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Abstract

The authors prove well posedness in Gevrey classes of Cauchy problem for nonlinear hyper-
bolic equations of constant multiplicity with Hölder dependence on the time variable.
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§1. Introduction

Any linear hyperbolic operator P with Cχ coefficients with respect to time, 0 < χ < 1, has

a well posed Cauchy problem in suitable Gevrey classes Gσ whereas this is not true in C∞.

Focusing on operators with characteristics of constant multiplicity, we have the following

bounds for the Gevrey index:

σ <
1

1− χ
, if P is strictly hyperbolic[1,5,8,4], (0.1)

σ < min
{
1 + χ,

r

r − 1

}
, r ≥ 2 the largest multiplicity[9]. (0.2)

From (0.1) and (0.2) we have well posedness for

σ <
r

r − χ
, r ≥ 1

and this seems to be the natural condition on σ for any r (see Section 3).

Our purpose in this paper is to show that this still holds in nonlinear framework so

improving, in the case of constant multiplicity, a result by K. Kajitani[6].

The result is obtained by the same method of [2] and [3] where we considered weakly

hyperbolic equations with Levi conditions and smooth dependence on all variables. So we

have found a uniform approach to the hyperbolic Cauchy problem with characteristics of

constant multiplicity.
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§1. Main Results

For σ > 1 and A > 0 let us denote by Gσ
A = Gσ

A(R
n) the space of all functions f satisfying

∥f∥Gσ
A
:= sup

α∈Zn
+

sup
x∈Rn

|Dαf(x)|A−|α|α!−σ <∞

and by Gσ,1
A = Gσ,1

A (Rn ×W ),W an open set in Rℓ, the space of all functions f such that

∥f∥Gσ,1
A

:= sup
(α,β)∈Zn

+×Zℓ
+

sup
(x,w)∈Rn×W

|Dα
xD

β
wf(x,w)|A−|α|−|β|α!−σβ!−1 <∞;

so Gσ :=
∪

A>0

Gσ
A and Gσ,1 :=

∪
A>0

Gσ,1
A are Gevrey spaces.

Then, let us consider the quasilinear Cauchy problem
∑

|α|≤m

aα(t, x,D
m′

u)Dα
t,xu = f(t, x,Dm′

u),

Dj
tu|t=0 = 0, 0 ≤ j < m,

(1.1)

where Dm′
u = Dm′

t,xu denotes the vector (Dβ
t,xu; |β| ≤ m′), m′ ≤ m − 1, the functions

aα(t, x, w) and f(t, x, w) are defined for t ∈ [0, T ], x ∈ Rn, w ∈ W0 a neighborhood of the

origin in Rℓ, and the maps x→ f(t, x, w) have supports contained in a compact set of Rn.

As it concerns the regularity of the equation with respect to the variable (t, x, w) we assume:

(R)
aα ∈ Cχ(0, T ;Gσ,1

A ), 0 < χ < 1 for |α| = m;

f, aα ∈ C0(0, T ;Gσ,1
A ) for |α| < m.

The linear differential operator

P (t, x, w,Dt, Dx) =
∑

|α|≤m

aα(t, x, w)D
α
t,x

is assumed to be hyperbolic with characteristics roots of constant multiplicity, that is, for

positive integers s and mj , j = 1, · · · , s, independent of (t, x, w), the principal part Pm

satisfies

(H) Pm(t, x, w, τ, ξ) =
s∏

j=1

(
τ − λj(t, x, w, ξ)

)mj

with real λj , j = 1, · · · , s, and |λh(t, x, w, ξ)− λk(t, x, w, ξ)| > c|ξ| if h ̸= k.

The number r := max{mj ; j = 1, · · · , s} denotes the largest multiplicity.

Now we can state our main result:

Theorem 1.1. Assume conditions (R),(H) and

(G) 1 < σ ≤ r

r − χ
,

(N) m′ ≤ m−min{r, 2}.

Then, there are T0 < T and A0 > A such that the problem (1.1) has a unique solution

u ∈ Cm(0, T0;G
σ
A0

).

As it concerns the degree of nonlinearity, we note that (N) is an empty condition for

strictly hyperbolic equations (r = 1) since we can allow m′ = m−1. It reduces to m′ ≤ m−2
in case of weak hyperbolicity.
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§2. Notation and Preliminary Results

This section is devoted to introducing the space of functions and related pseudodifferential

operators that we use in the proof of Theorem 1.1.

