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THE SCENERY FLOW FOR

GEOMETRIC STRUCTURES ON THE

TORUS: THE LINEAR SETTING

P. ARNOUX* A. M. FISHER**

Abstract

The authors de�ne the scenery 
ow of the torus. The 
ow space is the union of all 
at 2-

dimensional tori of area 1 with a marked direction (or equivalently, the union of all tori with a

quadratic di�erential of norm 1). This is a 5-dimensional space, and the 
ow acts by following

individual points under an extremal deformation of the quadratic di�erential. The authors

de�ne associated horocycle and translation 
ows; the latter preserve each torus and are the

horizontal and vertical 
ows of the corresponding quadratic di�erential.

The scenery 
ow projects to the geodesic 
ow on the modular surface, and admits, for each

orientation preserving hyperbolic toral automorphism, an invariant 3-dimensional subset on

which it is the suspension 
ow of that map.

The authors �rst give a simple algebraic de�nition in terms of the group of aÆne maps of

the plane, and prove that the 
ow is Anosov. They give an explicit formula for the �rst-return

map of the 
ow on convenient cross-sections. Then, in the main part of the paper, the authors

give several di�erent models for the 
ow and its cross-sections, in terms of:

� stacking and rescaling periodic tilings of the plane;

� symbolic dynamics: the natural extension of the recoding of Sturmian sequences, or the

S-adic system generated by two substitutions;

� zooming and subdividing quasi-periodic tilings of the real line, or aperiodic quasicrystals of

minimal complexity;

� the natural extension of two-dimensional continued fractions;

� induction on exchanges of three intervals;

� rescaling on pairs of transverse measure foliations on the torus, or the Teichm�uller 
ow on

the twice-punctured torus.
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x0. Introduction

We begin by recalling some well-known relationships. First, there is the one-to-one corre-

spondence between closed orbits of the geodesic 
ow on the modular surface and conjugacy

classes of hyperbolic toral automorphisms. (This can be seen directly from the de�nitions

(see Remark 1.3 in x1 below).) Secondly, one knows that it is possible to code this geodesic


ow using continued fractions and via circle rotations (cf. [9, 42, 2, 7]). Thirdly, there is a
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strong relation between hyperbolic toral automorphisms and rotations by certain quadratic

integers; these rotations appear as the �rst return map for the 
ow along the stable (or

unstable) foliation of the toral automorphism.

In this paper we construct a �ber bundle, with torus �ber, over the unit tangent bundle

SL(2;Z)nSL(2;R) of the modular surface, and an Anosov 
ow on this �ber bundle, that

will make all these relations completely explicit. In particular, this 
ow will project to the

usual geodesic 
ow; over a closed geodesic, it will be a suspension of the corresponding toral

automorphism.

We �rst give in x1 a simple and explicit algebraic model for this 
ow. For this we make use

of the group SA(2;R) of special aÆne maps of the plane (the real aÆne maps of determinant

1), which is isomorphic to a subgroup of SL(3;R). This algebraic presentation allows us to

easily show that the 
ow is Anosov, hence ergodic, with a natural invariant measure.

In the later sections, we show that the scenery 
ow appears in a variety of guises: it can

be represented as a 
ow on the space of points of the plane modulo a lattice of covolume

1, or on the space of Sturmian (=quasiperiodic of minimum complexity) tilings of the line;

these can be considered as the simplest kind of aperiodic quasicrystals. The 
ow has a

cross-section with a purely combinatoric description; we relate this to adic systems in the

sense of Vershik (cf. [47, 48, 49]). We also give a purely arithmetic interpretation in terms of

inhomogeneous continued fractions, using the Ostrowsky representation of integers or real

numbers. Lastly, we show how this 
ow can be viewed as the restriction to a particular

stratum of the Teichm�uller 
ow on the twice punctured torus.

0.1. Organization of This Paper

In x1, we give the formal algebraic de�nitions, �x our notation and prove basic properties.

In x2 we interpret this algebraic model geometrically, in terms of periodic plane tilings, and

we give explicit formulas for the �rst return map of the scenery 
ow to two particular

cross-sections, related to the additive and multiplicative continued fractions respectively.

In x3 we give a simple Markov partition for the additive cross-section. In x4, we give

another viewpoint on this Markov partition, using Sturmian sequences. This part is the

longest section of the paper, due to the need to recall some classical results on these se-

quences, which geometrically are just the symbolic itineraries generated by an irrational

rotation with respect to its natural partition, and which have equally simple and useful

purely combinatorial de�nitions explained below. Part of the interest of having these quite

di�erent descriptions is that one can see the how the commutation relations between the

scenery 
ow and the vertical and horizontal translation 
ows appear at the purely symbolic

level, as relations between a substitution and a shift map.

In x5, we then use this to analyse dynamics for the Sturmian tilings of the line. In

x6, we show how the geometric coordinates of a point in the 
ow space can be recovered

from the combinatorics explicitly, via the inhomogeneous continued fraction (the Ostrowsky

expansion of real numbers). This gives an arithmetic model of the scenery 
ow.

In x7 and x8 we model the scenery 
ow by means of Rauzy induction on the interval,

and, equivalently, in terms of the Teichm�uller 
ow on the twice punctured torus.

In x9, we show how the measures on the �bers that naturally appear in this work can be

thought of as Gibbs measures for pressure 0, a generalization to nonstationary shift spaces

of the Parry-Shannon measure for subshifts of �nite type (the measure of maximal entropy).

In the �nal section x10, we indicate some possible generalizations.

In each of the sections x2 to x8, our main result will be to build a 
ow, or a map, on some
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space, and to exhibit a conjugacy with the 
ows and maps built in x1 and x2.

0.2. Underlying Ideas

Although the simplicity of the algebraic presentation might well hide the larger picture

we wish to show here, we hope that the next sections will make clear that we are discussing

(for a very explicit example) some quite general underlying ideas that certainly have a role

to play in a variety of related situations.

The �rst idea is to consider a parameter space for a family of dynamical systems, and to

de�ne a map on the parameter space corresponding to inducing a given dynamical system

on a subset. Here, we consider rotations R�, by an irrational angle �, on the circle of length

1. The induction on a suitable subinterval produces, in dynamical space, another rotation;

this process (also called renormalization) yields, on parameter space, the continued fraction

map. This renormalization can be viewed also in a symbolic way: the initial system is

related to the induced system by a substitution.

The second idea is to build the natural extension (in the sense of Rohlin, cf. [41]) for

this procedure; here, it corresponds to giving a rule for \un-inducing" a given rotation.

The resulting sequence of choices gives a second parameter. So taken together, one has a

pair of parameters, which correspond to a pair of dynamical systems (two circle rotations),

or, equivalently, to a pair of linear foliations on the 2-torus, with slopes equal to angles of

rotation.

The torus provides a dynamical space on which both rotations can act simultaneously,

as cross-sections to transverse linear 
ows. The operation of inducing on the one and un-

inducing on the other has a nice geometrical interpretation on the torus, given by box

renormalization: a cutting and stacking of a pair of boxes built from the rotations, and

which form a fundamental domain for the torus.

The next step is to construct a �ber bundle over the set of parameters, with torus �bers.

This places together in a single space all possible pairs of rotations of various angles. We

then de�ne a map on this bundle, given by the renormalization. Building a suspension of

this map, we have the scenery 
ow. The origin of this name is that this 
ow gives the

e�ect of traveling in a landscape: one zooms in toward the small-scale geometry of the �rst

dynamical system, the forward landscape, while simultaneously zooming out of the second

landscape.

In other words, on the �bers this has a hyperbolic dynamics, as it is expanding in one

direction and contracting in the other. The renormalisation operator is a discrete-time

version of the 
ow, with times indexed by returns to a cross-section for the 
ow on the base

space. However this does not produce a map in the usual sense; one is moving each time to

a di�erent �ber. This leads to the notion of mapping family: a sequence of maps along a

sequence of spaces (cf. [3]).

In the particular case where the combinatorics of the map, i.e. the continued fraction

expansion of the rotation, is periodic, inducing returns us to the original rotation, and the

hyperbolic mapping family can be thought of as a hyperbolic map in the usual sense; in fact

one has, in this case, a very familiar object: a hyperbolic toral automorphism; this is the

map referred to in the second paragraph. The pair of boxes mentioned above is in this case

also familiar: it is a Markov partition.

One of the interests of the �ber bundle construction and the concept of mapping family

is that one can then extend to a union of dynamical systems (organized as a bundle), to

non-periodic combinatorics, and to sequences of maps, results that previously have been
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stated only for a speci�c combinatorics, for single maps, or for periodic systems.

In terms of the symbolic dynamics, this takes us from the substitution dynamical systems,

which form a countable set (corresponding to closed trajectories of the geodesic 
ow), to

S-adic systems, that is, to systems generated by a �nite number of substitutions in a set S.

In summary, essentially what we are doing here is to unify the parameter space and dy-

namical space of a family of dynamical systems (in this case, circle rotations). This single

model brings together all of the dynamics: the circle rotations (of all angles), their extension

to continuous time, i.e. to a 
ow along a foliation, and the dynamics of inducing (renor-

malization) together with its inverse. This includes also all Anosov toral maps, together

with their \completion" to Anosov mapping families. This dynamics has, furthermore, been

extended to continuous time; and this gives the scenery 
ow.

As we will see, this uni�ed object is entirely natural and interesting to study; also the

uni�ed point of view simpli�es the overall picture, and leads to interesting further questions.

0.3. Some Generalizations

These ideas generalize immediately and quite completely to a number of related situations;

part of this is already implicit in the work of Veech (cf. [46]) regarding the moduli spaces of

Riemann surfaces, where interval exchange transformations replace rotations, with Rauzy

induction replacing the continued fraction transformation. It is also possible to carry out a

similar construction for Hecke groups, by making use of the Rosen continued fraction (cf.

[5]).

We mention that, although some parts also go through for automorphisms of the 3-

torus and translations on the 2-torus, here the picture is still far from complete. It is a

place where the di�erent viewpoints studied in this paper could prove useful, because the

symbolic dynamics, in speci�c instances, points to facts that are very diÆcult to grasp from

a purely geometric or arithmetic viewpoint (cf. for example [39, 26]).

For the present case (circle rotations, Anosov maps) one can generalize in a di�erent

direction, extending these ideas to the nonlinear setting. We carry this out in a series

of forthcoming papers, developing for the general (non-periodic) case theorems previously

known for single maps: the stable manifold theorem, structural stability and openness,

shadowing and the existence of Markov partitions, the existence of Gibbs states, and the

smooth classi�cation of de la Lave-Marco-Moriyon and Cawley. We study the higher genus

situation as well, both for the linear and nonlinear case. In particular, we unify and extend

theorems previously known in more restricted situations regarding unique ergodicity.

0.4. Related Work

In this paper we bring a di�erent perspective to bear on several classical topics, which

have been investigated by many authors: the continued fraction map, and the relation with

inducing or renormalization for rotations; the modular space and its geodesic and horocycle


ows; linear Anosov maps and their codings.

Although our point of view seems to be new, we are building on this classical mathematics;

and our work is closely related to that of many people. We mention in particular the studies

of coding of the geodesic 
ow in [9, 42, 2, 47]; of arithmetic expansions by [37, 43, 29] among

others; we note that various of the present ideas are, in a di�erent terminology, explored in

the works of Vershik and collaborators (cf. [47, 49, 50]), and also in [2]. The generalized

continued fractions we consider have been already studied in [27].

We mention some works related to symbolic dynamics of rotations: [23, 22, 15, 38, 13,

34]; this is but part of a long list of related papers.
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Regarding the study of tilings of the line and of the plane, we wish to mention especially

the work of deBruijn (cf. [17, 18]) on the Fibonacci tiling, which is the simplest periodic case.

In x5, we generalize to the non-periodic case the results deBruijn obtains for the Fibonacci

tiling. The interesting recent work of Robinson (cf. [40]) on Penrose tilings is also related

to what we do here.

For background on hyperbolic toral automorphisms and the construction of Markov par-

titions, we refer the reader to the fundamental paper of Adler and Weiss (cf. [10]).

For other related references see also [3].

x1. The Algebraic Model

We denote by G = SA(2;R) the special aÆne group, the group of measure-preserving

and orientation preserving aÆne maps of the plane. This is a generalization to two di-

mensions of the aÆne group (the ax + b group) on the line. An element g of G is the

composition of a linear map M of determinant one with a translation by a vector �!v . This

composition can be taken in either order. For g 2 G the linear part M is well-de�ned,

but the vector depends on whether one �rst translates or �rst applies the linear part. For

(x; y) 2 R2, we write the action of g 2 G on the right; for the �rst decomposition, we have

(x; y) � g = (x; y) �M +�!v , in which case the vector is the image of the origin; for the second

(x; y) � g = ((x; y) +�!w ) �M .

Notation 1.1. We will denote by (M;�!v ) 2 SL(2;R)� R2 the element g de�ned by

(x; y) � g = (x; y) � M + �!v , and by (�!w ;N ) 2 R2 � SL(2;R) the element g de�ned by

(x; y) � g = ((x; y) +�!w ) �N .

