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Abstract

The author considers a linearly elastic shallow shell with variable thickness and shows that, as
the thickness of the shell goes to zero, the solution of the three-dimensional equations converges
to the solution of the two-dimensional shallow shell equations with variable thickness.
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¢1. Introduction

In this paper, we identify the two-dimensional model of a shallow shell with variable
thickness. More precisely, we consider a family of linearly elastic shallow shells with variable
thickness. We show that, if the applied forces are of specific order of magnitude, the covariant
components of the scaled displacement field converge, as the thickness of the shell goes
to zero, to a two dimensional problem that constitutes the model of a shallow shell with
variable thickness. The key to the convergent analysis lies in establishing a generalized
Korn’s inequality (cf. Lemma 4.2).

In the case of shallow shells with constant thickness, Ciarlet and Miaral! have justified
the two dimensional equations of shallow shells and S. Kesavan and N. Sabul*?! have studied
the corresponding eigenvalue problem, both in Cartesian coordinates. Busse, Ciarlet and
Miaral?! have justified the two dimensional shallow shell model in curvilinear coordinates.
Bussel!! has considered the case of linear membrane and flexural shells with variable thickness
and Roquefort!* has studied the nonlinear membrane and flexural shells with variable
thickness.

This paper is organized as follows. Section 2 begins with some preliminaries from dif-
ferential geometry needed for defining the geometry of the shell and then we describe the
three-dimensional problem for a linearly elastic shell. In Section 3, we transform the prob-
lem over a fixed domain and in Section 4, we obtain the a priori estimates that will be used
in the convergence analysis, which is studied in Section 5. In Section 6, we describe the
two-dimensional model.
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§2. The Three-Dimensional Problem

Latin indices takes their values in the set {1,2,3} and Greek indices takes their values
in the set {1,2}; the repeated index convention for summation is systematically used in
conjunction with the above rules.

Let w be a bounded domain in JR? with a Lipschitz-continuous boundary « such that w
is locally on one side of . Let 9 be a portion of v with length v9 > 0. For all ¢ > 0, we
define the sets

O =wx (—¢g,8), T{=9 X[—¢g,¢], T°=vx[-g,¢e], T9 =wx{xe}.
Let 2° = (25) = (21, x2,25) denote a generic point in @ and let 0f = 0/0z5. Let 0,

denote the outer normal derivative along vy,. We assume that for each € > 0, we are given
a function #° : @ — IR of class C3. We then define the map ¢° : @ — IR? by

0 (z1,32) = (x1, T2, 0% (21, x2)) for all (x1,22) € . (2.1)
At each point of the surface S¢ = ¢®(w), we define the normal vector

a® = (|016°> + (0267 + 1) 1/2(— 016, — 0,6, 1).
The variable thickness of the shell is governed by a function e € W% (w) such that there
exists a constant eg such that 0 < ey < e(x1,29) for all (x1,25) € @W. For each € > 0, we
define the mapping ®° : QO — IR3 by

D°(1°) = (21, 2) + a5e(w1, x2)af (x1,22), Vit = (21, 39,25) € .
Hence at the point ®°(z°), the thickness is 2ce(x1, z2).
One can show (cf. [10, Propostion 3.2]) that there exits eg > 0 such that the vectors
gi (%) = 0; ®(a7)

are linearly independent at all points 2° € Q0 and the mapping ®° is injective for all
0 < e < ep. The vectors g7(z°) form the covariant basis of the tangent space of ®°(°)
at ®(2°). For 0 < e < ¢, the vectors g“¢ defined by the relation g*° - g5 = &/ form the
contravariant basis of the tangent space of ®¢(£2°) at ®=(x°).

The covariant and contravariant metric tensors are given respectively by

95 =95 g5, 97 =g"" - g’".
The volume element is given by +/¢gdx where g = det(gfj). The Christoffel symbols are
defined by T'J;" = g= - 95 g;.