We denote by Sm
ℓ , m ∈ R, ℓ ∈ Z+, the class of all symbols a(x, ξ) ∈ Sm

1,0(R
n) with norm

∥a∥Sm
ℓ

= sup
|α|+|β|≤ℓ

sup
R2n

|∂α
x ∂

β
ξ a(x, ξ)|⟨ξ⟩

|β|−m, ⟨ξ⟩ = (1 + |ξ|2)1/2.

In a corresponding way to the spaces of functions Gσ
A introduced in Section 1, we denote by

Sm,σ
ℓ,A the space of all symbols a(x, ξ) of order m such that

∥a∥Sm,σ
ℓ,A

= sup
α∈Zn

+,|β|≤ℓ

sup
R2n

|∂α
x ∂

β
ξ a(x, ξ)|⟨ξ⟩

|β|−mA−|α|α!−σ <∞

and define

Sm,σ
ℓ := lim−→

A→+∞
Sm,σ
ℓ,A , Sm,σ := lim←−

ℓ→+∞
Sm,σ
ℓ .

For a symbol a(x, ξ) in Sm,σ
ℓ,A and Λ = τ⟨Dx⟩1/σ, τ ∈ R, let us denote by aΛ(x,Dx) the

operator aΛ = eΛae−Λ. Then, we have[6]

Proposition 2.1. Let a(t, x, ξ) ∈ Ck(0, T ;Sm,σ
ℓ,A ), Λ = Λ(t) = λ(2T − t)⟨Dx⟩1/σ , λ ∈ R.

Then there are T0 = T0(A, σ, n) > 0 and for every ℓ′ a positive integer ℓ0 = ℓ0(ℓ
′, σ, n) such

that

∥aΛ∥Ck(0,T ;Sm
ℓ′ )
≤ C∥a∥Ck(0,T ;Sm,σ

ℓ,A ) , |λT | ≤ T0 , ℓ ≥ ℓ0 (2.1)

with a constant C = C(A, ℓ′, σ, k, n) > 0 independent of a(t, x, ξ).

We use also symbols depending on a parameter w ∈W = W0×RdM where W0 is a given

open set in Rℓ,M ∈ Z+ and dM is the number of all α ∈ Zn
+ such that |α| ≤M. In fact, we

denote by Sm,σ,1
ℓ,A (Rn ×W ×Rn) the space of all symbols a(x,w, ξ) of order m such that

∥a∥Sm,σ,1
ℓ,A

= sup
α,β,|γ|≤ℓ

sup
x,w,ξ

|∂α
x ∂

β
w∂

γ
ξ a(x,w, ξ)|⟨ξ⟩

|γ|−mA−|α|−|β|α!−σβ!−1 <∞

and we set

Sm,σ,1
ℓ := lim−→

A→+∞
Sm,σ,1
ℓ,A , Sm,σ,1 := lim←−

ℓ→+∞
Sm,σ,1
ℓ .

Next we introduce Gevrey-Sobolev spaces. For τ, µ ≥ 0, σ > 1 we denote by Hτ,σ,µ(Rn)

the space of all functions u such that

∥u∥Hτ,σ,µ := ∥eτ<D>1/σ

u∥Hµ <∞,

where Hµ = Hµ(Rn) the usual Sobolev space.

From Paley-Wiener theorem, it follows that

∥u∥Hτ,σ,µ ≤ C∥u∥Gσ
A
, u ∈ Gσ

A ∩ C∞
0 , 0 ≤ τ ≤ τ0 (2.2)

with τ0 = τ0(A, σ, n) and C = C(A, σ, µ, n) positive constants. Conversely, we have

Hτ,σ,µ ⊂ Gσ
A , τ > 0 , A > cστ

−σ, µ >
n

2
(2.3)

with continuous embedding.