The point here is that G is not a direct product, but rather a semidirect product, with

R2 as the normal subgroup. Both ways of presenting g are natural, and each will turn out

to be useful.

The group G is isomorphic to the subgroup of SL(3;R) of matrices whose last column is0@ 0

0

1

1A, via the isomorphism:

(M;�!v ) 7!

 
M

0

0
�!v 1

!
:

Remark 1.1. We have the following relationship between these two notations for g 2 G:

writing �!v ;�!w also as row vectors (as we did for the point (x; y)) and M as a matrix, then

(�!w ;M ) = (M;�!w �M ), where �!w �M is matrix multiplication.

The group multiplication is given by (M;�!v ) � (M 0;�!v 0) = (M �M 0;�!v �M 0 +�!v 0) in the

�rst notation, and by (�!v ;M ) � (�!v 0;M 0) = (�!v + �!v 0 �M�1;M �M 0) in the second.

We have written the action of G on the right and chosen to use row vectors for elements

of R2 in order to later get standard formulas for actions and for quotients by discrete groups.

The group G projects naturally (by taking the linear part) onto SL(2;R).

The kernel of this projection is the group of translations of the plane, which is isomorphic

to R2. As mentioned above, G is the semi-direct product SL(2;R)n R2, with the usual

action of SL(2;R) on row vectors in R2, i.e. multiplying the row vector on the right by the

matrix.

We will write � for the subgroup SA(2;Z) of elements of G with integral entries (for

the vector as well as for the matrix). (This makes sense in both notations, since SL(2;Z)
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preserves Z2; note that � is clearly a subgroup of G). This subgroup acts on G by left

multiplication. The object of interest in this paper is the quotient E = �nG. An element

here is a coset (SL(2;Z) �M;�!v +Z2 �M ). The space E is �ve-dimensional, and projects

naturally onto SL(2;Z)nSL(2;R). The points that project to SL(2;Z) �M are just the

translates of the lattice Z2 �M ; hence the �ber over SL(2;Z) �M is R2=(Z2 �M ), which is

the torus de�ned by the lattice in the plane spanned by the rows of M . Therefore E is a

�ber bundle over SL(2;Z)nSL(2;R), with torus �bers.

We remark that this �ber bundle has base SL(2;Z)nSL(2;R), and not the modular surface

SL(2;Z)nH ; in the latter case, there would be a problem because SL(2;Z) acts on H with

�xed points, giving rise to singular points on the modular surface (as is well known) and

there would be singular �bers in the bundle. This does not happen for the action of SL(2;Z)

on SL(2;R).

Remark 1.2. An element of E can be viewed as a translation of a lattice Z2 �M of

covolume 1 in R2, with the translation vector de�ned up to an element of the lattice. There

are two natural ways to give coordinates to this translation vector: we can either decompose

it with respect to the canonical basis of R2, which gives as coordinates a row vector �!v , or

use any basis for the lattice Z2 �M , for example the image by M of the canonical basis,

which gives a di�erent row vector �!w . This amounts to chosing one of the two possible

notations (M;�!v ) or (�!w ;M ); the relation noted in Remark 1.1 gives the obvious change of

basis. Most of the time we will use the �rst notation, as it is better suited to a study of the

translation 
ows. The second notation will be more natural when we restrict attention to a

single torus �ber, Z2 �MnR2 (cf. Remark 1.3 below).

The group G acts on itself by translation on the right, and this induces a right action on

E; this allows us to de�ne the main object of study in this paper:

De�nition 1.1. The scenery 
ow is the 
ow de�ned on E by the action on the right

of the 1-dimensional subgroup gt =

��
et=2 0

0 e�t=2

�
; (0; 0)

�
.

We remark that this is a lift to E of the classical modular 
ow, the geodesic 
ow on

SL(2;Z)nSL(2;R) = PSL(2; SL(2;Z))nPSL(2;R), which is naturally identi�ed with the

unit tangent bundle of the modular surface (the hyperbolic plane modulo SL(2;Z)).

The reason for the name will become clear in x5; in x8, we will show that this 
ow can

also be considered as the Teichm�uller mapping 
ow.

Certain other one-dimensional subgroups ofG are of special interest. We give the following

names to the corresponding R-actions:

| the positive horocycle 
ow h+s =

��
1 s

0 1

�
; (0; 0)

�
;

| the negative horocycle 
ow h�s =

��
1 0

s 1

�
; (0; 0)

�
;

| the vertical translation 
ow T+
u =

��
1 0

0 1

�
; (0; u)

�
;

| the horizontal translation 
ow T�u =

��
1 0

0 1

�
; (u; 0)

�
.

It is immediate from the de�nition that the translation 
ows preserve each �ber of the

projection to SL(2;Z)nSL(2;R). Thus one can consider each translation 
ow as a collection

of linear 
ows on tori. In fact these 
ows are familiar: each �ber carries a natural quadratic

di�erential, and these are what are known as the horizontal and vertical 
ows of the quadratic

di�erential.
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The horocycle 
ows project to the usual 
ows on SL(2;Z)nSL(2;R), whence the names.

Since these latter 
ows are completely de�ned by their linear part, we will use the same

names for the corresponding 
ows on SL(2;R).

Remake 1.3. Let us consider for example a closed orbit for the modular 
ow, i.e. the

geodesic 
ow on the space SL(2;Z)nSL(2;R). By de�nition of cosets, associated to this

orbit are a real matrix M and an integer matrix A such that M � gT = A �M , where T is

the length of the closed geodesic, A is determined up to conjugacy in SL(2;Z), and M is

determined up to multiplication on the right by gt, and on the left by SL(2;Z). Looking at

the �ber above SL(2;Z)�M , the image of a point (�!v ;M ) by gT is (�!v ;M �gT ) = (�!v ;A �M ).

This is equivalent, by action on the left of (
�!
0 ; A�1), to (�!v � A;M ). This shows that gT

preserves the �ber over SL(2;Z) �M , with the action by A on the �ber being a hyperbolic

map. This is what we referred to in the introduction: the return map to the �ber is an

Anosov toral automorphism. (Here it is easier to use the (�!v ;M ) notation, as mentioned in

Remark 1.2.)

A basic property of these 
ows is that they satisfy the following commutation relations:

Propsition 1.1. The 
ows h+s and T+
u commute. Similarly, h�s and T�u commute. These


ows satisfy the following commutation relations with the scenery 
ow:

h+s gt = gth
+
se�t

; h�s gt = gth
�

set
;

T+
s gt = gtT

+

se�t=2
; T�s gt = gtT

�

set=2
:

These relations are immediately checked by computation. The �rst ones are the classical

commutation relations between geodesic and horocycle 
ow. They imply that together h+s
and T+

u generate a 2-dimensional foliation, which is the stable foliation for the scenery 
ow,

while h�s and T�u generate the unstable foliation. This implies, by the classical argument

due to Hopf (cf. [24, 25]):

Propsition 1.2. The 
ow gt on E is ergodic for the measure on E given by the Haar

measure on G.

Proof. The set E has �nite measure for the natural Haar measure on G. (The reason is

that it is a �ber bundle, with �bers of area 1, over SL(2;Z)nSL(2;R); and this is isomorphic

to the unit tangent bundle of the modular surface, which has �nite volume.)

The tangent bundle to E splits in three parts, invariant by the scenery 
ow: the tangent

to the 
ow itself, and the stable and unstable foliations de�ned above. It is then easy to

check that the scenery 
ow is Anosov, which implies that it is ergodic, by Hopf's argument:

the only point that requires checking is that the foliations are absolutely continuous, and

this is true since these foliations are de�ned by the action of 2-parameter subgroups of G.

x2. Cross-Sections for the Scenery Flow: the Plane Tiling Model

We will want to make explicit computations for the scenery 
ow. For this purpose we

will de�ne a hypersurface in SA(2;R), transverse to the geodesic 
ow, and study the �rst

return map of the 
ow to this surface.

The �rst step will be to de�ne coordinates on E. A good way to do this is to make a

careful choice of fundamental domain for the action of SA(2;Z) on SA(2;R). We shall in

fact make use of two di�erent fundamental domains. The �rst one is simpler to use for

our proofs; it will be called 
a (the a refers to its relationship to the additive continued

fraction algorithm). The second choice is related to more classical approaches, and will

be denoted by 
m (m because it is related to the multiplicative, or ordinary, continued
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fraction algorithm). We will use for these two domains the construction given in detail in

[7], following ideas developed in [45].

The idea for the construction of these domains is to consider SL(2;Z)nSL(2;R) as the

space of lattices in the plane of covolume 1. Indeed, we can consider a matrix in SL(2;R)

as a pair of row vectors which generate an integer lattice of covolume 1; the left action by

SL(2;Z) amounts to choosing another basis of the same lattice. A point in E is then de�ned

by giving �rst a lattice, and then a point modulo this lattice.

Be careful: we will be de�ning fundamental domains at two levels: for the lattice Z2 �M

acting on the plane R2, and also for the group SA(2;Z) acting on SA(2;R); this point may

seem confusing at �rst. These domains are related: given a lattice in the plane, we �rst

give a rule to de�ne a fundamental domain for this lattice; this rule will then also de�ne

a fundamental domain for the action of � on G, since it will allow us to put coordinates

on the space of lattices, and also will let us choose a unique representative for a class of

points modulo this lattice, by taking the unique representative contained in the fundamental

domain.

Notation 2.1. In the sequel, for a real number x, we will denote by bxc the greatest

integer less or equal to x, and by dxe the least integer greater than or equal to x. We will

write fxg = x� bxc for the fractional part of x.

We will denote by [a; b] the closed interval a � x � b, and by ]a; b[ the open interval

a < x < b.

2.1. The Domain Related to the Additive Continued Fraction

For each lattice, we want to �nd a canonical fundamental domain. This is usually done

by taking the unit square for some particular basis of the lattice. However, to study the

vertical and horizontal 
ows, it is better to have a fundamental domain whose boundary

segments are parallel to the axes (and hence to these 
ows).

An L-shaped form, made of two joined rectangles with sides parallel to the axes, will

always tile the plane. In fact, any lattice has a fundamental domain with this shape. (One

of the two boxes in this L-shape may be degenerate, as follows: if the lattice contains a

vertical vector, it is possible that a rectangle degenerates to a line, or even to a point, which

is the case for the latticeZ2.) In fact, the lattice has in general a (countably) in�nite number

of such fundamental domains. Therefore we will add an additional condition on the width

of the rectangles that will ensure a unique such choice.

Fig. 2.1. The L-Shaped Domain

This picture may remind the reader of the construction by Adler and Weiss (cf. [10]) (and

independently Ken Berg) of Markov partitions for hyperbolic toral automorphisms. This is

no accident, as that situation turns out to correspond to the periodic orbits of the modular


ow.



No.4 P. ARNOUX & A. M. FISHER THE SCENERY FLOW FOR GEOMETRIC STRUCTURES 435

De�nition 2.1. We denote by 
a;1 the subset of SA(2; R) given by pairs (M;�!v ), with

M =

�
l0 h1
�l1 h0

�
and �!v = (x; y), where M satis�es the following inequalities:

0 < l0 < 1 � l1 < 1 + l0; h0; h1 > 0

and �!v satis�es the inequalities :

�l0 � x < l1 and 0 � y < h0 if x < 0; or 0 � y < h1 if x � 0:

We denote by 
a;0 the subset de�ned by imposing on M the condition

0 < l1 < 1 < l0 < 1 + l1

while keeping the above condition on �!v . We de�ne 
a = 
a;0 [
a;1.

This de�nition is best understood by way of a picture. We note that SL(2; Z) �M de�nes

a lattice in R2, with basis (l0; h1) and (�l1; h0); the vectors �!v satisfying the condition

of the de�nition form a fundamental domain for this lattice, as shown in Figure 2.1. This

fundamental domain can have its wider rectangle on the right or on the left. We partition


a into two corresponding subsets 
a;1 (with wider rectangle on the right) and 
a;0 (with

wider rectangle on the left).

We have the following proposition.

Proposition 2.1. The set 
a is, up to a set of measure 0, a fundamental domain for

the action of � on G.

Proof. It is proved in [7] that each lattice of unit covolume, with the exception of a set

of measure 0, has exactly one fundamental domain consisting of two rectangles of the given

width and height; this is what we need.

Fig. 2.2. The Box Renormalization

In summary, a point (M;�!v ) in SA(2;Z)nSA(2;R) has a representative in the group

SA(2;R) with coordinates (l0; l1; h0; h1; x; y), satisfying the above inequalities, where the

�rst four give the matrix entries of M ; the rows of M are the basis for a lattice in the plane;

these four numbers also determine an L-shaped fundamental domain for the lattice, and

(x; y) gives the coordinates of a point in that subset of the plane R2, with the origin (0; 0)

located as in Fig.2.1.