For each 0 < € < gg, the set @(ﬁe) is the reference configuration of an elastic shell, with
middle surface S = (@) and thickness 2e. We assume that the material constituting the
shell is homogeneous and isotropic and that @(ﬁe) is a natural state, so that the material
is characterized by its two Lamé constants A°* > 0 and p® > 0. Finally, we assume that
the shell is subjected to a homogeneous boundary condition of place (i.e., of vanishing
displacements) along the portion ®(I'§) of the lateral face ®(I'¢). The unknown of the
problem is the vector field u® = (ug) : ©° — IR3, where the three functions u : @ — IR
are the covariant components of the displacement field u$g®* of the points of the shell.

We define the space of admissible displacements by

V(QF) = {v° = (vF) € HY(Q)]v° = 0 on T5}. (2.2)

Then it is classical (cf. [4]) that the variational formulation of the corresponding three-
dimensional problem expressed in terms of the curvilinear coordinates (z°) of the reference
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configuration ®(€2°) of the shell consists in finding u¢ € V(Q¢) such that

/ AT (e (vF) Vg dat = /Q FeuVEEdet forall v EV(RY),  (23)

where
Aijkl,s = /\sgij,sgkl,s 4 Ms(gik,sgjl,s + gil,sgjk,E) (24)
designate the contravariant components of the three-dimensional elasticity tensor,
1
e?Hj(vE) = 5(5‘51}5 +05v;) — I‘ffv; (2.5)

designate the covariant components of the linearized strain tensor associated with an ar-
bitrary displacement field vig®* of the surface S, and f“¢ € L?(QF) are the contravariant
components of the applied body force density.

§3. The Scaled Problem

We follow here the same method as in [2, 6, 10].

Let Q =w x (=1,1),Tog =~ x [-1,1),T =y x [-1,1], Ty =w x {£1}.

Let 2 = (;) denote a generic point in the set Q, and let ; = 8/dz;. With 2 = (25) € ",
we associate the point x = (z;) € Q defined by z, = 25, and z3 = (1/¢)z§; we thus have
05, = 0q and 05 = (1/£)0s.

With the unknown u® = (uf) : @ — IR? and the vector fields v® = (vf) : @ — R?
appearing in the three-dimensional problem (2.3)—(2.5), we associate the scaled unknown
u(e) = (u;(e)) : © — IR and the scaled vector fields v = (v;) defined by

uf, (2°) = %uf,(z) and u§(z°) = eug(x) for all 2° € Q, (3.1)

vE (2°) = 2% (x) and v§(2°) = ev§(z) for all 2° € Q. (3.2)

We next assume that there exist constants A > 0 and g > 0 independent of € and functions
fi € L?(Q) and 0 € C3(w) independent of & such that

X=X pf=p (3.3)
o5 (2%) = 2 f%(x) and f2°(2%) = 2 f3(x) for all z € Q
0%(y) = eb(y) for all y € w. (3.5)

Then the function w(e) satisfies

u(e) e V(Q) = {v=(v;) € H(Q)|v =0 on Iy}, (3.6)
/QAijkl(E)ek||l(5§U(E))ei\\j(5§'U(E))\/g(g)dx = Afivi\/g(f)dx (3.7)

for all v € V/(Q2), where the functions A% () : Q@ — IR, g(¢) : @ — IR and ¢;);(g;v) € L*(Q)
are defined by the relations

Aijkl’s(xe) = Aijkl(s)(ac)7 9°(z%) = g(e)(x) for all x € Q, (3.8)
eg; (v9)(zf) = ezeiuj(a; v)(x) for all z € Q. (3.9)

Remark 3.1. The assumption (3.5) is the shallowness assumption, originally introduced
by Ciarlet and Paumier.
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§4. Preliminaries

We gather in the following two lemmas, which are generalization of Lemma 4.1 and
Lemma 4.2 of [2], various results that will be needed in the proof of convergence. In what
follows, |-|0.q and ||+||1.q denote the L?(£2) norm, and the H'(2) norm for both scalar-valued
and vector-valued functions.