Moreover for µ >
n

2
,Hτ,σ,µ is a Banach algebra:

∥uv∥Hτ,σ,µ ≤ Cµ∥u∥Hτ,σ,µ∥v∥Hτ,σ,µ . (2.4)
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Together with the space Hτ,σ,µ we consider the following classes of functions and symbols

depending on t ∈ [0, T ] :

Ck
T (H

λ,σ,µ) = {u(t, x) ; t→ eλ(2T−t)⟨Dx⟩1/σDj
tu(t, ·) is continuous from

[0, T ] to Hµ−j(Rn) , j = 0, · · · , k}
(2.5)

with norm

∥u∥Ck
T (Hλ,σ,µ) : = sup

0≤j≤k
sup

0≤t≤T
∥Dj

tu(t, ·)∥Hλ(2T−t),σ,µ−j ;

Ck
T (S

m
ℓ ;Hλ,σ,µ) = {a(t, x, ξ) ∈ Ck(0, T ;Sm

1,0); ∂α
x ∂

β
ξ a(·, ·, ξ) ∈ Ck

T (H
λ,σ,µ),

|α|+ |β| ≤ ℓ , ξ ∈ Rn} (2.6)

with norm

∥a∥Ck
T (Sm

ℓ ;Hλ,σ,µ) := sup
|α|+|β|≤ℓ

sup
ξ∈Rn

∥∂α
x ∂

β
ξ a(·, ·, ξ)∥Ck

T (Hλ,σ,µ).

Both in definitions (2.5) and (2.6) we assume k ∈ Z+, λ > 0, µ > n
2 .

Note that, as a consequence of (2.3), we have Ck
T (H

λ,σ,µ) ⊂ Ck(0, T ;Gσ
A), A > cσ(λT )

−σ,

µ > n
2 + k, since 2T − t ≥ T for t ∈ [0, T ]. This fact can not be used to obtain an estimate

of type (2.1) for a ∈ Ck
T (S

m
ℓ ;Hλ,σ,µ) because the condition A > cσT

−σ
0 (A, σ, n) could not

be satisfied. So we need the following result[6]:

Proposition 2.2. Let a ∈ Ck
T (S

m
ℓ ;Hλ,σ,µ) and Λ = Λ(t) = λ(2T − t)⟨Dx⟩1/σ. Then for

every ℓ′ ∈ Z+ there is a positive integer ℓ0 = ℓ0(ℓ
′, σ, n) such that

∥a±Λ∥Ck(0,T ;Sm
ℓ′ )
≤ C∥a∥Ck

T (Sm
ℓ ;Hλ,σ,µ) , ℓ ≥ ℓ0 (2.7)

with a constant C = C(µ, ℓ′, σ, k, n) > 0 independent of a(t, x, ξ).

Concerning the composition of u ∈ Ck
T (H

λ,σ,µ) with smooth maps, we have[6]

Proposition 2.3. Let f(t, x, w) ∈ Ck(0, T ;Gσ,1
A ) with f(t, x, 0) = 0 and let u ∈ Ck

T

(Hλ,σ,µ) with ∥u∥Ck
T (Hλ,σ,µ) ≤ r, r > 0. Then, there are positive µ0 = µ0(σ, n), T0 =

T0(σ, µ), r0 = r0(k, µ, n), C = C(f, σ, µ) such that

∥f(t, x, u(t, x)∥Ck
T (Hλ,σ,µ) ≤ C∥u∥Ck

T (Hλ,σ,µ),

µ ≥ µ0 , λTA1/σ < T0 , rA ≤ r0. (2.8)

In particular, for a(t, x, w, ξ) ∈ Ck(0, T ;Sm,σ,1) and u ∈ Ck
T (H

λ,σ,µ0+ℓ) we have

a(t, x, u(t, x), Dx) = a0(t, x,Dx) + a1(t, x, u(t, x), Dx)

with

a0 = a(t, x, 0, ξ) ∈ Ck(0, T ;Sm,σ), a1 ∈ Ck
T (S

m
ℓ ;Hλ,σ,µ0)

provided that λT and ∥u∥Ck
T (Hλ,σ,µ0+ℓ) are sufficiently small. We shall write

a = a0 + a1 ∈ Ck(0, T ;Sm,σ) + Ck
T (S

m
ℓ ;Hλ,σ,µ0)

in such a situation. Then, one can use Proposition 2.1 and Proposition 2.2 to have a precise

estimate of the norm of a(t, x, u(t, x), Dx) as a continuous operator from Ck
T (H

λ,σ,µ) to

Ck
T (H

λ,σ,µ−m) in view of the well-known continuity of a ∈ Sm
ℓ′ in usual Sobolev spaces.