Remark 2.1. It is possible to give an exact fundamental domain (rather than just up to

measure zero) (cf. [7] for the details). However we do not include that here as the formulas

become tedious to write down. The problem is caused by lattices which contain vertical

vectors. It is easy to give examples where the fundamental domain of such a lattice is made

of just one rectangle, with arbitrary width; these are degenerate cases, which go to in�nity

under the scenery 
ow. They correspond, by projection to the linear part, to geodesics on
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the modular surface that go to the cusp. Such degenerate cases will come up again in the

next sections.

We now analyze the scenery and translation 
ows with the help of this fundamental do-

main. For the scenery 
ow, the idea is the following. Begin with a lattice whose fundamental

domain consists of two rectangles, the �rst a rectangle of width 1 and the second with width

< 1, together with a point in one of these boxes; to �x ideas, let us suppose l0 = 1. The

action of the scenery 
ow is something like the \Baker's Transformation": it multiplies the

abscissa by et=2, and the height by e�t=2. At some point we leave the domain 
a, either

because l1 becomes 1, or because the l0 no longer satis�es the condition l0 < 1 + l1. One

sees that the limiting condition is l1 = 1=2. After leaving 
a, the next return to 
a has

the following description: we return by choosing a new fundamental domain for the lattice,

cutting the widest rectangle in two parts and restacking one of the parts on the thinnest

rectangle. We then choose a new representative of the point in this fundamental domain

(cf. Fig. 2.2).

To be precise, we give a cross-section for the scenery 
ow by �xing sup(l0; l1) = 1, calling

�a the set de�ned by this condition.

De�nition 2.2. We denote by �a;1 the subset of SA(2; R) given by pairs (M;�!v ), with

M =

�
l0 h1
�1 h0

�
and �!v = (x; y), where M satis�es the following inequalities :

0 < l0 < 1; h0; h1 > 0

and �!v satis�es the inequalities :

�l0 � x < 1 and 0 � y < h0 if x < 0; or 0 � y < h1 if x � 0:

We denote by �a;0 the subset given by pairs (M;�!v ), with M =

�
1 h1
�l1 h0

�
, and the

symmetrical conditions.

We de�ne �a = �a;0[�a;1, and we write �a for the �rst return map of the scenery 
ow

to �a.

The set �a is in the topological boundary of 
a, and it is of dimension 4. Recall that to

points in 
a we have assigned coordinates (l0; l1; h0; h1; x; y); on the subset �a we simplify

these to (l; h; x; y; �), where � = 0 or 1, indicating that we are in the subsets �a;�, and where

l and h are the width and height of the narrowest rectangle. The width and height of the

wider rectangle are then determined, since by de�nition of the cross-section �a the width is

1, while its height is 1� lh, as the fundamental domain for the lattice has area det M = 1.

One can compute explicitly the return map �a; we do this in the next proposition. In

the next section, we will use this stacking construction in an essential way. We mention that

the formula itself is of interest for its arithmetic.

Proposition 2.2. In these coordinates, the �rst return map �a of the scenery 
ow on
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�a is given as follows on �a;1 :

� if l < 1=2; � is not changed and

(l; h; x; y) 7!
� l

1� l
; (h+ 1� lh)(1� l);

x

1� l
; y(1 � l)

�
if x < 1� l;

(l; h; x; y) 7!
� l

1� l
; (h+ 1� lh)(1 � l);

x� 1

1� l
; (y + h)(1� l)

�
if x � 1� l;

� if l > 1=2; � is changed to 1� � and

(l; h; x; y) 7!
�1� l

l
; (1� lh)l;

x

l
; yl
�

if x < 1� l;

(l; h; x; y) 7!
�1� l

l
; (1� lh)l;

x� 1

l
; (y + h)l

�
if x � 1� l;

� the case l = 1=2 is degenerate.

The map �a is de�ned by similar formulas on �a;0. It preserves the Lebesgue measure (for

the coordinates (l; h; x; y) on �a); the total mass of this measure is in�nite.

Proof. The computation comes directly from the geometry. We have depicted in Fig.2.2

the case l > 1=2, with the other cases being similar. The formulas on �a;0 are left to the

reader; one �nds the same result for the coordinates l; h; y, but the condition x � 1 � l is

replaced by x � l � 1, and x�1
1�l

is replaced by x+1
1�l

. The Jacobian matrix of the map, at

each point where it is continuous, is a triangular matrix of determinant 1, hence it preserves

Lebesgue measure, and the computation shows that the total mass of �a for this measure

is in�nite.

Fig. 2.3. The Additive Continued Fraction Map

As a consequence we have

Theorem 2.1. The scenery 
ow is measurably isomorphic to the special 
ow built over

the map �a : �a ! �a (with invariant Lebesgue measure); with return time function r�
whose value at a point (l; h; x; y) in �a is equal to r�(l; h; x; y) = inf(� ln l;� ln(1� l)). The

isomorphism from the special 
ow to the scenery 
ow is an almost surely 1 � 1 topological

extension, and can be made a topological isomorphism by suitable identi�cations on the

boundary of the domain of the special 
ow.

Remark 2.2. Our reason for choosing this particular cross-section �a is that, if we
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project on the �rst coordinate l, we get the \tent map" f (cf. Fig. 2.3) de�ned by

l 7!
l

1� l
if l < 1=2;

l 7!
1� l

l
if l > 1=2;

which is isomorphic to the one-sided shift given by additive continued fraction expansions.

Projecting the invariant measure on the �rst coordinate, we get the invariant Gauss measure

dx=x on the interval [0; 1] (which has in�nite total mass). We will consider below another

cross-section for which we get the more familiar transformationl 7! f1=lg, (theGauss map),

which is isomorphic to the shift for multiplicative continued fractions. This second cross-

section is better for arithmetic purposes, while the �rst one gives simpler combinatorics;

the second map is also nicer measure-theoretically as there the mass is �nite, but has the

disadvantage of having countably many branches. We observe that the usual Gauss map is

an \acceleration" of the tent map f , in the sense that fb1=xc(x) =
n

1
x

o
.

A key observation is that the map �a can be considered as a skew product in several

di�erent ways, each of which leads to a di�erent interpretation for the formulas, as will

become clear in the later sections.

Thus, projecting to the �rst two coordinates, we get the �rst return map of the geodesic


ow on the modular surface to a cross-section; projecting further, onto the �rst coordinate,

we get the additive continued fraction map. One can also project on the coordinates (l; x),

obtaining then a certain two-dimensional continued fraction. The map �a is in fact measur-

ably isomorphic to the natural extension (in the sense of Rohlin, cf. [41]) of this particular

continued fraction; we will return to this point later.

The �rst return map of the vertical translation 
ow is simpler to describe; it preserves

each torus �ber, and it is a linear 
ow. A cross-section is given by y = 0, and we have:

Proposition 2.3. The �rst return map of the vertical translation 
ow to the cross-

section, for chosen (l0; l1; h0; h1), is given by

x 7! x+ l1 if x < 0;

x 7! x� l0 if x > 0:

This map is just a rotation of angle l1 on a circle of length l0 + l1. There are similar

formulas for the horizontal translation 
ow; here we take for cross-section union of the left

boundaries of the rectangles, that is the points where x = �l0 and x = 0. We note that the

�rst return map for the vertical 
ow only depends on l0; l1; x, while for the horizontal 
ow

it depends on h0; h1, and y.

2.2 The Domain Related to the Standard (Multiplicative) Continued Fraction

This domain 
m is de�ned in a similar way, except that, instead of imposing the condition

sup(l0; l1) < 1 + inf(l0; l1), we ask only that the width of the wider rectangle be greater

than 1, and that the width of the other be less than 1, together with the further condition

that the narrowest rectangle be the shortest, i.e. that h0 > h1 if and only if l0 > l1. In that

case, there is a largest rectangle, which is both wider and taller than the other rectangle.

De�nition 2.3. We denote by 
m;1 the domain of SA(2; R) given by pairs (M;�!v ), with

M =

�
l0 h1
�l1 h0

�
and �!v = (x; y), where M satis�es the following inequalities :

0 < l0 < 1 � l1; 0 < h0 < h1;
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and �!v satis�es the inequalities

�l0 � x < l1 and 0 � y < h0 if x < 0; or 0 � y < h1 if x � 0:

We denote by 
m;0 the domain de�ned by imposing on M the conditions:

0 < l1 < 1 < l0; 0 < h1 < h0

and keeping the same condition on �!v . We de�ne 
m = 
m;0 [
m;1.

It is proved in [7] that this is also, up to a set of measure 0, a fundamental domain for the

action of SA(2;Z) on SA(2;R). We can once again give explicit formulas for the �rst return

map of the scenery 
ow, starting from the cross-section sup(l0; l1) = 1. The algorithm

is the following. Beginning with an L-shape whose largest rectangle is of width 1, apply

the scenery 
ow until the smallest rectangle has width 1. Then choose a new fundamental

domain, by cutting the largest rectangle in subrectangles of width 1, and stacking these over

the smallest one, as depicted in Figure 2.4.

We consider now a cross-section �m to the scenery 
ow, de�ned to be the subset of 
m

where sup(l0; l1) = 1.

Fig. 2.4. The Multiplicative Box Renormalization

De�nition 2.4. We denote by �m;1 the subset of SA(2; R) given by pairs (M;�!v ), with

M =

�
l0 h1
�1 h0

�
and �!v = (x; y), where M satis�es the following inequalities:

0 < l0 < 1; 0 < h0 < h1;

and �!v satis�es the inequalities :

�l0 � x < 1 and 0 � y < h0 if x < 0; or 0 � y < h1 if x � 0:

We denote by �m;0 the subset given by pairs (M;�!v ), with M =

�
1 h1
�l1 h0

�
, and the

conditions :

�1 � x < l1 and 0 � y < h0 if x < 0; or 0 � y < h1 if x � 0:

We de�ne �m = �m;0 [�m;1, and we write �m for the �rst return map of the scenery


ow on �m.

One sees from the de�nition that �m � �a. In fact, we have that �m;� = �a;� \

�a(�a;1��). One easily checks that the �rst return map �m exchanges �m;0 and �m;1; it

is the induced map of �a on �m. More precisely, for any point p of �m, �m(p) = �n
a (p),

where n is the smallest integer such that �n
a (p) is not in the same component �a;� as p.
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Taking for coordinates (l; h; x; y), where l; h are respectively the width and height of the

smallest rectangle, and with x; y de�ning the translation vector, we check that n = b1
l
c.

One can then work out explicit formulas:

Proposition 2.4. The �rst return map �m of the scenery 
ow on �m is de�ned on

�m;1 by

(l; h; x; y) 7!
�n1

l

o
; l � hl2;

x

l
; yl
�

if x < l
n1
l

o
;

(l; h; x; y) 7!
�n1

l

o
; l � hl2;�

n1� x

l

o
; yl + hl + (l � hl2)

j1� x

l

k�
if x � l

n1
l

o
;

and similarly on �m;0. This map preserves the Lebesgue measure dl dh dx dy, which has a

�nite total mass 2 ln2.

Proof. The formula comes from the geometric interpretation. Since �m is the induced

map of �a on �m, it preserves the Lebesgue measure; this can also be checked directly by

computing the Jacobian of the map at a continuity point. The total mass is obtained by a

straightforward computation of the corresponding integral.

This tells us that we now have a model of the scenery 
ow which is based on the classical

Gauss map:

Theorem 2.2. The scenery 
ow is measurably isomorphic to the special 
ow built over

the map �m : �m ! �m (with invariant Lebesgue measure), with return time the function

r0� whose value on a point (l; h; x; y) in �m is equal to r0�(l; h; x; y) = � ln l. The isomor-

phism from the special 
ow to the scenery 
ow is an almost surely 1�1 topological extension,

and can be made a topological isomorphism by suitable identi�cations on the boundary of the

domain of the special 
ow.

Remark 2.3. We note that the map de�ned in the Proposition has, once again, a nice

skew product structure: the projection on the �rst coordinate is the continued fraction map

l 7! f1=lg that takes l to the fractional part of its inverse, with the �rst two coordinates giving

a natural extension of this map, (l; h) 7! (f1=lg; l � hl2). The projection of the invariant

measure to the �rst coordinate gives the usual Gauss measure dx
1+x

, and this provides a way

of understanding that measure.

The projection on the �rst and the third coordinates gives rise to a two-dimensional

continued fraction map, of which the complete map is the natural extension. We mention

that a closely related two-dimensional skew continued fraction has been studied by Shunji

Ito in [27]. The di�erence between Ito's algorithm and the present one lies essentially in the

choice of coordinates; one can get Ito's continued fraction by taking a di�erent transverse

surface in place of �. This is part of a general phenomenon; the modular 
ow provides

a uni�ed framework in which to understand many classical variants of continued fractions

considered in the literature; thus, among others, the Usual continued fraction, Optimal

continued fraction, Nearest Integer continued fraction, �-continued fraction, and Backwards

continued fraction and their natural extensions can be obtained by choosing an appropriate

cross-section of the modular 
ow. See [30] for a general presentation.