We denote by C7,Cs,--- positive constants that are independent of ¢ but they may
depend on the function 6.

Lemma 4.1. The functions e;)|;(e,v) defined in (3.9) are of the form

€al|5(€:0) = Cap(v) + €] 5 (5 0),
1
€al3(8;v) = g{eaS(U) + 5263\3(5;17)},

1_
63”3(5;”) = ;2633(1’)7

where
~ 1
2ap(v) = 5(0vs + 9va) — (Db + x3dape), (4.4)
. 1
€a3(v) = 5(0avs + O3va), (4.5)
es3(v) = O3v3, (4.6)
and there exists a constant Cy such that
sup max||efj(a;v)H < Cil||vl|1,q for allv € V(Q). (4.7)
0<e<eqg ™J
The functions g(g) defined in (3.8) are of the form
g(e) =€ +£°g%(e) (4.8)
and there exists a constant Co such that
sup max|g? (e)(z)| < Co. (4.9)

0<e<eo z€Q

The functions A (¢) are of the form

Aijkl(&_) _ Aijkl(o) —I—EQA;ikl(E% (4.10)
where
AP () = NGBS 4 (597557 + 59755, (4.11)
afBo af3: 1 a a3o 1 ao
A%BT3(0) =0, A*PB(0) = S B A%93(0) = 18”7, (4.12)
s 43 1
AO3B(0) =0, AIBB(0) = 674(/\ +2p), (4.13)

and there exists a constant C3 such that

sup max AT ( < (Cs. 4.14
s e 420 < O (414)

Also there exists a constant C4q such that
Aijkl(&“)(x)tkltij > C4tijtij (415)

for all 0 < e < &g, for all z € Q, and for all symmetic matrices (t;;).
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Proof. With the vectors ¢ : Q" — IR3 and the functions gfj,gij’E,Ffja 0 5 R, we
associate the vectors g;(¢) : @ — IR* and the functions gi;(¢), g (¢),T};(¢) : @ — IR, by the
relations

gi (%) = gi(e)(w), gfj(l"a) = gij(e)(2), (4.16)
g7 (2%) = g7 (e)(x), Th (2°) = TY(e)(2). (4.17)

Then a simple calculation using the assumption (3.5) shows that
JM — €2I3[€aa19 + 819306] + 0(54)

9o (&) = | daz — €223[€0020 + 0200,¢] + O(s?) |, (4.18)
€[00 + 1304€] + O(£3)
ged1 + O(e?)
g3(e) = | eedal +0O(?) |, (4.19)
e +0(e2)
Gop(€) = ap + €%[0a0050 — 223(e0ap8 + 0abdse)] + O(c?), (4.20)
Ja3(e) = O(e), gs3(e) = € + O(?),T5(¢) = O(e?), (4.21)
[35(2) = [0aph + w3daspe] + O(%),  Taz = O(e). (4.22)

The announced results then follow from the above relations.
In the next lemma, we establish a generalized Korn’s inequality, which involves the func-
tions €;;(v) defined in (4.4)—(4.6), which generalize the traditional functions

1
eij(v) = 5(31'%' + 0jv;) (4.23)

as well as the functions €;;(v) used in [2]. This inequality will yield the fundamental a priori
estimates that the scaled unknowns (u(e)) satisfy.

Lemma 4.2. Let 6 € C3(w) be a given function and let the functions €;;(v) be defined as
in (4.4)—(4.6). Then there exists a constant Cy such that

~ 1/2
lolle < Co{ D 11w (@)lloo | (4.24)
0,J

for allv € V(Q), where V(Q) is the space defined in (3.6).

Proof. For clarity the proof is divided into four steps.