It is reasonable to conjecture that Proposition 2.3 holds assuming f of class Gσ in (x,w),

but, as far as we know, this more general result has not been obtained yet. So in Theorem

1.1 we assume the analytic regularity of aα and f with respect to the variable w.
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§3. The Linear Problem

Given u ∈ Cm′+1
T (Hλ,σ,µ), ∥u∥Cm′

T (Hλ,σ,µ) ≤ r0, ∥u∥Cm′+1
T (Hλ,σ,µ)

≤ r1, λT ≤ T0, let us

consider the linear Cauchy problem for the unknown v,{
P (t, x,Dm′

u,Dt, Dx)v = f(t, x,Dm′
u),

Dj
t v|t=0 = 0 , 0 ≤ j < m,

(3.1)

with P (t, x, w,Dt, Dx) =
∑

|α|≤m

aα(t, x, w)D
α
t,x, f(t, x, w), σ,m

′, satisfying all conditions (H),

(R),(G),(N) in Theorem 1.1.

We want to show that it is possible to take large λ, µ and small r0, T0 in order to have a

unique solution v ∈ Cm
T (Hλ,σ,µ).

The first step is a factorization of the operator P. From assumptions (H) and (R), the

characteritic roots λj(t, x, w, ξ), j = 1, · · · , s, are symbols of pseudodifferential operators of

order 1 in Rn, depending on the parameter (t, w), after a modification in a neighborhood of

ξ = 0. Precisely, we have

λj ∈ Cχ(0, T ;S1,σ,1). (3.2)

We extend each λj(t, x,D
m′

u(t, x), ξ) to a Hölder continuous function of t ∈] − ∞, T ],

λj(t, x,D
m′

u(t, x), ξ) = λj(0, x,D
m′

u(0, x), ξ) for t < 0, then we regularize it by means

of a Friedrichs’ mollifier Jε, ε = |ξ|−1, defining

λ̃j(t, x,D
m′

u, ξ) =

∫
λj(s, x,D

m′
u(s, x), ξ)φ((t− s)|ξ|)|ξ|ds,

φ ∈ C∞
0 (Rn), supp φ ⊂ R+, 0 ≤ φ ≤ 1,

∫
φ = 1.

(3.3)

Obviously ∂h
t λ̃j(t, x, w, ξ) ∈ C0(0, T ;S1+h,σ,1), h ≥ 0, but from (3.2) we have a gain of order

equal to χ for ∆j := λj − λ̃j and ∂h
t λ̃j , h ≥ 1. In fact, for sufficiently small T0 and r0,

Proposition (2.3), the property (3.2) and the estimate

∥Dm′
u(t, x)−Dm′

u(s, x)∥Hλ(2T−t),σ,µ−m′−1 ≤ (t− s)∥u∥
Cm′+1

T (Hλ,σ,µ)
, s ≤ t,

give

∆j(t, x,D
m′

u(t, x), ξ) = ∆j,0(t, x, ξ) + ∆j,1(t, x,D
m′

u(t, x), ξ),

∆j,0 +∆j,1 ∈ C0(0, T ;S1−χ,σ) + C0
T (S

1−χ
ℓ ;Hλ,σ,µ−m′−ℓ−1);

(3.4)

∥∆j,1∥C0
T (S1−χ

ℓ ;Hλ,σ,µ−m′−ℓ−1) ≤ Cℓ(1 + r1); (3.5)

∂h
t λ̃j(t, x,D

m′
u(t, x), ξ) = ∂h

t λ̃j,0(t, x, ξ) + ∂h
t λ̃j,1(t, x,D

m′
u(t, x), ξ),

∂h
t λ̃j,0 + ∂h

t λ̃j,1 ∈ C0(0, T ;S1+h−χ,σ) + C0
T (S

1+h−χ;Hλ,σ,µ−m′−ℓ−1), h ≥ 1;
(3.6)

∥∂h
t λ̃j,1∥C0

T (S1+h−χ
ℓ ;Hλ,σ,µ−m′−ℓ−1) ≤ Cℓ(1 + r1). (3.7)

So we get the following factorization of the operator P (t, x,Dm′
u,Dt, Dx) :

