ ≤ 1 and ∥x− y∥ ≥ ε

}
.

The characteristic of convexity ε0 of X is also defined by ε0 = ε0(x) = sup{ε : δx(ε) = 0}.
It is well-known (see [13]) that the modulus of convexity δx satisfies the following properties:

(a) δx is increasing on [0,2], and moreover strictly increasing on [εo, 2];
(b) δx is continuous on [0,2) (but not necessarily at ε = 2);
(c) δx(2) = 1 if and only if X is strictly convex;

(d) δx(0) = 0 and lim
ε→2−

δx(ε) = 1− 1
2ε0;

(e) ∥a− x∥ ≤ r, ∥a− y∥ ≤ r and ∥x− y∥ ≥ ε ⇒ ∥a− 1
2 (x+ y)∥ ≤ r(1− δx(ε/r)).

A Banach spaceX is said to be uniformly convex if δx(ε) > 0 for all positive ε; equivalently
ε0 = 0. Obviously, any uniformly convex Banach space is both strictly convex and reflexive.
By properties above, we can see that if X is uniformly convex, then δx is strictly increasing
and continuous on [0,2]. In addition, Bynum[17] and Maluta[18] have proven that if X
is uniformly convex then N(X) ≥ 1

1−δx(1)
. Further, Xu[11] has also proven that if X is

uniformly convex and γ > 1 is the unique solution of the equation γ[1 − δx(
1
γ )] = 1, then

N(X) > γ. We note that for a Hilbert space H, we have N(H) =
√
2, and γ =

√
5
2 .

Now we give the main result in this section.
Theorem 3.1. Let C be a nonempty bounded subset of a uniformly convex Banach space

X, and T = {T (t) : t ∈ S} be a Lipschitzian semigroup on C with

lim
t→∞

inf
t∈S

∥|T (t)|∥ < [γ0N(X)]
1
2 , (3.1)

where γ0 = inf{γ : γ(1− δx(
1
γ )) ≥

1
2}. Suppose also there exists a nonempty bounded closed

convex subset E of C with the following properties :
(P1) x ∈ E implies ωw(x) ⊂ E;
(P2) T is asymptotically regular on E.

Then the fixed point set F (T ) of T is nonempty.
Proof. Let {tn} be a positive sequence which increases monotonously to +∞ and satisfies

lim
t→∞

inf
t∈S

∥|T (t)|∥ = lim
n→∞

∥|T (tn)|∥ = k. (3.2)

Take any x0 in E. Recall the proof of Theorem 2.1. By exploiting exactly the same method
as that in Theorem 2.1, we obtain the sequence {xn}∞n=1 in E with properties: for all integers
m ≥ 1,

lim
n→∞

sup ∥T (tn)xm−1 − xm∥ ≤ Ñ(X)A({T (tn)xm−1}), (3.3)

∥z − xm∥ ≤ lim
n→∞

sup ∥z − T (tn)xm−1∥ for all z ∈ X. (3.4)

For each integer m ≥ 0, we write

Dm = lim
n→∞

sup ∥xm − T (tn)xm∥, rm = lim
n→∞

sup ∥xm+1 − T (tn)xm∥.
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By the property (P2) it is easy to prove

lim
j
∥T (ti + tj)xm − T (tj)xm∥ = 0 for i = 1, 2, · · · .

By choosing two appropriate subsequences {pi}, {qj} of {n}∞n=1, we obtain from (3.3),

rm = lim
n→∞

sup ∥T (tn)xm − xm+1∥

≤ Ñ(X) lim
n→∞

(sup(∥T (ti)xm − T (tj)xm∥ : i, j ≥ n))

≤ Ñ(X) lim
pi→∞

(
lim

qj→∞

(
∥|T (tpi)|∥ · ∥xm − T (tqj )xm∥+ ∥T (tpi + tqj )xm − T (tqj )xm∥

))
≤ Ñ(X) lim

pi→∞
∥|T (tpi)|∥ · lim

qj→∞
∥xm − T (tqj )xm∥

≤ Ñ(X)kDm for m = 0, 1, 2, · · · . (3.5)

We may assume Dm > 0 for all integers m ≥ 0. Let m ≥ 0 be fixed and let ε > 0 be small
enough. First choose an integer j ≥ 1 such that

∥T (tj)xm+1 − xm+1∥ > Dm+1 − ε, ∥|T (tj)|∥ < k + ε,

and then choose an integer n0 ≥ 1 so large that

∥T (tn)xm − xm+1∥ < rm + ε, ∥T (tn)xm − T (tn + tj)xm∥ < ε,

∥T (tn)xm − T (tj)xm+1∥ ≤ ∥T (tn + tj)xm − T (tj)xm+1∥+ ∥T (tn)xm − T (tn + tj)xm∥
≤ |∥T (tj)|∥ · ∥T (tn)xm − xm+1∥+ ∥T (tn)xm − T (tn + tj)xm∥
≤ (k + ε)(rm + ε) + ε

for all integer n ≥ n0. It then follows that∥∥∥T (tn)xm − 1

2
(xm+1 + T (tj)xm+1)

∥∥∥
≤ [(k + ε)(rm + ε) + ε] ·

(
1− δx

( Dm+1 − ε

(k + ε)(rm + ε) + ε

))
for n ≥ n0 and hence by using (3.4) we have

1

2
(Dm+1 − ε) <

∥∥∥1
2
(T (tj)xm+1 − xm+1)

∥∥∥
≤ lim

n→∞
sup

∥∥∥T (tn)xm − 1

2
(xm+1 + T (tj)xm+1)

∥∥∥
≤ [(k + ε)(rm + ε) + ε] ·

(
1− δx

( Dm+1 − ε

(k + ε)(rm + ε) + ε

))
.

Taking the limit as ε → 0 we obtain 1
2Dm+1 ≤ krm

(
1 − δx

(
Dm+1

krm

))
, which together with

(3.5) leads to Dm+1 ≤ k
r0
rm ≤ k2

γ0N(X)Dm, where γ0 = inf{γ : γ(1 − δx(
1
γ )) ≥

1
2}. Hence

Dm ≤ ADm−1 ≤ AnD0, where A = k2[γ0N(X)]−1 < 1 by assumption. Noticing

∥xm+1 − xm∥ ≤ lim
n→∞

sup ∥T (tn)xm − xm∥+ lim
n→∞

sup ∥T (tn)xm − xm+1∥

≤ Dm + rm ≤ (1 + kÑ(X))Dm, (3.6)

we see from (3.6) that {xm} is norm Cauchy and hence strongly convergent. Let z =
lim

m→∞
xm. Then we have

lim
i→∞

sup ∥z − T (ti)z∥ ≤ (1 + k)∥z − xm∥+Am ·D0 → 0 as m → ∞.

Finally, be Lemma 1.4, we deduce T (s)z = z for all s ∈ S.
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Corollary 3.1. Let C be a nonempty bounded subset of a uniformly convex Banach space
X, and T be a Lipschitzian mapping of C into itself with lim

n→∞
inf |∥Tn|∥ < [γ0N(X)]

1
2 , where

γ0 = inf{γ : γ(1−δx(
1
r )) ≥

1
2}. Suppose also there exists a nonempty bounded closed convex

subset E of C with the following properties :
(P1) x ∈ E implies ωw(x) ⊂ E;
(P2) T is asymptotically regular on E.

Then the fixed point set F (T ) of T is nonempty.

Acknowledgement. The authors express their heartfelt gratitude to the referee for his
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