Which cross-section one should take depends on one's viewpoint, and on what use one

wants to make of the resulting formulas. Thus, as we will see below, a choice which may

be more natural for its symbolic dynamics or geometry can lead to quite obscure arithmetic

formulas, and vice versa.
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We mention that some even more exotic continued fractions (for example the Rosen

continued fraction, cf. [5]) are also related to 
ows, but on di�erent spaces: in that case, it

is the geodesic 
ow on a Hecke surface.

x3. Symbolic Dynamics for the Scenery Flow: Markov Coding

3.1. Overview

Our aim in this and the next section is to give symbolic descriptions of the scenery


ow and the related translation 
ows. The basic idea is to consider a cross-section and

its associated return map, and to obtain symbolic dynamics by choosing an appropriate

partition of the cross-section. The remarkable fact is that in doing this we shall make use

of the di�erent 
ows, obtaining in that way very di�erent symbolic systems. We described

earlier the commutation relations which are satis�ed by the scenery and translation 
ows;

here, we will recover these commutation relations at the symbolic level.

In short, we will associate to the scenery 
ow a subshift of �nite type, for which the natural

measure will be in�nite, and to the vertical 
ow the shift on the collection of all Sturmian

sequences; this last set, to be de�ned precisely in x4.2, can be considered as a generalization

of substitution minimal sets, and gives rise to �nite measure, uniquely ergodic systems of

entropy zero.

Each of these two symbolic descriptions is particularly suited to one of the 
ows, in

the sense that the �rst return map of the 
ow is conjugate to the shift on the related set;

however, in each case the other 
ow also enters the picture. In the framework of the subshift

of �nite type, the return map of the scenery 
ow appears as the (bilateral) shift, while the

return map of the vertical translation 
ow appears as an adic transformation (in the sense

of Vershik, cf. [49]) on the unilateral shift. In the framework of Sturmian sequences, the

return map of the vertical translation 
ow appears as the shift, while the return map of the

scenery 
ow now appears as the natural extension of the coding map on Sturmian sequences

de�ned in x4.4. We will obtain in this way a completely combinatorial model, using only

classical notions of theoretical computer science.

Some points need special attention: �rst, of course, the geometric meaning of the shift

map depends entirely on the symbolic space on which it acts, that is, on which subset of

the full shift is de�ned by the allowed words. Second, we use di�erent cross-sections for the

scenery 
ow and the translation 
ows, and this di�erence will appear at the symbolic level

as well. This explains why, for example, the scenery 
ow gives a bilateral shift, while the

vertical 
ow gives an adic tranformation on the corresponding unilateral shift.

The plan of this section and the next one is as follows: in x3.2, we give symbolic dynamics

for the �rst return map of the scenery 
ow on the additive section �a, as a subshift of �nite

type on four symbols. In x4.1, we de�ne, in an informal way, another symbolic description

of the additive cross-section, using the translation 
ows; this will help motivate the three

parts which follow. In x4.2, we give symbolic dynamics for the vertical translation 
ow on

each torus �ber. As mentioned before, this will amount to giving symbolic dynamics for

circle rotations. In x4.3, we use the combinatorial properties of the sequences obtained there

(Sturmian sequences) to de�ne a coding map, to which we associate a symbolic dynamics.

In x4.4, we show that the natural extension of this coding map is conjugate to the map �a.

This gives a purely combinatorial de�nition of the coding de�ned in x4.1, and shows the

relation with the initial coding of x3. In x4.5, we explain how we can express the �rst return

map of the vertical 
ow as an adic transformation (generalized odometer) on a nonstationary
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subshift of �nite type (cf. [3]). In x4.6, we sketch the analogous results for the map �m,

�rst return map of the scenery 
ow on the multiplicative section �m: this map is conjugate

to a subshift of �nite type on a countable number of symbols. We write down the conjugacy

explicitly later, in x6.

Remark 3.1. As often happens when symbolic dynamics is introduced for a dynamical

system, one gets problems for coding particular points, since the original space is continuous

while the topology of the symbolic space is totally disconnected, i.e. is a Cantor set. We

encounter two di�erent problems of this type, one related to the dynamics on the base space,

and the other related to the dynamics on individual �bers.

First, there is a problem caused by the pairs of rectangles with commensurable heights or

widths. (These correspond to �bers in which one of the translation 
ows has only periodic

orbits, and in the base space to orbits of the geodesic 
ow that go to the cusp at in�nity.) It

is possible to include these points, but one needs then in the combinatorics to treat particular

cases, which would substantially complicate the picture.

Hence we will always make the simplifying assumption in what follows that the pairs

of rectangles have incommensurable heights and widths; formally, instead of the set

E = SA(2;Z)nSA(2;R), we consider the subset E� of points (l0; l1; h0; h1; x; y) such that

l0=l1 and h0=h1 are irrational. This removes an invariant set of measure 0.

Second, some ambiguities arise when coding points in the orbit of the boundary of the

rectangles; this is also a set of measure 0, on which the coding is not unique. We identify

explicitly the symbolic sequences corresponding to these boundary points.

3.2. Symbolic Dynamics for the Scenery Flow

The cross-section �a we de�ned in the preceding section admits a natural partition in

two sets �a;0 and �a;1. This is however not a generating partition for the map �a, since it

only depends on the �rst coordinates. Therefore, if p = (l; h; x; y; �) and p0 = (l; h; x0; y0; �)

are points of �a that di�er only in the x; y coordinates, the images �n
a (p) and �n

a (p
0) will

belong to the same partition element for all n 2 Z. In other words, this partition does

not separate the points in a torus �ber. It does however separate the di�erent �bers; by

projecting this partition to SL(2;Z)nSL(2;R), one can prove the following:

Proposition 3.1. The �rst return map, to the projection of �a, of the geodesic 
ow on

the modular surface, restricted to the orbits that are not asymptotic to the cusp (in the past

and in the future), is topologically conjugate to the shift on the subset of f0; 1gZconsisting

in sequences that are not eventually constant (in the past and in the future).

Via this conjugacy the measure on the 
ow space corresponds to the natural Lebesgue

measure on the cross-section, which in turn maps isomorphically to an in�nite invariant

measure on the shift space.

We now de�ne a �ner partition which will generate.

De�nition 3.1. We write �0

a;0 (resp �1

a;0) for the set f(l; h; x; y; 0) 2 �ajx < 0g (resp.

x � 0). We denote by �0

a;1 (resp �1

a;1) the set f(l; h; x; y; 1) 2 �ajx < 0g (resp. x � 0):

In the geometric model, �0

a;0 corresponds to pairs of rectangles where the left rectangle

is the widest, while the point corresponding to (x; y) is in the left rectangle; for �1

a;0, the

point is in the right rectangle. Note that, by our convention, the central boundary of the

partition (corresponding to x = 0) is considered to be a part of �1

a;0 or �1

a;1, not �
0

a;0 or

�0

a;1.

Write A for the alphabet on four letters A = f(0;0); (0;1); (1;0); (1;1)g, and denote by

� the map � : �a ! A that takes a point in �0

a;0 (resp. �1

a;0;�
0

a;1;�
1

a;1) to (0;0) (resp.
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(0;1); (1;0); (1;1)). The sequence (�(�n
a(p)))n2Zgives our symbolic dynamics for the map

�a. We have

Theorem 3.1. Let (�; S) be the subshift of �nite type in AZde�ned be the conditions :

(0;1) is not followed by (0;0) or (1;0), and (1;0) is not followed by (1;1) or (0;1). The

map p 7! (�(�n
a(p)))n2Zis one-to-one from E� to an explicit shift-invariant subset of �,

and conjugates �a to the shift S on �.

Proof. We �rst note that the sequences obtained from �a are indeed in �. The reason

is that, on �a;0, the map �a stacks a part of the left rectangle on the right rectangle; hence,

if the point was initially in the right rectangle, its image will also be in the right rectangle.

Symmetrically, in �a;1, a point in the left rectangle will stay in the left rectangle. These are

exactly the conditions that de�ne �.

We next prove that the partition is generating. The idea is to �rst notice that the itinerary

of the orbit with respect to the partition f�a;0;�a;1g de�nes the size of the two rectangles:

the positive orbit de�nes the width of the rectangles, while the negative orbit de�nes the

height; hence, if two points in �a have the same symbolic dynamics, they have the same �rst

two coordinates. Next, note that the map �a is locally a dilation on the x coordinate; thus,

if two points have di�erent x coordinates, then after suÆcient iteration, the di�erence will

be increased to more than 1, at which time they will not belong to the same element of the

partition. The same holds for the y coordinate, using the inverse of �a. Hence the partition

generates. In x6, we give complete arithmetic formulas for the inverse map (recovering the

geometric coordinates from the symbolic dynamics), and this can be used to give a second,

and more constructive, proof of this fact.

This map is not onto: we cannot get the ultimately constant sequences, because in that

case we would always be stacking in the same direction, and this is only possible if one of

the rectangles has width (or height, for a sequence that is constant for all n < N ) zero. In

fact, sequences that are ultimately constant in the future (resp. in the past) correspond to

the pairs of rectangles with commensurable widths (resp. heights) that we have excluded.

We also cannot get sequences which contain ultimately only (0;0) and (1;0); this would

mean that, after some time, the point (x; y) is always on the left. This is possible only if

x = 0, and by our convention, as noted above, the point then belongs to the right rectangle,

and the corresponding sequence only contains (0;1) and (1;1). (We could consider such

sequences as a second (not admissible) coding for points on the central boundary.) These

restrictions only remove a small set in �.

Except for these bad points, we get all of �. One way to prove this is to show that

the above partition is a Markov partition for �a; this involves easy, but somewhat tedious,

computations. A second way involves proving that the projection of the partition on the

coordinates (l; x) gives a Markov partition in the standard sense for the noninvertible pro-

jected map, hence all allowed strings occur, and then using the fact that �a is the natural

extension. We give a similar (and easier) explicit proof in x4.4.

We remark that this coding is well behaved with respect to the projection to the base

space SL(2;Z)nSL(2;R): if we project the alphabet A to f0; 1g by forgetting the second

letter of each pair, we recover the symbolic dynamics for the geodesic 
ow that was given

in the above proposition.



444 CHIN. ANN. OF MATH. Vol.22 Ser.B

x4. Symbolic Dynamics for the Scenery Flow:
Sturmian Sequences and Adic Transformations

4.1. Another Symbolic Description of the Scenery Flow

We can describe in another way the points of E� by a pair of symbolic sequences. Let p

be a point in �a\E
�, with coordinates = (l0; l1; h0; h1; x; y). We consider the positive orbit

fT+
u (p)ju � 0g of p under the vertical 
ow. In the model given in x2 (tiling of the plane), this

orbit consists in vertical segments contained in the two boxes; we write (u0; u1; � � � ) 2 f0;1g
N

for the sequence that describes the order in which the orbit crosses the two rectangles. In a

similar way, let (vn)n2Nbe the sequence that describes the order in which the orbit T�u (p)

of p under the horizontal 
ow crosses the two rectangles (cf. Fig. 4.1). We claim that these

two sequences completely de�ne the point p.

Fig.4.1. The Horizontal and Vertical Orbits

An informal proof goes like this: suppose that the frequency of 1 in u is well de�ned; this

frequency is equal to the ratio of the width of rectangle 1 to the total width; but since the

width of the widest rectangle is 1, because the point is in �a, both widths are completely

determined. Moreover, because the ratio is irrational, by de�nition of E�, the sequence u

de�nes the coordinate x. (This would be false if the ratio of width were rational: in that

case, the orbits of the vertical 
ow would be closed, so there would only be a �nite number

of possible sequences u, all of them periodic, and the sequence u would not specify the

coordinate x.) In a similar way, the sequence v de�nes the ratio of heights, hence, using the

fact that the total area is 1, it completely de�nes the heights, and also the coordinate y.

We will give a formal proof of this in the next parts, and explicit arithmetic formulas in

x5. We just remark here that the sequence u can be described as symbolic dynamics of the

�rst return map of the vertical 
ow to the cross-section de�ned in x2, with respect to the

natural partition into right and left rectangles; we only need to project the point p to the

point (l0; l1; h0; h1; x; 0) in the cross-section for the vertical 
ow.

The action of the scenery 
ow (or more exactly of its return map) on these symbolic

coordinates, the pair of sequences (u; v), is not the shift map. Indeed, the sequences u and v
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are not changed locally by that 
ow, but only by the stacking operation; if we suppose that

p is in �a;1, the rightmost part of rectangle 1 is stacked onto rectangle 0, and we see that

the e�ect on the sequence u is a de
ation, erasing each 1 following a 0, while the e�ect on

v is an in
ation, replacing each 1 by 10. (A more subtle question is what will be the �rst

letter of the new word;we study that in detail in x4.3 and x4.4.)

The purpose of the next three parts is to give precise de�nitions and proofs; we will see

that this can be done in a purely combinatorial way, although it can help to keep in mind the

geometry when considering the special cases that occur in some proofs. (These correspond

to the boundaries of the rectangles and their iterates.)