P =
s∏

j=1

(Dt − λ̃j(t, x,D
m′

u,Dx))
rj +R(t, x,DM0+m′

∗ u,Dt, Dx),

DM0+m′

∗ u := DM0
x Dm′

t,xu,

(3.8)
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where the remainder R is of order m− χ and has the structure

R =
m−1∑
0

Rj(t, x,D
M0+m′

∗ u,Dx)D
j
t

with

Rj = R0
j +R1

j ∈ C0(0, T ;Sm−j−χ,σ) + C0
T (S

m−j−χ
ℓ ;Hλ,σ,µ−M0−m′−ℓ−1),

∥R1
j∥C0

T (Sm−j−χ
ℓ ;Hλ,σ,µ−M0−m′−ℓ−1) ≤ Cℓ(1 + r1);

the positive integer M0 depends only on mj , j = 1, · · · , s, and the dimension n.

Our next aim is to reduce the problem (3.1) to a first order system by means of the

factorization (3.8). In doing so, only to have a simpler notation, let us treat the case of an

operator P with two characteristics roots. We can factorize P in two different ways

P = P1P2 +R, P = P2P1 + R̃, Pj = (Dt − λ̃j)
mj , j = 1, 2

with remainders R and R̃ of order m− χ.

Then we define the vector (w0, · · · , w2m−1) as follows:

w0 = v, wm = v,
w1 = (Dt − λ̃1)v, wm+1 = (Dt − λ̃2)v,

...
...

wm1−1 = (Dt − λ̃1)
m1−1v, wm+m2−1 = (Dt − λ̃2)

m2−1v,
wm1

= P1v, wm2
= P2v,

wm1+1 = (Dt − λ̃2)P1v, wm+m2+1 = (Dt − λ̃1)P2v,
...

...
wm−1 = (Dt − λ̃2)

m2−1P1v, w2m−1 = (Dt − λ̃1)
m1−1P2v,

(3.9)

so obtaining an obvious equivalence between the equations P1P2v = f, P2P1v = f and a

diagonal hyperbolic system of order 1. To reduce the remainders R and R̃ to operators of

order ϱ < 1, we put a weight ⟨Dx⟩ϱ(m−1−j) on wj and wm+j defining

vj = ⟨Dx⟩ϱ(m−1−j)wj , vm+j = ⟨Dx⟩ϱ(m−1−j)wm+j , j = 0, · · · ,m− 1.

We have

Lemma 3.1. For every k < m there is an operator Q = Q(t, x,DM0+m′

∗ u,Dx) of order

d = k −m+ r(1− ϱ) + ϱ such that

Dkv = QV, V = (v0, · · · , v2m−1). (3.11)

Furthermore, for sufficiently small T0 and r0 we have

Q(t, x,DM0+m′

∗ u, ξ) = Q0(t, x, ξ) +Q1(t, x,DM0+m′

∗ u, ξ),

Q0 +Q1 ∈ C0(0, T ;Sd,σ) + C0
T (S

d
ℓ ;H

λ,σ,µ−M0−m′−ℓ−1);
(3.12)

∥Q1∥C0
T (Sd

ℓ ;H
λ,σ,µ−M0−m′−ℓ−1) ≤ Cℓ(1 + r1). (3.13)

Proof. From (3.9) and (3.10) we get immediatly

Dk
t v =

k∑
j=0

a
(k)
j (t, x,DM0+m′

∗ u,Dx)vj ,

a
(k)
j (t, x, w, ξ) ∈ C0(Sk−j−ϱ(m−1−j),σ,1), 0 ≤ k ≤ m− 1,

(3.14)
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which proves the lemma in the case r = m. Note that we do not need (3.6) but only

∂h
t λ̃j(t, x, w, ξ) ∈ C0(0, T ;S1+h,σ,1) to get (3.14).

In the general case, we use (3.14) and Lagrange’s interpolation formula. So, for 0 ≤ k ≤
m− 1,m = m1 +m2, let us write the identity

τk =
( τ − λ̃1

λ̃2 − λ̃1

− τ − λ̃2

λ̃2 − λ̃1

)m−1−k( τ − λ̃1

λ̃2 − λ̃1

λ̃2 −
τ − λ̃2

λ̃2 − λ̃1

λ̃1

)k

.