(i) Let the space EY(Q) be defined by E?(Q) = {v = (v;) € L*(Q);¢;;(v) € L*(Q)}. Then

E°(Q) = H(Q). (4.25)
Let v = (v;) be an element in E?(Q). Then
~ v ~
Cap(0) = Eup(®) + 2 (Dush + zadase) € L), eis(v) = Ealv) € L7(0),
where the functions e;;(v) are defined in (4.23). The classical identity
ajkvi = 8j€ik(’v) + Okeij (’U) - 6iejk('v)

shows that 9;,v; € H~1(Q). Also v € E%(Q) = 0;v; € H~1(Q). Hence by a lemma of J.
L. Lions (cf. [4, Theorem 1.7.1]), we have d;v; € L?(2) and hence E’(Q) C H*(Q). The

opposite inclusion is obvious and hence the equality (4.25) follows.
(ii) The mapping || - | defined by

oll = {IIllo.c + Y lIéis (v)]
0,J

1/2
2o (4.26)
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is a norm over the space H'((2), and there exists a constant Cg such that
[lv]]1.0 < Csllv|| for all v € V(). (4.27)
Clearly there exists a constant C7 such that
[|v|| < Cr||v||1.0 for all v € H(Q).

Hence the identity mapping from the space H'(§2) equipped with the norm | - ||1,o into
the space E?(Q) equipped with the norm | - || is continuous, and it is also surjective since
E%(Q) = H'(Q) by the step (i). Since the space E?(Q) is a Hilbert space when it is
equipped with the norm ||.||, the open mapping theorem implies the existence of a constant
C satisfying (4.27).

(iii) The semi-norm | - |? defined by

o = { Y lles@lia) (1.25)

is a norm over the space V(€2).
The only property that remains to be checked is that

veV(Q) and [v| =0= v =0.
We next note a theorem due to Hérmander (cf. [11, Theorem 2.4]). If P(x,&) = " a;;&&;
j

where a;;(x) are Lipschitz-continuous in a neighbourhood of zero, P(z, §) is elliptic and if u €

H'(w) satisfies |P(x, D)u| < C 5. |D%u| then u = 0 in w if u vanishes in a neighbourhood
|| <1

of a point in w.

Let v € V(Q) be such that €;;(v) = 0. Since e;3(v) = €;3(v) = 0, a standard argument
(cf. [3, Chapter 1]) implies that there exist functions 7, € H'(w),n3 € H?(w), n; = 0,13 =
0 on 7 such that vy, = 7o — 23013, v3 = 3. The relation e,g (v) = 0 then implies that

1
5((%77/3 + 857704) - %38&59 =3 (&xﬂni’) + %&x,@e)
and whence Jnpm3 + "f@age = 0 in w since the left-hand side of the above equality is only
a function of (z1, z2).
In particular, n3 € H?(w) satisfies

Am%—@Ae:Oin w,
e

n3 = Oynz = 0 on . (4.29)
Let w' be a domain which contains o in its interior. Then the function 77; defined by
C{my inw,
s = {0 nw —w (4.30)

satisfies 73 € H2(w'),
A ’ 77:; - . ’
773+;Aef01nw,
77;) =0inw —w, (4.31)

and whence HAnéHOM/ < C|Insllow and 73 = 0 in w" — w. Hence by Hormander’s theorem,

/ . / .
we have 73 =0 in w and hence n3 =0 in w.
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The functions 7, then satisfies 0,13 + 931 = 0 in w, N, = 0 on vy and hence n, = 0 on
w.
(iv) There exists a constant Cg such that

|[v]]1.0 < Cs|v|? for all v € V(). (4.32)

Suppose the property is false. Then there exists functions v* € V(Q),k = 1,2,--- such
that

[vF|ia=1forallk>1, [v*|? = 0ask— oo

Since the sequence is bounded in H' (), there exists a subsequence (v)f2, that converges
strongly in the space L2(Q) by the Rellich-Kondrasov theorem. Since |v!|? — 0 as | — oo,
this subsequence is a Cauchy sequence with respect to the norm || - ||. Since this norm is
equivalent to the norm || - ||1.q by the step (ii), and since the space H'(Q) is complete, the
subsequence (v')%°, converges in the space H*(Q). On the one hand,

lollLe = lim |[v'][1,0 =1. (4.33)
l—o0
On the other hand,
[v|? = lim |[v'|? =0 (4.34)
=00

and hence v = 0 by the step (iii), which is impossible by (4.33).
65. The Limit Problem

In the following theorem, we establish that, as e — 0, the family (u(e)) converges strongly
in H*(Q2) and we also identify the variational problem that the limit of the family satisfies.