4.2. Sturmian Sequences: Basic De�nitions

In this section, we build symbolic dynamics for the vertical 
ow . Let us consider the

restriction of this 
ow to a torus �ber. It is clear from the formula that the dynamics depends

only on x, l0, and l1. The �rst return map is a rotation, as noted above, with its domain

naturally divided into two intervals, which we label 0 and 1. We associate to the point x

the sequence (�n)n2Z, where �n is the symbol 0 or 1 of the interval that contains the nth

iterate of x. This gives natural symbolic dynamics for the vertical 
ow: if we denote by S

the shift map on in�nite sequences, which sends the sequence u to the sequence v de�ned by

vn = un+1, it is clear from the de�nition that the shift map S is topologically semiconjugate

to the �rst return map. (That is, there is a continuous onto map from the symbolic space

to the circle such that the diagram commutes). The sequences we get are well-known (cf.

[23, 22, 15]); we recall some de�nitions and facts. We shall refer to the literature for some

of the proofs.

In this section, we normalize the rotation to the circle R=Zof length 1, which we shall

parametrize by [0; 1[ or ]0; 1]. (The original notation will prove more convenient in x6).

We write R� for the rotation x 7! x + �(mod 1:) We �rst give a precise de�nition for the

sequences described above.

Notations 4.1. Let � 2 [0; 1[. To code the rotation R� symbolically, it will be convenient

to partition the circle R=Zin two intervals determined by the points 0 and 1� � (preimage

of 0 by the rotation of angle �). There are two consistent ways to carry this out, and it will

be useful to keep track of both possibilities. Denote by I0 the interval [0; 1� �[, and by I1
the interval [1� �; 1[. In the same way, we denote by J0 the interval ]0; 1� �], and J1 the

interval ]1 � �; 1], the only di�erence between Ia and Ja being whether it is closed on the

left or the right. We call I (resp. J) the map with values in f0;1g and de�ned by I(x) = a

if x 2 Ia (resp. J(x) = a if x 2 Ja). We write I = fI0; I1g resp. J = fJ0; J1g for these

partitions of the circle.

De�nition 4.1. We say that a sequence (un)n2Ntaking values in f0;1g is generated

by the rotation R� if there exists a point � such that either for all n, un = I(Rn
�(�)) or for

all n, un = J(Rn
�(�)).

In other words, the sequence is given as the itinerary of a point for R� with respect to

the partition. Since there is no canonical way to code the endpoints, we allow all consistent

codings, choosing them so as to be all closed either on the right or on the left. Note that

points in the past orbit of 0, and only those (remember that the coding un is de�ned for

times in N and not inZ), will have two possible codings.

Notation 4.2. We will say that the sequence u is a rotation sequence if (and only

if) it is generated by some rotation R�. An equivalent de�nition is that there exist numbers

�; � 2 [0; 1[ such that for all n either we have un = b(n + 1)�+ �c � bn� + �c, or we have
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un = d(n+1)�+�e�dn�+�e; these are the sequences given by partitions I;J respectively.

A remarkable fact is that these rotation sequences can be given a completely combinatorial

description. To explain this we �rst need a few de�nitions.

De�nition 4.2. Let u = (un)n2Nbe a sequence taking values in a �nite alphabet A.

The language Lu of u is the set of all the �nite words uiui+1 � � �ui+k that occur in u. The

complexity p(n) of u is the function that counts the number of words of length n occuring

in u: p(n) = #(Lu \A
n).

Lemma 4.1. If the complexity of the sequence u satis�es p(n) � n for some n, then u is

eventually periodic.

Proof. The given condition implies that for some n we have p(n) = p(n+ 1), since p(1)

is at least 2 for a non-constant sequence; p is non-decreasing because each word occuring in

u can be extended. Thus, each word of length n can be extended in exactly one way. This

means that, knowing n letters, we then will know the next one. But, since there is only a

�nite number of admissible words of length n, one of these will occur at a second location

in u; hence from the �rst occurence of that word on, the sequence is periodic.

We will be interested in the non-periodic sequences of minimal complexity. By the lemma,

these are the sequences of complexity p(n) = n+ 1.

The basic fact, known to Hedlund and Morse (cf. [23, 22, 15]), is that there are three

equivalent characterizations of these sequences, two purely combinatorial and the third ge-

ometrical. We need �rst this:

De�nition 4.3. A sequence u taking values in a �nite alphabet is said to be balanced

if for any two words U and V of the same length occuring in u and for any element a in the

�nite alphabet, the number of a's in U and V di�er by at most 1.

Proposition 4.1. The following are equivalent for a sequence (un)n2Non two symbols :

(i) the sequence has complexity p(n) = n+ 1;

(ii) it is a non-eventually-periodic balanced sequence ;

(iii) it is generated by a rotation R� for some � irrational.

For logical de�niteness we take the �rst of these conditions as our de�nition:

De�nition 4.4. A sequence satisfying (i) above is called a Sturmian sequence.

Proof of Proposition 4.1. The proof of (i) , (ii) is combinatorial; it can be found in

[23].

We show (iii)) (i). Let u be a rotation sequence associated to �; � with � irrational and

write U for a word U0U1 � � �Un�1 of length n. This occurs at the beginning of the sequence

u if and only if � belongs to all the intervals R�k
� (IUk) (or similarly with I replaced by

J); more generally the word U can occur somewhere in the sequence u if and only if this

intersection is not empty. It follows that there are as many possible words of length n

in a rotation sequence as elements in the join of the partitions I; R�1
� I; R

1�n
� I. But this

�ner partition is determined by the orbits of the endpoints of the intervals, the points

0; 1 � � = R�1
� (0); � � � ; R�n

� (0). Since � is irrational these are distinct, and so there are

n+ 1 endpoints and hence n+ 1 components. Thus we have p(n) = n+ 1, proving (i).

We next give a proof of (iii) ( (ii), which is quite short, and which helps show the

importance of the second combinatorial condition. We count the number of 1's in the

word of length p of a rotation sequence, beginning with un; this is un + � � � + un+p�1 =

b(n+p)�+�c� bn�+�c, and this number, as a function of n, can take on only two values.

One concludes that a rotation sequence is balanced.

Proving (iii) from the other statements is more diÆcult; a detailed proof is given in [23].
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A proof can also be obtained from the ideas developed below: a Sturmian sequence can be

in�nitely recoded in a similar way to the continued fraction; one can then prove that this

Sturmian sequence is one of the rotation sequences associated to the number � de�ned by

that continued fraction. See x6 for explicit arithmetic formulas, which yield a constructive

proof of the proposition.

By (iii) and Weyl's equidistribution theorem it follows that for a Sturmian sequence u the

limiting frequency of any symbol in the sequence exists. An (elementary but not altogether

easy) exercise is to prove this directly from part (ii), the property of being balanced.

We will be interested in the set of all Sturmian sequences, which we will denote by �.

This forms a subset of the full one-sided symbol space f0;1gN. As is usual, we give this

space the product topology, with respect to which it is homeomorphic to the Cantor set.

Remark 4.1. The set � is not a closed subset of the space f0;1gN. It is contained in

the set of all balanced sequences, which is closed (if a sequence is not balanced, this can be

checked on a �nite subsequence, so a non-balanced sequence cannot be a limit of balanced

sequences). One can prove that every balanced sequence is a limit of Sturmian sequences,

hence the closure of � is the set of all balanced sequences; what needs to be added is the

countable set of all the eventually periodic balanced sequences.

We recall the shift dynamics on the space f0;1gN: the image Su of a sequence u is the

sequence v such that, for all integers n � 0, vn = un+1. The subset � inherits this dynamics.

We are also interested in a much smaller subset of f0;1gN. Given a Sturmian sequence u,

we write 
 = fSnug for the closure of the orbit of u under the shift S. The next proposition

shows these are the smallest shift-invariant subsets of �.

Proposition 4.2. Let 
 be the orbit closure of a Sturmian sequence. The dynamical

system (
; S) is minimal, and S is one-to-one on 
 except for a single point which has two

preimages.

Proof. If the sequence is Sturmian, by (ii) of Proposition 4.1 it is not eventually periodic;

the shifted sequence keeps this property, and is clearly balanced. Certainly all its shifted

sequences share this property. By (ii)) (i) of Proposition 4.1 therefore, since p(n) = n+1,

every word that occurs in the sequence occurs an in�nite number of times. This implies

that every word that occurs in the sequence can be extended in at least one way on the left.

Because there are (n+ 1) words of length n (for each n), there is exactly one word Ln that

can be extended on the left in two ways. The word Ln is a pre�x of Ln+1, and this sequence

of �nite length words increases to a unique in�nite word l. This word has two preimages in


, with all the others having exactly one preimage.

The proof of minimality is more diÆcult; we do not give it now, as it will follow from the

recoding given below.

We remark on the di�erence between 
 and the set � of all Sturmian sequences: as one

can show, 
 consists of Sturmian sequences where 1 occurs with a �xed given frequency,

while for � all possible irrational frequencies occur. This explains why, unlike the closure of

�, 
 does not contain periodic sequences. It follows from the proposition that the set � is

an uncountable disjoint union of the closed sets 
; we note that � is not itself closed.

Remark 4.2. One of the implications of Proposition 4.2 is that one could instead work

with biin�nite sequences, indexed by Z, since a countable number of sequences (in the

positive orbit of 0) can be extended on the left in two ways, while all the others can be

extended in only one way. Another way to understand this is: since this shift is a zero

entropy system, the future almost surely determines the past. For clarity of exposition, it
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is more convenient to work for the moment with one-sided sequences, however we will in x5

use biin�nite sequences.

De�nition 4.5. We will call the unique sequence that has two preimages under the shift

on 
 the special word or the special sequence of the system 
.

This notion has a geometric interpretation, contained in the following:

Proposition 4.3. The dynamical system (
; S) is an almost surely 1 � 1 topological

extension of a rotation (S1; R�), via the coding given by the two natural partitions I and

J ; the special word corresponds to the image � of the point 0, which has a non-ambiguous

coding, while each of its preimages by the rotation has two possible codings.

The quotient of the set 
 by the equivalence relation that identi�es for each n � 1 the two

preimages of order n of the special word is, with its natural quotient topology, homeomorphic

to the circle.

We remark that the minimality of an irrational circle rotation can be proved in two ways,

therefore, as a consequence of Proposition 4.2 via this continuous projection to the circle,

or directly from the geometry by an easy compactness argument; however the converse

argument would not work, that is, the minimality of the map does not lift from the circle

to the space 
.

4.3. Recoding Sturmian Words: the Coding Map

Since we will be using sequences of several di�erent types, we will from now on speak of

Sturmian in�nite words, or Sturmian words for short, instead of Sturmian sequences, and

reserve the term sequence for the coding sequences to be de�ned below.

De�nition 4.6. A substitution on the alphabet f0;1g is a map from f0;1g to the set

f0;1g� of �nite words on the alphabet f0;1g that sends each letter to a non-empty word.

It extends naturally to �nite words and in�nite sequences on this alphabet, replacing each

letter by the corresponding word.

Recall that the set f0;1g� admits a natural structure of free monoid for the concatenation

operation; in this setting, a substitution appears as a non-erasing morphism of the free

monoid.

In this section we show how to recode a Sturmian word on the alphabet f0;1g to another

Sturmian word, using a substitution, the choice of which depends on the initial word. We

then iterate this process, keeping track of the di�erent substitutions used. This produces a

sequence (the coding sequence) on another alphabet. We next show that the set of coding

sequences is a subshift of �nite type, and that the correspondence between Sturmian words

and the associated coding sequences is almost surely one-to-one. Finally we recover, in a

completely combinatorial way, the symbolic dynamics for the scenery 
ow described in x3.

Let u be a Sturmian word; from the de�nition, there are only three words of length 2

occuring in u. Since 01 and 10 must occur (for otherwise u would be eventually constant),

this means that exactly one of the words 00 or 11 does not occur. (Geometrically this

corresponds, of course, to having rotation angle � 2]1
2
; 1[ and ]0; 1

2
[ respectively.)

De�nition 4.7. A Sturmian word will be said of type 0 if 11 does not occur, and of

type 1 if 00 does not occur.

Notation 4.3. We will denote by �0 (resp. �1) the set of Sturmian words of type 0

(resp. 1), and �0 (resp. �1) the set of Sturmian words that begin with 0 (resp. 1); we will

denote by �0

0 (resp. �1

0) the set of Sturmian words of type 0 that begin with 0 (resp. with

1), with the corresponding notation for words of type 1:

Suppose that the word u is of type 0. Then every 1 is followed by a 0, so we can certainly
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recode u by using as new symbols the words 0 and 10. The interesting fact is that, possibly

after removing the �rst letter, the word thus obtained will again be Sturmian. The next

proposition states this precisely. We need �rst :

De�notion 4.8. We denote by �0; �1 the two substitutions, de�ned from f0;1g to f0;1g�

by

�0 : 0 7! 0;

1 7! 10;

�1 : 0 7! 01;

1 7! 1:

Lemma 4.2. If v is not balanced, then for any letter a, �0(av) is not balanced.

Proof. We suppose that v is not balanced. It is not hard to prove that we can then

�nd two words U and V of the same length and containing the same number of 0's, such

that the words 0U0 and 1V 1 occur in v. Because 0U0 occurs in v, there exists b such that

b0U0 occurs in av (the only problem is the case when it is the initial word; this is why

we needed a). Because �0(b) ends with 0 in all cases, the words 00�0(U )0 and 10�0(V )10

occur in �0(av). But now it is clear that �0(U ) and �0(V ) have the same length and the

same number of 0's; hence the two words 00�0(U )0 and 10�0(V )1 occur in �0(av); they

have the same length; and their number of 0's di�ers by two.