Then, applying Newton’s formula we have

τk =

m−1−k∑
k1=0

k∑
k2=0

a
(k)
k1,k2

(τ − λ̃1)
k1+k2(τ − λ̃2)

m−1−k1−k2 , ord a
(k)
k1,k2

≤ k + 1−m.

We write the terms in the sum with k1 + k2 < m1 in the form

a
(k)
k1,k2

(τ − λ̃1)
k1+k2(τ − λ̃2)

m2 [(τ − λ̃1) + (λ̃1 − λ̃2)]
m1−1−k1−k2

and the terms with k1 + k2 ≥ m1 in the form

a
(k)
k1,k2

(τ − λ̃1)
m1(τ − λ̃2)

m−1−k1−k2 [(τ − λ̃2) + (λ̃2 − λ̃1)]
k1+k2−m1 .

Applying again Newton’s formula to the powers in square brackets, we obtain

rk =

m1−1∑
j=0

b
(k)
1,j (τ − λ̃1)

j(τ − λ̃2)
m2 +

m2−1∑
j=0

b
(k)
2,j (τ − λ̃2)

j(τ − λ̃1)
m1 ,

ord b
(k)
1,j ≤ k − j −m2, ord b

(k)
2,j ≤ k − j −m1.

Carrying the above equality to the operators level, from (3.9),(3.10) and (3.6) we have

Dk
t v =

m1−1∑
j=0

q
(k)
1,j vm+m2+j +

m2−1∑
j=0

q
(k)
2,j vm1+j +

m1−1∑
j=0

r
(k)
j Dj

t v,

q
(k)
i,j = q

(k)
i,j (t, x,D

M0+m′

∗ u,Dx), r
(k)
j = r

(k)
j (t, x,DM0+m′

∗ u,Dx),

ord q
(k)
i,j ≤ k −m+mi(1− ϱ) + ϱ, ord r

(k)
j ≤ k − j − χ.

(3.15)

In the last sum in (3.15) one can replace Dj
t v with the expression given by the same

equality with j instead of k, so obtaining a similar representation of Dk
t v but with new

operators r
(k)
j of order k − j − 2χ.

One repeats this process till it is possible to get (3.11) replacing in the third sum Dj
t v

with the expression given by (3.14).

The properties (3.12) and (3.13) follow from (3.7).

Applying Lemma 3.1 to Rv and R̃v, we have

Rv = Q1V, R̃v = Q̃1V

with Q1 and Q̃1 of order ϱ < 1 if we choose ϱ =
r − χ

r
. Then (3.1) is equivalent to the

problem{
DtV −K0(t, x,D

m′
u,Dx)V +A0(t, x,D

M0+m′

∗ u,Dx)V = F0(t, x,D
m′

u),
V|t=0 = 0,

(3.16)
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where K0 is diagonal of order 1 with λ̃j as entries, A0 is of order ϱ =
r − χ

r
,

A0(t, x,D
M0+m′

∗ u, ξ) = A0,0(t, x, ξ) +A0,1(t, x,D
M0+m′

∗ u, ξ),

A0,0 +A0,1 ∈ C0(0, T ;Sϱ,σ) + C0
T (S

ϱ
ℓ ;H

λ,σ,µ−M0−m′−ℓ−1),

∥A0,1∥C0
T (Sϱ

ℓ ;H
λ,σ,µ−M0−m′−ℓ−1) ≤ Cℓ(1 + r1)

(3.17)

for sufficiently small T0 and r0;F0 = (0, · · · , f, 0, · · · , f).
It is well known (e.g. see [7]) that one has to assume σ ≤ 1

ϱ to have existence and

uniqueness of a local in time solution V (t, ·) ∈ Gσ (σ < 1
ϱ for a global solution) of the

problem (3.16). So the condition (G) in Theorem 1.1 σ ≤ r
r−χ appears in a natural way.

In a fixed point scheme, it is convenient to take derivatives ∂β
x in (3.1) with |β| ≤M and

M > M0 in order to control the argument DM0+m′

∗ u of A0 in (3.16). So, for v(β) := ∂β
xv,

we write {
‘
Pv(β) + [∂β

x , P ]v = ∂β
xf,

Dj
t v

(β)
|t=0 = 0, 0 ≤ j < m.