Theorem 5.1. (a) There exists u = (u;) € V(Q) such that u(e) — u in H(Q).

(b) Define the space

V(w)={n=mn € H (w) x H (w) x H*(w);n; = 0,n3 =0 on 7o }. (5.1)
Then there exists { = ((;) € V(w) such that
U = Co — 230aC3 and us = (3. (5.2)

(¢) The function ¢ = ((;) € V(w) solves the following variational equation:

—/mo‘ﬁ(?agngedw—/(no‘ﬁ@aﬁe—l-mwaa@e)ngedw+/no‘ﬁﬁﬁnaedw

w

:/pimedw—/qo‘&mgedw (5.3)
for allm € V(w), where
A p Ae i Oage
af _ _ f—— -~
= = (864 67 Jdas + o (9aats + 6 75), (5.4)
A R
af _
n - )\+2M600(C)(5a/5+4ﬂ€aﬁ(C), (55)
X 1 Oaph 1 1
(€)= 5(0uGs + 9360) = 2 = 5 [ Zua(Q)dos (56)
-1
1
PZ:/ [rdus, (5.7)
-1
1

q* :/_1 z3fdxs. (5.8)
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Proof. For clarity, the proof is divided into six steps.

(i) There exists constants £1,0 < €1 < 1 and Cy > 0 such that

[lu(e)|l10 < Co for all 0 < e < e;. (5.9)

Letting v = u(e) in the variational equation (3.7), using the relations (4.8), (4.9), and
(4.15), we have

\}504lz);||€illj(5§u(5))||g,g</QAijkl(f)ek|z(5;u(5))€illj(5§U(E))vg(g)dx

= [ FueVads
<VET2O{ Yl a} Tu@loe 610

for ¢ < min{eg, (2Cy)~'/?}. Hence for ¢ sufficiently small, there exists a constant Cyo such
that

> lleii(esu(@)llf.a < Crollu(e)|lo.0- (5.11)

i,J

The relations (4.1)—(4.7), the inequality (A — B)? > A?/2 — B? and the generalized Korn’s
inequality (4.24) together show that for e < min{eo, 1},

D llea(Eu@)lge = D leas(ule)) + e%els(e, ul)lf o
i B

+2) [[Cas(u(e)) + %3 (e, ule))l[ 0 + Eas(e, ul@))lf

1 -
> =31 (e w(e) B o — 8 CElue)] 3.
%,
1
> {5052 = 84CE Hlu(e) | o (5.12)

Hence for ¢ sufficiently small, there exists a constant C1; such that

(@)l q < Cru Y lles (e u@)ll o (5.13)

.3

The relation (5.9) is then a consequence of relations (5.11) and (5.13).
(i) Define the tensors K (¢) = (K;;(c)) € L*(€) by

Kop(e) = €ap(ule)), Kas(e) := égag(u(g)),f{gg(g) = Eizggg(u(e)). (5.14)

Then there exists a constant Cq5 such that

||§(5)||07Q <Cipforalld<e<ey. (515)
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Using the definitions (5.14) and the relations (4.1)—(4.3), we have

IK©)lloo = lleays(e ule)) — eliy (e, ule))f
o,
+2) lleaps(esule)) — eels(e.u@))l o + llesys(e, u(e))l5

< Z [leii (e, ule))]

b2ty llels (e ul)lfa
o,

+427 ) lleffs (e, ul@)llf - (5.16)

Hence the relation (5.15) follows by using the inequalities (4.7) and the boundedness of
the families (u(e)) € HY(Q).