We can now explain how one recodes Sturmian words.

Proposition 4.4. Let u be a Sturmian word of type 0.

(i) If u is not a special word, then either u = �0(v), where v is a Sturmian word, or

u = S�0(v), where v is a Sturmian word that starts with 1 (but not both).

(ii) If u is a special word, we can write both u = �0(v0) and u = S�0(v1), where Sv0 = Sv1
is a special Sturmian word.

If u is of type 1, the same property holds, by exchanging the symbols 0 and 1.

Proof. It is immediate that if u is of type 0 then we can express it in a unique way as

u = �0(v), as noted above.

(i) Suppose that u is not a special word. Then exactly one of 0u and 1u is Sturmian.

Supposing now that 0u is Sturmian, we can write 0u = �0(v
0), where v0 starts with 0.

Taking v = Sv0, then by the preceding lemma v is Sturmian, and u = �0(v). If u begins

with 1, then we certainly cannot write u = S�0(v
0), with v0 beginning with 1. If u begins

with a 0, then v also begins with a 0. We can then replace the �rst letter of v by a 1, getting

a new word w, and can then write u = S�0(w). But if w is also Sturmian, since Sw = Sv,

then Sv is a special word; it is easy to check that this then implies that u is also a special

word.

Suppose next that 1u is Sturmian. Then its preimage is 01u, since 1 is isolated, and

we can write 01u = �0(0v), where v is Sturmian and begins with 1. It is then clear that

u = S�0(v), where v is Sturmian and begins with 1. As before, we can write u = �0(w)

where w is the word obtained from v by replacing the �rst letter by a 0. But again, if this

word w is Sturmian, then u is a special word.

(ii) Suppose next that u is a special word of type 0. Then its preimages are 01u = �0(01v)

and 10u = �0(10v), since u must begin with a 0. The two words 0v and 1v are Sturmian,

by the lemma, so v is a special word; and we clearly have that u = �0(0v) = S�0(1v).

This same proof works for words of type 1, by using �1 in place of �0.
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A direct consequence of this proposition is that second preimages of special words (under

the shift map) recode to each other.

Corollary 4.1. Let v be a special word of type 0 (respectively type 1). Then there is a

special word v0 such that 10v = �0(10v
0) and 01v = �0(01v

0) (resp. 10v = �1(10v
0) and

01v = �1(01v
0)):

We see that these second preimages of special words play an important role, and they

deserve a name.

De�nition 4.9. The two shift preimages of order 2 of the special word of a Sturmian

system are called the �xed words of the system.

We will see later that there is an easy algorithm (Rauzy rules) to compute an arbitrary

long pre�x of a �xed word, and that algorithm will explain the reason for this terminology.

The content of the preceding corollary is that the two �xed words of a system recode to

the two �xed words of (another) system, or equivalently, the image of a �xed word by either

one of the substitutions �0; �1 is a �xed word, of type 0 or 1 respectively, which begins with

the same letter.

We can use Proposition 4.4 to de�ne a transformation on the space �.

De�nition 4.10. We de�ne the coding map � : �! � to take a Sturmian word u of

type 0 (resp. 1) to the unique word v such that u = �0(v) (resp. u = S�1(v)); or, if such a

word does not exist, to the unique word v such that u = S�0(v) (resp. u = �1(v)):

Note that, in this de�nition, in case of ambiguity, we have made a choice, taking as image

the word whose initial letter is 0.

Proposition 4.4 ensures that � is well-de�ned; its de�nition entails an arbitrary choice for

the special word. It is easy to check that � is a 3 � 1 map; the partition f�0

0 ;�
1

0;�
0

1;�
1

1g

de�ned above is a Markov partition. The map � is one-to-one from �0

0 to � and from �1

1

to �; it is one-to-one from �1

0 to �1, and from �0

1 to �0.

We will use this partition to associate, to any Sturmian word, the itinerary of its orbit

by �.
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Fig.4.2. The Transition Graph for Additive Coding

De�nition 4.11. The coding sequence for a Sturmian word u is the sequence which

takes values in the set A = f(0;0); (0;1); (1;0); (1;1)g, obtained by recoding u an in�nite

number of times by the map �.

The symbolic dynamics thus de�ned can be explained as follows: beginning with a Stur-

mian word u, we �nd a new Sturmian word u(1). We can then iterate the process, recoding

u(1). In this way we obtain an in�nite sequence of Sturmian words u(i) = �i(u) such that

u(i) = �au
(i+1) or u(i) = S�au

(i+1).

We remark on the choice we made in de�ning �. If one of the words u(i) is special, we have

a choice for the recoding; these are the two preimages of a special word, and � in that case
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chooses the word that starts with 0. At the next step, one of the recoded words is a �xed

word, and then from this point on, the choice of recoding is completely determined (by the

above corollary). As is easily seen, the alternative sequence of words consists of preimages

of special words for a �nite time, and then (when the type of the recoding substitution

changes), of �xed words.

It is clear that a special word can appear in the process if and only if we start with a

word in the positive orbit of a special word by the shift; in this case, there are two possible

sequences of words, and both, after a �nite time, consist of �xed words. The sequence of

words obtained by applying � consists eventually of �xed words starting with 1. (At the

�rst step, we obtain a word that begins with 0, but after a �nite number of steps, we get a

word beginning with 1.)

It is natural to ask whether the partition generates, and what are the admissible coding

sequences (that is, the coding sequences obtained by �).

Theorem 4.1. (i) The admissible coding sequences are contained in a one-sided subshift

of �nite type, on the alphabet A, de�ned by the following condition :

(0;1) is not followed by (0;0) or (1;0) and (1;0) is not followed by (0;1) or (1;1).

They can be obtained as sequences of vertices for paths in the graph shown in Fig. 4:2,

where we have represented all the possible transitions, labelling each edge by the corresponding

transformation.

(ii) all sequences in this �nite type subshift are obtained, except for

|the eventually constant sequences,

|the sequences of the form U (0;0)(0;1)a(1;1)v or U (1;1)(0;1)a(1;1)v, where U is any

admissible word on the alphabet A, v is a sequence that contains only the symbols (0;0) and

(1;0), and a 2 N is an integer.

(iii) The partition almost generates, that is, it separates all Sturmian words, except for

the pairs of preimages of order k, k > 2, of special words, whose coding sequence consists

eventually of blocks of type alternatively (0;0)n and (1;1)n.

Proof. (i) The fact that all admissible sequences are of the given type is clear: if a word

is of type 0 and begins by 1, it must be recoded using �0, so the recoded word must begin

also with 1; hence (0;1) cannot be followed by (0;0) or (1;0). In the same way, (1;0) cannot

be followed by (0;1) or (1;1).

(ii) An eventually constant path on the graph ends on words which are all of the same

type. If all the recoded words are of type 0, the initial word u must contain arbitrarily long

strings of 0's, and this is impossible for a balanced word. Applying the same reasoning to

the recoded words u(n), we see that the sequence cannot be eventually constant.

The fact that all the other sequences de�ned by the graph are admissible is a direct

consequence of the fact that the partition by the �a

i is a Markov partition for �, as we

remarked above; the only trouble comes from the convention in the de�nition of �. Namely,

it is easily checked, from the corollary give above, that �xed words are recoded to �xed

words beginning with the same letter. Hence the cooresponding coding sequence consists

only of the letters (0;1) and (1;1) if the initial letter is 1, or (0;0) and (1;0) if the initial

letter is 0. Suppose now that a coding sequence consists eventually only of letters (0;0)

and (1;0); by inspection of the graph, we see that the last letter not of this type must be

(1;1), which may be preceded a �nite number of times by (0;1), and then (0;0) or (1;1).

But a detailed study of cases shows that the corresponding word is a special word, which

can be recoded, using �, in a sequence that consists eventually only of the letters (0;1) and
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(1;1); hence, by our convention, these sequences are not admissible. Note that sequences

of type (0;1)a(1;1)v, where v contains only (0;0) and (1;0), are admissible: they code for

the preimages of order 1 of special words that begin with 1. (These are the ones that we

removed when de�ning the images of special words by �.)

(iii) Suppose that the sequence contains only letters (0;0) and (1;1). One checks by

induction that, from the knowledge of the �rst letter of the recoded word u(n), we can

deduce only the �rst letter of the initial word; the second letter is not possible to determine.

One can then check that the two preimages of order 3 of the special word, a10l and a01l,

admit this sequence as symbolic dynamics, verifying the claim. A similar proof applies when

the coding sequence is eventually of this type.

Remark 4.3. In the cases where the coding sequence corresponds to two Sturmian

words, these words di�er by exactly two letters, since this is the case for the preimages of

order 2 or more of a special word.

Writing �+ for the one-sided subshift of �nite type de�ned by the graph above, we can

rephrase Theorem 4.1 as follows:

Corollary 4.2. The map that takes a Sturmian word to its coding sequence semi-

conjugates the dynamical system (�;�) to the subshift of �nite type (�+; S); the semi-

conjugacy is one-to-one, except on the negative orbit of �xed points, and its image contains

all of �+, except the eventually constant sequences and the sequences speci�ed in part (ii) of

the Theorem 4:1:

If two Sturmian words belong to the same Sturmian system 
, then the recoded words

(their images by �) also belong to the same system. Thus they have the same type, and will

be recoded by the same substitution, the only di�erence being that perhaps a shift appears

in the coding process. Therefore recoding makes sense at the level of systems, as follows.

De�nition 4.12. The coding sequence for a Sturmian system 
 is the sequence

(in)n2Nof indices of substitutions, with in = 0 or 1, obtained by recoding the �xed words of


.

This sequence is uniquely de�ned; it is what we call the additive coding of 
. We can write

the sequence as �a00 �a11 � � ��
a2n
0 �

a2n+1
1 � � � , by grouping together the strings of �0 and �1. The

sequence (an) of integers, which are all strictly positive except perhaps for a0, is called the

multiplicative coding for the system. This sequence has a natural interpretation in terms of

rotations. In particular, as we will see in x6, if a0 6= 0, then (an) is the continued fraction

expansion of �=(1 + �), where � is the angle of the rotation associated to the Sturmian

sequence.

If we know the additive coding (in)n2Nof a system 
, it is possible to obtain the �xed

words. Namely, the �xed word beginning with the symbol 0 is in�nitely recoded in �xed

words also beginning with 0. Hence it admits as a pre�x all the �nite words �i0�i1 � � ��in(0).

These words are in fact easy to compute, using the fact that we have, for any substitution

�, that �(�0(0)) = �(0), and �(�1(0)) = �(01) = �(0)�(1).

Remark 4.4. Now we can explain why we have termed these the �xed words; it is a

generalization of the standard situation, where one has a single substitution �. Indeed, as

the reader who is familiar with the classical theory of substitution dynamical systems will

note, the above procedure is very similar to the process by which one constructs what is

known in that subject as the �xed word of �, i.e. the in�nite word which is a �xed point for

the action of � on sequence space. Indeed, if the sequence (in)n2Nhappens to be periodic, of

period p, then we can reduce to that case as the p words we obtain are �xed for the composed
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substitutions � = �i0�i1 � � ��ip�1 (and its cyclic permutations). What we are doing here can

be considered as a generalization of that idea to an in�nite, and not necessarily periodic,

sequence of substitutions.

We summarize this as follows.

Proposition 4.5 (Rauzy Rules). Let 
 be a Sturmian system with coding sequence

(in)n2N. De�ne two sequences of �nite words (Un)n2Nand (Vn)n2Nby recurrence : U0 = 0,

V0 = 1; if in = 0, then Un+1 = Un, Vn+1 = VnUn; if in = 1, then Un+1 = UnVn, Vn+1 = Vn.

Then Un (resp. Vn) is a sequence of pre�xes of the �xed word with initial letter 0 (resp. 1).

4.4. Recoding Sturmian Words: the Natural Extension of the Coding map,

and the Symbolic Dynamics for the Scenery Flow

An important consequence of the previous section is that the coding sequences for Stur-

mian words appear as the non-eventually-constant sequences in a subshift of �nite type.

We could account for the eventually constant sequences on this graph by coding periodic

rotations, but we will not do so as it is tedious and not so useful to write down the details.

This dynamics is very di�erent from the one discussed in x3.2, given by the shift on

Sturmian words. The Sturmian words gave symbolic dynamics for the rotations; the coding

sequence, on the other hand, gives us symbolic dynamics for the map �. A fundamental

di�erence between these two maps is that the rotation is of entropy 0, while � is of positive

entropy. In this section we compute the natural extension (in the sense of Rokhlin (cf. [41])

for this map, and recover in this way symbolic dynamics for the scenery 
ow.