(3.18)

Then we define V (β) = (v
(β)
0 , · · · , v(β)2m−1) in the same way as V in (3.9),(3.10) with v(β) in

place of v and set

W = (V (β); |β| ≤M). (3.19)

From Lemma 3.1 we have

[∂β
x , P ]v = G(t, x,DM+m′

∗ u)B(t, x,DM0+m′

∗ u,Dx)W

with G ∈ C0(0, T ;Gσ,1) and B of order rχ−χ
r < r−χ

r = ϱ,

B(t, x,DM0+m′

∗ u, ξ) = B0(t, x, ξ) +B1(t, x,D
M0+m′

∗ u, ξ),

B0 +B1 ∈ C0(0, T ;Sϱ,σ) + C0
T (S

ϱ
ℓ ;H

λ,σ,µ−M0−m′−ℓ−1),

∥B1∥C0
T (Sϱ

ℓ ;H
λ,σ,µ−M0−m′−ℓ−1) ≤ Cℓ(1 + r1)

(3.20)

for small T0 and r0.

Hence (3.18) is equivalent to the problem{
(Dt −K +A+GB)W = F,
W|t=0 = 0,

(3.21)

where −K+A is block diagonal, −K+A = (−K0+A0)⊗· · ·⊗ (−K0+A0) with N factors,

N the number of β ∈ Zn
+ such that |β| ≤M. The entries of F are equal to ∂β

xf or to 0.

Our next aim is to prove an a priori estimate for the system

L = Dt −K +A+GB.

Let µ0 be as in Proposition 2.3; we have

Proposition 3.1. It is possible to choose M > M0 sufficiently large, T0 and r0 sufficiently

small and to find a positive h0 such that if µ = M +m′ + µ0, λ ≥ h0(1 + r1), then

∥W (t)∥Hλ(2T−t),σ,µ0 ≤ ∥W (0)∥Hλ2T,σ,µ0 + 2

∫ t

0

∥LW (s)∥Hλ(2T−s),σ,µ0ds (3.22)

for every W ∈ C1
T (H

λ,σ,µ0+1).

Proof. Let K∗(t) denote the adjoint operator of K(t) in Hµ0 . Then, the operator E

defined by EΛ = KΛ −K∗
−Λ is of order ϱ ≤ 1

σ as A and B.
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By Propositions 2.1, 2.2, 2.3, the properties (3.17) and (3.20), we can fix ℓ ∈ Z+,M =

M0 + ℓ + 1, µ = M + m′ + µ0 and small r0, T0 in order to have continuous operators

E(t), A(t), B(t) from Hλ(2T−t),σ,µ0+1/σ to Hλ(2T−t),σ,µ0 with norm controlled by a constant

C(1 + r1).

For the factor G = G(t, x,DM+m′

∗ u), we use the Banach algebra property (2.4),

∥GBW (t)∥Hλ(2T−t),σ,µ0 ≤ ∥G∥Hλ(2T−t),σ,µ0∥BW (t)∥Hλ(2T−t),σ,µ0

≤ C0(1 + r0)(1 + r1)∥W (t)∥Hλ(2T−t),σ,µ0+1/σ .

Thus, denoting by (U, V )Hλ(2T−t),σ,µ0 the scalar product in Hλ(2T−t),σ,µ0 we obtain for S :=

i(L−Dt),

Re(SW (t),W (t))Hλ(2T−t),σ,µ0 ≥ −h0(1 + r1)(⟨Dx⟩1/σW (t),W (t))Hλ(2T−t),σ,µ0 .

Taking λ ≥ h0(1 + r1), this gives

2Re(iLW (t),W (t))Hλ(2T−t),σ,µ0 ≥
∂

∂t
∥W (t)∥2Hλ(2T−t),σ,µ0

,

which implies (3.22).