(iii) By the step (i), there exists a subsequence, indexed by ¢ for notational convenience,
and there exists a function u = u; € V() such that

u(e) = win H'(Q) as ¢ — 0.

Then there exists functions ¢, € H'(w) and (3 € H?(w) satisfying ¢; = 9,(3 = 0 on g
such that

Ug = Co — 30,3 and ug = (3. (5.17)
From the definitions (4.23) and (5.14) and the boundedness of (K(E))7 we deduce that
lleas(u(e)lloe < eCiz and [leas(u(e))llo,o < €2Cis
for some constant C3 > 0. Since a norm is a weakly lower semi-continuous function,
[leia(w)llo.0 < Timinf |es3(u(e))llon = 0

and whence e;3(u) = 0. Then a standard arguement (cf. [3, Chapter 1]) implies that the
components u; of the limit u are of the form (5.17).
(iv) By the step (iii), there exists a subsequence, still indexed by e for convenience, and
a function K = (INQJ) € L?(Q2) such that f(s) —~ K in L?(Q) as € — 0. Then
Kog = €ap(u), Kaz=0, Ks3= _ e o (u). (5.18)
’ “ ’ A+2p 77

Since u(e) — w in H*(Q) (by the step (iii)), the definitions (4.4) of the functions €,z
shows that K,5(g) = €ap(u(e)) converges weakly in L?(Q) to the function €,4(u). We next
note the following result (cf. [3, Chapter 1]): let w € L?(£2) be given; then

/ wdsvdr = 0 for all v € H'(Q) with v = 0 on Ty = w = 0. (5.19)
Q

With the relations (4.1)-(4.3), (4.8), (4.10) and the definitions (5.14) of the functions K;;(e),
the variational equations (3.7) can be written as

/Q ({[Aaﬂ”m) + 2 AT ()] [Kor (e) + €2 (5 u(e))]
+ [AP33(0) + 2 AY% (¢)] Kss (e)}

1 1 V3 2 H# (.
{gaavg + 58/3% ;(Baﬁﬁ + 230.5€) + € eaﬁ(a, v)}
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+ {4[A°373(0) + 2 AP (€)][K ()3 + e’y (5 u(e))]}
1 P 1
{g V3 + %
+{[A%77(0) + e2ABT (0)] K- (¢) + 3¢t (5 u(e))]
+[A4%33(0) + s2Ai?33<a>]f?33<s>}{5%83@3}) €2 + e2g#(e)da

= / fivir/e2 + e2g#(e)dx for all v € V(). (5.20)
Q

Multiplying these equations by ¢, letting v3 = 0, and using (4.11)—(4.13), we find that

D3vo + €y (e; v)}

Kos(

/Aa?"’?’ Ko3(e)03vqedr = 2,u/ a( 83vadx = eR(e; K( ), u(e),v) (5.21)

with
sup |R(z; K (2),u(e), v)| < Cuallvlh,o (5.22)

0<e<Ley
for all (v,) € H'(Q) such that (v,) = 0 on I'yg. For each such (v,), the left-hand side of
(5. 21) goes to 2p fQ . 383vadz as € — 0 and the right-hand side goes to zero. Hence
fQ : Ko303v0dz = 0 and thus 1 K3 = 0 by (5.19). Since e(z1,72) > 0, it follows that
Koz = 0.

Multiplying the equations (5.20) by &2, letting (v,) = 0 and using (4.11)—(4.13), we find

that

/{A33ar(0)]~<m(€) +A3333(0)[}33(E)}63v36d:c
Q

— [ {SReote) + CE2 Raa(e) ouvncds

= cS(e, K(c),u(),v) (5.23)
with
sup [ S(e, K(e),u(s),v)| < Cisl|v]l1 0 (5.24)
0<e<er

for all v € V(). Passing to the limit as ¢ — 0, we get
1 ~ ~
/ —={* XK, + (A + 21) K33} 03v3da = 0, (5.25)
O €

and thus the last relation follows by another application of (5.19).
(v) The function ¢ = (¢;) solves the variational equation (5.3).
Restricting the function v € V() to the space