Of course one could easily build abstractly the natural extension of the subshift of �nite

type, by simply taking the allowed biin�nite sequences. In this way we recover the 2-sided

subshift de�ned in x3. However we prefer to build the natural extension in a more concrete

way. There is some freedom in this construction of the natural extension; the choices we

make may seem arbitrary, but in fact it will be seen that they come directly from the

geometric construction sketched in x4.1.

We use for this purpose a slight modi�cation of the above coding: instead of working

with �0, �1, consider the maps �0, �1 de�ned from f0;1g to f0;1g� by

�0 : 0 7! 0;

1 7! 10;

�1 : 0 7! 10;

1 7! 1:

so that �0 = �0, but �1 and �1 di�er by their order.

We can use these two substitutions also to recode Sturmian sequences, which leads to the

following proposition.

Proposition 4.6. Let u be a Sturmian word. If u is of type 0, then

(i) If u is not a special word, then either u = �0(v), where v is a Sturmian word, or

u = S�0(v), where v is a Sturmian word that starts with 1 (but not both).

(ii) If u is a special word, we can write both u = �0(v0) and u = S�0(v1), where Sv0 = Sv1
is a special Sturmian word.

If u is of type 1 then, if u0 = 1, we have u = �1(v), and if u0 = 0, we have u = S�1(v),

where v is a Sturmian word.

The proof is similar to that of Proposition 4.4 in x4.3, but slightly easier since for �1,

unlike for �1, we do not need to treat special cases. We can then de�ne a variant of the map

�.



454 CHIN. ANN. OF MATH. Vol.22 Ser.B

De�nition 4.13. We denote by 	 the map 	 : � ! � that takes u to the unique

Sturmian word v such that u = �0(v) or u = �1(v), or, if it does not exist, to the unique

Sturmian word v such that u = S�0(v) or u = S�1(v).

Using the map 	, we can again code all Sturmian sequences using the same alphabet as

before, now with the graph given in Fig.4.3.
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Fig.4.3. The dual graph for additive coding

The restrictions posed on coding sequences are the same as before. Consider now a

biin�nite sequence (�n; an)n2Z. We associate to this biin�nite sequence the pair of in�nite

sequences (�n; an)n2Nand (Æn;bn)n2N, where bn = a�n and Æn = 1� ��n�1.

It is easy to check that this is a one-to-one and onto correspondence between admissible

biin�nite sequences, and pairs of admissible in�nite sequences; for example, suppose that

(Æn;bn)n2Nis not admissible, and that for some n, (Æn;bn) = (0;1), bn+1 = 0. Then we

compute (��n�1; a�n�1) = (1;0) and a�n = 1; hence the biin�nite sequence (�n; an)n2Zis

not admissible.

This gives us a concrete combinatorial model for the natural extension as follows. To

any biin�nite admissible sequence (�n; an)n2Z, �rst associate a pair of in�nite admissible

sequences (�n; an)n2Nand (Æn;bn)n2N. To the �rst in�nite sequence, we associate a Sturmian

word u+, using substitutions �0; �1; to the second, we associate a Sturmian word u�, using

�0, �1. We get two Sturmian words with the same initial letter, and the process is now

clearly one-to-one: u� tells us how we must decode u+, and gives us the past.

Formally, we de�ne e� = f(u; v)ju; v 2 �; u0 = v0g; this is the space of pairs of Sturmian

words with the same initial letter; we write e� : e� ! e� for the map which recodes the �rst

word and decodes the second. This map is the natural extension of �. We obtain

Proposition 4.7. The map e� : e�! e� is conjugate to the subshift of �nite type S : �! �

by associating to each biin�nite coding sequence a pair of Sturmian words.

It is not an accident that we recover the same symbolic system as in x3. In fact we have

the following

Theorem 4.2. The transformation �a : �a ! �a is conjugate to e� : e�! e�.
Proof. We �rst de�ne a map from �a to e�. Consider some point in the cross-section

�a for the scenery 
ow, with coordinates (l0; l1; h0; h1; x; y). To this point we associate two

Sturmian words in the following way. We have a fundamental domain for a lattice consisting

of two rectangles, the left one labelled 0 and the right one labelled 1, and a point (x; y) in

this fundamental domain. We consider the Sturmian word which is the itinerary of the orbit

of this point for the vertical 
ow; it is a Sturmian word associated to the rotation by angle l1
on an interval of length l0+ l1. Hence it determines l0; l1 up to a factor. But because we are

in �a, we have sup(l0; l1) = 1, so these are completely determined. In fact, to compute l0; l1,

we do not need to know here the precise word we get, only the system to which it belongs,
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that is, the sequence an above. Knowing this word itself determines the number x. (We give

the precise formulas in x6.) In the same way, the Sturmian word given by the horizontal


ow determines the vector (h0; h1) up to a factor; but since we have h0l0 + h1l1 = 1, it

is in fact completely determined. Moreover, the word also de�nes y. In this way we have

associated to each point of �a an element of e� (which is uniquely determined, except for

degenerate cases when the point (x; y) happens to be in the horizontal or vertical trajectory

of the origin; in this case, we have two or four possible sequences; it is easy to check that

this corresponds to the exceptional sequences we have seen before).

Next we will describe the e�ect of the map �a on this pair of Sturmian words. We have

two cases to consider, depending on whether l0 is larger or smaller than l1; we shall consider

only the �rst case. There are three situations, summarized in Fig. 4.4.

Fig. 4.4. The Recoding of Sturmian Words.

In each case, we are stacking the left part, or rectangle 0, over rectangle 1; we are given

two words u; v for the �rst domain, and we want to �nd the corresponding words for the

restacked domain. If (x; y) is in rectangle 1, then u0 and v0 also begin with 1, and we

can write u = �0(u
0), v0 = �1(v). If (x; y) is in the left part of rectangle 0, then we have

u = S�0(u
0) and v0 = �1(v); if (x; y) is in the right part of rectangle 0, then we have

u = �0(u
0) and v0 = S�1(v).

We see that the return map for the scenery 
ow is exactly the map e� we have described

before: take the �-coding for the vertical orbit, the � -coding of the horizontal orbit, remove

the �rst term (�0; a0) of the vertical orbit and add (1��0; a1) to the coding of the horizontal

orbit.

From the point of view of the geometry, the reason for using � in one direction and � in

the other is that the process we have described is not symmetric: we stack always on the

upper part, but we unstack alternatively on the right and on the left.

4.5. Shift Dynamical Systems on Sturmian Sequences: the Adic Viewpoint

Recall that the system (
; S) denotes the shift map S on 
, the orbit closure of some

Sturmian word u. In fact one can check, just by looking at the coding sequences, whether

or not u belongs to 
, as follows. The coding sequence for u is written using an alphabet

A of four letters. At the end of x4.2, we de�ned the coding sequence for a system, using

the alphabet of two letters f0; 1g. There is a natural projection from the �rst alphabet onto

the second, taking (�n; an) to �n. We note that u belongs to the system de�ned by the

projection of the coding sequence.

Fixing a Sturmian system and its coding sequence, we would like to express in terms of

coding sequences the shift on Sturmian words corresponding to the rotation. There is a

simple answer to this question:

Proposition 4.8. Let u be a Sturmian word, and let (�n; an) be its coding sequence. Let
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N be the smallest integer (if it exists) such that (�N ; aN ) is di�erent from (0;0) and (1;1).

The coding sequence for Su is the sequence (�n;bn) with bn = an if n > N , and bn = 1�aN
for n � N . If N is not de�ned, then u is one of the two preimages of the �xed point, and

the coding sequence for Su is either (�n;0) or (�n;1).
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Fig.4.5. The Transition Graph for Multiplicative Coding

We can consider this map as a sort of odometer; the operation consists in �nding the �rst

term of the sequence which is not (0;0) or (1;1), changing the corresponding letter aN to

its opposite, and carrying this letter for the �rst N ranks.

However, for this purpose it is more natural and interesting to use the multiplicative

notation alluded to at the end of x4.3. We will see this below, showing that it is, in a

slightly di�erent notation, an adic system, as de�ned by Vershik (cf. [49, 50]). The precise

formulas will be given in x6.

4.6 Symbolic Dynamics for the First Return map of the Scenery Flow to the

Multiplicative Cross-Section

We will here only give the main results.

When we recode a given Sturmian word, instead of recording each step we can continue

until we get a word of a di�erent type. If the initial word u is of type 0, the new word v will

be of type 1. We can write u = �a0(v) if the symbol S�0 was not used, or u = �b0S�
c
0(v);

in the latter case, the �rst letter v0 of v must be 1, and it is easy to check that one can

write u = Sb+1�b+c0 (v). If we write k for b + 1 and a for b+ c, since c � 1, we see that the

admissible sequences correspond to the paths in the graph represented in Fig.4.5 with the

condition 0 < k � a (this graph corresponds to the graph given in Fig. 4.2, after grouping

all the arrows that stay on the same level of the graph).

Each admissible sequence is uniquely de�ned by a sequence of pairs (an; kn) of integers,

with 0 � kn � an. It is clear from the graph that the admissible sequences are exactly those

for which the maximal runs with kn = 0, (except perhaps for the initial one) are of even

length.

This is a so�c condition. One would like to in fact achieve a Markov condition; for that

we will give a new related coding. The idea behind the �rst one was to approximate the

given sequence u by shifting one of the �xed points of the sequence of substitutions, writing

u = Sk0�a00 (Sk1�a11 (� � � )). We can instead try to approximate u by preimages, writing:

u = 0b0�a00 (1b1�a11 (� � � )).

We could start again as in x4, by proving that each Sturmian sequence u of type 0 can

be written in a unique way u = �0(v) or u = 0�0(v), and de�ning in this way additive and

multiplicative coding sequences. We leave this to the reader, giving here only the result:

Proposition 4.9. Let u be a Sturmian word of type 0: Then one can write in a unique

way u = 0b0�a00 (1b1�a11 (� � � )), where (an) is a sequence of strictly positive integers, where
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(bn) is a sequence of integers such that 0 � bn � an; and where, if bn = an, then bn�1 = 0.

Moreover the sequence (an; bn) uniquely de�nes u unless the sequence (bn) is 0 except for a

�nite set. In that case there are two possible values for u, each a preimage of the same order

of the special word of the Sturmian system of u.
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Fig. 4.6. The Transition Graph for Pre�x Multiplicative Coding

The relation between bn and kn is simple: let N be the smallest integer such that kn > 0.

Then we have

� for n < N , bn = kn = 0;

� bN = aN � kN + 1;

� for n > N and kn > 0, then bn = an � kn;

� for n > N and kn = 0, if bn�1 = 0, then bn = an; if bn�1 > 0, then bn = 0.

The admissible sequences are read from the graph shown in Fig.4.6. We have adopted the

convention that 0 < b < a. Each state is given by the type of the word u, together with the

initial letter of the preimage of u (which is well-de�ned except when u is the special word).

A slightly di�erent system will be produced if in place of the substitutions �0; �1 we use

�0; �1. In this case, it turns out to be best to use a third multiplicative system given by

�a0 : 0 7! 0;

1 7! 10a;

�a1 : 0 7! 1a0;

1 7! 1:

It is now easy to prove that any sequence u of type 0 can be written u = Sk�a0 (v), where

v is a sequence of type 1, and any sequence u of type 1 can be written u = Sk�a1 (v), where v

is a sequence of type 0. We can in this way associate to any sequence u a pair of sequences

(an; kn). We will de�ne a multiplicative system (an; bn), explaining how, at each step, one

gets (a; b) from (a; k).

If u is of type 0, then, if u = �a0 (v), with v0 = 0, we de�ne b = a; otherwise, if u = Sk�a0 (v),

with v0 = 1, we de�ne b = max(0; k � 1).

If u is of type 1, then, if u = �a1 (v), with v0 = 1, we de�ne b = a; otherwise, if u = Sk�a1 (v),

with v1 = 1, we de�ne b = max(0; a� k � 1).

Fig. 4.7. The Horizontal Tiling
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It is now possible to prove that this sequence is well-de�ned, and that it completely de�nes

the Sturmian word, except for the orbit of the special words. What is more interesting is

that the set of admissible sequences is de�ned by the Markov condition 0 � bn � an, and

bn = an implies bn+1 = 0. This is dual to the condition given above for the substitutions

�0; �1.

We will not give proofs for these facts here, since we will see later an arithmetic interpre-

tation which will make them clear.

x5. A Line Tiling Model and the Natural
Extension of Rotation Renormalisation

We gave in x1 a completely algebraic expression for the scenery 
ow, and in x3,4 two

distinct completely symbolic expressions. Here we shall give a partly symbolic expression,

using tilings of the real line (cf. [8] for more detailed explanations from the view point of

quasi-crystals).

We begin with a tiling of the plane associated to a lattice and its L-shaped fundamental

domain. For a point (x; y) in this fundamental domain, we can consider the non-periodic

tiling induced on the horizontal line by the intersection with the translates of the two basic

rectangles (cf. Fig. 4.7). This is a tiling of the line by two kinds of intervals, each of

length l0; l1, with a marked origin point x. We assume from now on that l0 and l1 are

incommensurable. Such a marked tiling is completely de�ned by the following:

� a biin�nite rotation sequence (un)n2Z. (We note that, since the one-sided sequence

(un)n2Nis Sturmian, we will be able to apply the results of the previous section.)