By the usual energy method, from the estimate (3.22) we get the following result of well

posedness for the problem (3.21):

Theorem 3.1. Let all conditions in Proposition 3.1 be fulfilled. Then the Cauchy problem

(3.21) has a unique solution W ∈ C1
T (H

λ,σ,µ0). Furthermore, the solution satisfies

∥W (t)∥Hλ(2T−t),σ,µ0 ≤ 2

∫ t

0

∥F (s, ·, DM+m′

∗ u(s, ·)∥Hλ(2T−s),σ,µ0ds. (3.23)

From Lemma 3.1 there is an operator Q = Q(t, x,DM0+m′

∗ u,Dx) of order

−δ = m′ + 1−m+
χ(r − 1)

r

such that DM+m′

∗ v = QW. So we obtain the main result of this section:

Theorem 3.2. Under the hypotheses of Theorem 3.1 the Cauchy problem (3.1) has a

unique solution v ∈ Cm
T (Hλ,σ,µ). Furthermore, the solution satisfies

∥v∥Cm′
T (Hλ,σ,µ+δ) ≤ C(1 + r1)

∫ t

0

∥f(s, ·, Dm′
u(s, ·)∥Hλ(2T−s),σ,µ−m′ds,

δ = m−m′ − 1− χ(r − 1)

r
. (3.24)

Condition (N) in Theorem 1.1 means δ ≥ 0. Precisely, we have δ = 0 in the strictly

hyperbolic case r = 1 allowing m′ = m− 1; it is δ > 0 if m′ ≤ m− 2.

§4. Fixed Point

Let λ, µ, r0, T0 be as in Theorem 3.2 and take T < T0

λ .

When m′ ≤ m − 2, from Lemma 3.1 there is also an operator Q of order 1 − δ such

that DM+m′+1
∗ v = QW. So we can replace ∥v∥Cm′

T (Hλ,σ,µ+δ) by ∥v∥
Cm′+1

T (Hλ,σ,µ+δ)
in (3.24)
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obtaining

∥v∥
Cm′+1

T (Hλ,σ,µ+δ)
≤ CT (1 + r1)(1 + r0).

Since in this case it is δ > 0, we fix r1 = r0, then we take T so small to have in Theorem

3.2 a compact map v = S(u) from the ball

{u ∈ Cm′+1
T (Hλ,σ,µ); ∥u∥

Cm′+1
T (Hλ,σ,µ)

≤ r1}

into itself. The fixed point of S is the unique solution of the nonlinear problem (1.1) in

Cm′+1
T (Hλ,σ,µ).

When m′ = m− 1, r = 1, it is δ = 0 in (3.24). In this case Theorem 3.2 gives

∥v∥Cm−1
T (Hλ,σ,µ) ≤ CT (1 + r1)(1 + r0)

and also

∥v∥Cm
T (Hλ,σ,µ) ≤ C0(1 + r0) + CT (1 + r1)(1 + r0)

estimating ∂m
t v from the equation Pv = f.

This time, we fix r1 = 2C0(1+r0) and take T so small to have a well defined map v = S(u)

from the set

{u ∈ Cm
T (Hλ,σ,µ); ∥u∥Cm

T (Hλ,σ,µ) ≤ r1, ∥u∥Cm−1
T (Hλ,σ,µ) ≤ r0}

into itself. So, there is a subsequence of u0 = 0, uk+1 = S(uk) converging in Cm
T (Hλ,σ,µ−1)

to a solution u of the problem (1.1). As usual, for small T , the estimate (3.24) gives also the

uniqueness in any bounded subset of Cm
T (Hλ,σ,µ−1) because the difference u1 − u2 of two

solutions has to satisfy

∥u1 − u2∥Cm−1
T (Hλ,σ,µ−2) ≤ CT∥u1 − u2∥Cm−1

T (Hλ,σ,µ−2).

Since x → f(t, x, w) has compact support, the same thing holds for the support of any

solution u ∈ Cm(0, T ;Gσ
A) in view of the hyperbolicity of P (t, x, w,Dt, Dx). Thus we have

existence and uniqueness in Cm(0, T ;Gσ
A) from the inclusions (2.2) and (2.3) taking a smaller

T if necessary.
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[J], J. Pure Appl. Math., 4 (1998), 73–82.
[ 5 ] Jannelli, E., Regularly hyperbolic systems and Gevrey classes [J], Ann. Mat. Pura Appl., 140:4(1985),

133–145.
[ 6 ] Kajitani, K., The Cauchy problem for nonlinear hyperbolic systems [J], Bull. Sc. Math., 110(1986),

3–48.
[ 7 ] Mizohata, S., On the Cauchy problem [M], Science Press, Bejing, 1985.
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