Vir(Q) ={ve H(Q):v=0o0nTy,esz(v)=0in Q} (5.26)
we see that (5.20) reduce to

/Q {NK pp(€)00s + 211K o5 () }eus (v)edz = /Q fiviedr + eT(e, K(e),u(e),v)  (5.27)
with

sup |T(e, K(e),u(e),v)| < (5.28)

0<e<Ler

for all v € V().
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Passing to the limit as ¢ — 0 and taking into account the relation (5.18), we are left with

~ ~ 200 ~ ~
K. 2uK, = _ 2
/Q{)\ ppdas + 21K apteqs(v)eds /Q {)\ i 2ueag(5a5 + ueag(e)}eag(v)edx

= / flveds (5.29)
Q

for all v € Vi (Q). Once the components u; of u have been replaced by their expression
(5.17) and the components v; of v have been replaced by
Vo = Na — T304m3 and vz = 13 with n = (1;) € V (w),

it is verified that the equation (5.29) coincides with the equations (5.3).

(vi) The variational equations (5.3) have a unique solution ¢ € V' (w).

It is easy to see that the mapping n € V(w) — (o — 230am3),m3) € Vi () is an
isomorphism. Hence it is sufficient to show that the variational equations (5.29) have a
unique solution. But that follows from the fact that the bilinear form B(..) defined by the
left-hand side of that equation satisfies

B(v,v) > 2 Y |Eap(v)|[5.0 =20 > [[€5(v)|[3.q for all v € Vic1,() (5.30)
af 7

1/2
and from the fact that { > llei; (v)] |(2)’Q} is a norm in the space V() (note that Vi ()
2%

is a closed subspace of V' (2)), equivalent to ||.||1,q-
(vii) The strong convergence of (u(¢)) to w in H'(Q) follows as in [2].

§6. Two-Dimensional Equations

We now “descale” the functions (; and wu; found in Theorem 5.1 to obtain the two-
dimensional model approximating the three dimensional problem. In view of the scaling
(3.1)—(3.2), we define functions ¢f : @ — IR and u$(0) : {2}~ — IR by

Ca(y) = £%Caly) and (5(y) = eCs(y) for all y € w, (6.1)
ul,(0)(2°) = e2uq () and u§(x°) = eug(x) for all 2 € Q, (6.2)
where the points z° € Qf and x € () are related as in Section 3.
Theorem 6.1. The functions (§ defined in (6.1) satisfies (¢F) € V(w),

—/m“ﬁ’aaaﬂngedw—/(n“ﬁ’saa,we—|—maﬁ’58a,@e)ngedw+/naﬂ’gﬁgnaedw

:/pi’sniedw—/qo"s 13 edw (6.3)

for allm € V(w), where

4A Ae 4 a e
afB,e _ 3 7,“ c e R¢e 7'[1, R . Oap
m = —¢ {30\_’_2’“) (A<3+43 o >5a5+ 3 <8046<3+43 . )}7 (6.4)
A\
af.e _ AE 5 P>

" _E{)\+2ue""<c ap +4“eaﬁ(4’>}’ (6.5)
A€ £ 1 £ £ 58a 98
€aslC”) = 5(«%% +08Ca) — G35 5 ; (6.6)
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€
v = [ i, (6.7)

—€

qaz/ xg fOfdas. (6.8)

—€
Remark 6.1. (1) It is also possible to make other assumptions on the data that will yield
the same shallow shell equations. More precisely, if s is any real number, then replacing the
relations (3.3)—(3.4) by the more general relation

fo5(xf) = T2 f¥(x) and f3°(2°) = T3 f3(x) for all z € Q,
N =e*) and pf = 3y,

where the functions f¢ € L?(Q2) and the constants A > 0 and p > 0 are independent of e,
will yield the same conclusions as those found here.

(2) Tt can be verified that when e = 1, the equations (6.3) coinside with the two dimen-
sional equations of shallow shell with constant thickness obtained in [2].
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