� the lengths l0; l1 of the two intervals.

� the position x of the marked point, counted positive (from the left endpoint) if x is in

the interval labelled 1, and negative (from the right endpoint) in the interval 0.

The action of the scenery 
ow is geometrically that of zooming in toward smaller scales

at a constant rate. That is, we are multiplying by et=2 the three numbers l0; l1; x. At a

certain time, we will exit the fundamental domain (when inf(l0; l1) = 1); we have then to

subdivide the largest tile. We subdivide either the tiles 0 in two pieces, labelled by 1 and

0 on the left and right respectively, while not changing tiles labelled 1, or we subdivide the

tile 1 by taking 1 and 0 on the left and right, while leaving the tiles 0 unchanged. Thus

there are two cases:

If l0 > l1, we replace (l0; l1) by (l0 � l1; l1); in this case, if x > 0, we keep x and replace

u by �1(u). If l1 � l0 < x < 0, we keep x and replace u by S�1(u); if �l0 < x < l1 � l0, we

replace x by x+ l0 and u by �1(u). We have the analogous formulas if l0 < l1, replacing �1
by �0.

We mention that these di�erent cases do not depend on the sequence u, but rather on the

values l0; l1; x. On the other hand, if one wishes to consider negative time for the scenery


ow, one needs to take into account the sequence u. This sequence can be written in a

unique way as u = �a(u
0) or u = S�a(u

0), and this determines the formulas used to compute

the new lengths. One can view this as follows: l0 and l1 determine the small-scale structure

of the tiling, while u determines the large-scale structure.

There is also a dual tiling, on the vertical orbit of (x; y), with similar properties. However

here we always take coordinates from the left of the interval, and therefore change formulas

according to the permutations �0; �1 rather than �0 and �1.
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We can now make completely precise the relation between these tilings and the set E�

we de�ned in x3.1. By de�nition a biin�nite Sturmian sequence is a sequence (vn)n2Zsuch

that for each k; the sequence (un)n2Nde�ned by un = vk+n is Sturmian.

De�nition 5.1. An irrational Sturmian quasi-crystal is a line tiling by two types of inter-

vals, of rationally independent lengths, with combinatorics de�ned by a biin�nite Sturmian

sequence, and with a chosen origin. Two irrational Sturmian quasi-crystals are equivalent

if they di�er only on a �nite number of tiles.

Two distinct equivalent quasi-crystals di�er in exactly two tiles; they correspond to a

horizontal line through the origin of the L-shaped fundamental domain.

The subdivision map de�ned above acts on the set of Sturmian quasicrystals, and respects

equivalence.

De�nition 5.2. The set of equivalence classes of irrational quasi-crystals up to equiva-

lence and subdivision is called the set of quasi-crystal hierarchies, denoted by T .

It is immediate that the scenery 
ow acts on T , by multiplying all real coordinates by

e
t
2 . It is now straightforward to check

Theorem 5.1. The scenery 
ow on T is topologically conjugate to the scenery 
ow on

E�.

This was the �rst model the authors found for the scenery 
ow, and it explains the origin of

the name: combining the ideas of [7] and [20], we wanted to model how the \scenery" one sees

changes as one zooms down to a point in a nested tiling of the line given by renormalization.

Thus, what one sees as time progresses in the 
ow de�ned by this magni�cation is that the

hierarchy in the nested tiling will change, and smaller details will come into view, while the

structure visible at the beginning remains recorded in the large-scale combinatorial structure

of the tiling (cf. also [3]).

Remark 5.1. A particular interesting case is the one where the sequence of subdivisions,

written as �a00 �a11 � � � , is periodic; this is the case when l0=l1 is a Galois integer (a quadratic

number with an immediately periodic continued fraction expansion). In that case, there is

a natural way to get a backward orbit when only l0; l1 are given. This consists of extending

backwards the coding sequence as a periodic orbit, and then taking the sequence u this

determines. This sequence appears as �xed point for some substitution; hence we get the

(much studied) case of self-similar Sturmian tilings, and in particular the simplest case

related to the golden number, the Fibonacci tiling (cf. [17]). These are closely related to the

study of toral automorphisms. Indeed, in that case the fundamental domain for the plane

lattice appears as Markov partition for a toral automorphism (cf. [10]); we will give below

the explicit arithmetic formulas.

Remark 5.2. If we restrict ourselves to the central two intervals 0 and 1, we see a

sequence of rotations of smaller and smaller domain. This is what we get from the usual

continued fraction; we can view this process as a renormalization of circle rotations. However,

there is no well-de�ned way to invert this process, because for any rotation, there are always

two rotations from which it can come via an elementary renormalization. If we renormalize

for some time, we get a tiling of the circle by two intervals by looking at the intervals given by

the orbit of 0. We can then come back in a unique way to the initial rotation, by considering

this �nite tiling (but no further). One can see the scenery 
ow we describe in this section

as the natural extension of the renormalization of circle rotations: each Sturmian tiling

describes a possible past for the renormalization of the rotation de�ned by the two basic

intervals. We will elaborate on this remark in the next section.
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Remark 5.3. We have shown, in particular, that the space of Sturmian tilings cor-

responding to given tiles and a given Sturmian system can be parametrized by a torus.

However as before this paramerization is only almost one-to-one: to recover the torus, we

have to identify equivalent pairs of Sturmian tilings, corresponding to the special word of

the Sturmian system, which di�er only on two tiles and are parametrized by the same point

of the torus. Modulo this identi�cation, the space of tilings becomes homeomorphic to a

torus. More complicated cases, for example Penrose tilings, can be studied in the same way

(cf. [40]).

x6. An Arithmetic Interpretation

We have shown above that the symbolic dynamics completely de�nes a point in the

cross-section �m de�ned in x2, so that the two Sturmian words completely determine the

geometrical coordinates of the point. We will give in this section precise arithmetic formulas,

and recover the connection with continued fractions.

The results given here were worked out in a seminar at Luminy (cf. [4] for more de-

tails). Vershik and Sidorov also (independently) found these results in the framework of

adic systems (cf. [50]).

6.1. The Ostrowsky Number System

In this section we will de�ne two number systems that correspond to the coding sequence

above. Such systems have been studied by a number of authors previously (cf. [37, 43, 28,

29, 50]).

To discuss the �rst system, it will be best to change our convention for circle rotations.

Now we take a rotation of angle � on the circle written as the interval [�1; �[, together with

the two natural continuity intervals [�1; 0[ and [0; �[. We will give an explicit formula for

recovering the geometric location of a point x in the circle from its combinatorial coordinates

given by the �rst coding sequence of the Sturmian word u corresponding to x, in terms of

the sequence of pairs of integers (an; bn) de�ned in x4.6.

Fig. 6.1. The Ostrowsky Induction Process

The main theorem is the following:

Theorem 6.1. Let u be the Sturmian word determined by the itinerary of a point x with

respect to the rotation of angle � on [�1; �[. Let (an; bn) be the sequence determined by the

coding of u in sequences of pre�xes for �0; �1. Then (an) is the continued fraction expansion

of �, and if we de�ne �0 = �, �n+1 = f1=�ng and �n = (�1)n+1�0�1 � � ��n, we have

x =

1X
n=0

bn�n:

Proof. The main point to notice is that the substitution �0 appears naturally when one
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looks at the �rst return map on the complement of the image of [0; �[. Indeed, consider the

initial rotation R and the induced map R0 (which is also a rotation) and a point x in the

domain of R0. To this point we associate a Sturmian word u de�ned by the action of R, and

another Sturmian word v, de�ned by the action of R0. The relation between these words is

simple, since the orbit of x under the action of R0 is a subset of the orbit under the action of

R, and since, by de�nition, we have removed all points in the orbit that follow immediately

a point of the orbit in interval 0 (the removed points must be in the interval 1). Thus, to

obtain u from v, we simply replace all symbols 0 in v by 01 while keeping all symbols 1

unchanged; this tells us that u = �0(v).

After repeating this operation at most [1=�] times, we get a rotation de�ned on the

interval [�[1=�� 1]; �[, with associated substitution �
[1=�]
0 . If the point x is in this interval,

we can proceed; otherwise, we must take the �rst point in the positive orbit of x which is in

the inducing interval. This point is easily seen to be x0 = Rb(x) if the associated Sturmian

word u can be written as 0b�a0(v).

We now renormalize the induced rotation, as shown in Fig.6.1, to get a biggest interval

of length 1 on the left; all that is needed is to multiply by �1=�; this gives a rotation of

angle f1=�g, and a new point x1 = �x
0=�. We have clearly

x = �b0�� x1:�:

Since we have now returned to the initial situation (except that now the interval 1 is

on the left), we can repeat the process, using alternatively �0 and �1. We have proved

that an = [1=�n], where (�n) is the orbit of � under the continued fraction map. That is,

[a0; a1; � � � ] is the continued fraction expansion of �.

A simple recurrence shows that one can de�ne a sequence of points xn, all bounded by

1, such that

x =

nX
i=0

bi�i + �nxn:

Since the �n converge exponentially fast to 0, the series converges, completing the proof.

Remark 6.1. It is a classically known fact that if pn=qn are the best rational ap-

proximations for �, given by the �rst n terms for the continued fraction expansion, then

pn � qn� = �n. Here the numbers �n satisfy the recurrence relation �n+1 = �n�1 � an�n.

We mention that it is possible, although not very helpful to one's understanding, to give

a proof of the Markov condition on the coeÆcients bn by means of this relation.

6.2. The Dual Number System

To make use of the dual coding given by the substitutions �0; �1 de�ned in x4.4, it will be

more convenient to consider a rotation of angle � on [0; 1[. We will induce on the smallest

interval if is on the left, and on the image of the smallest interval otherwise; all of the

properties of the coding can be deduced from this algorithm.

Theorem 6.2. Let u be the Sturmian word determined by the itinerary of a point x

with respect to the rotation of angle � on [0; 1[. Let (an; bn) be the sequence determined by

the third multiplicative coding of u from x4.6, using �0 and �1. Then (an) is the continued

fraction expansion of �, and if we de�ne �0 = �, �n+1 = f1=�ng and 
n = �0�1 � � ��n, we

have

x =

1X
n=0

bn
n:
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Proof. We reproduce the preceding proof almost exactly, except that one needs here to

make a distinction between words of type 0 and of type 1. For words of type 0, we consider

the �rst point in the forward orbit that is in the inducing interval, while for words of type

1, we take the �rst such point in the backward orbit.

There is in this case an easier interpretation: we think of the sequence 
n as a basis for

a number system, and try to express x in this basis, using the greedy algorithm. The digits

we then get will be the bn, with the Markov condition an immediate consequence of the

recurrence relation 
n�1 = an
n + 
n+1.

6.3. An Explicit Conjugacy Between the Symbolic and Algebraic Models for

the Scenery Flow

In x4.1, given a point in E�, we de�ned an associated pair of Sturmian sequences given

by the symbolic dynamics for the horizontal and vertical 
ows.

We can now compute the inverse of this map.

Theorem 6.3. Let (u; v) be two Sturmian sequences with the same initial letter. Let

(an; bn)n2Nbe the multiplicative coding of u, and (a0n; b
0
n)n2Nbe the dual multiplicative cod-

ing of v, as explained in x4.6. Let � (resp. �0) be the number whose continued fraction

expansion is (an) (resp. (a
0
n)), and let x (resp. y) be the number whose Ostrowski expansion

is (an; bn)n2N(resp. whose dual Ostrowski expansion is (an; bn)n2N). Let k = 1 + ��0.

Then, the two Sturmian sequences correspond to a pair of boxes of total area 1, with respec-

tive dimensions (1; 1=k) and (�; �0=k), and a point with the coordinates (x; y=k). Whether

the largest box is on the left or on the right is given by the type of the sequence u.

Remarks 6.4. The role of the constant k above is simply to normalize the total area.

We mention that there are integer number systems which are closely related to these real

number systems. Consider the sequence qn de�ned by qn+1 = anqn + qn�1, q0 = 1, q�1 = 0

where these are the denominators of the best approximations associated with the continued

fraction expansion [a0; a1; � � � ]; then every positive integer N can be written in a unique way

as N =
nP
i=0

biqi, where the integers bi satisfy the conditions that 0 � bi � ai, and that if

bi = ai then bi�1 = 0. This fact is clear from the greedy algorithm and the above recurrence

relation.

This number system is very close to the �rst one we considered, the main di�erence being

that here we have �nite sums. It turns out that it corresponds in fact to those points in the

positive orbit of 0 which have a �nite coding. The point 0 itself gives two Sturmian words,

the two �xed words of the sequence of substitutions; its second image corresponds to the

special word of the system.

It is in fact possible to recover everything just using the integers; this is carried out in

[50]. One can de�ne a distance on the integers in the following way: if N =
nP
i=0

biqi and

N 0 =
nP
i=0

b0iqi, de�ne d(N;N 0) = 2�k, where k is the smallest number such that bk 6= b0k. If

we take the completion of N for this distance, and identify a countable number of pairs of

elements in the completion (the two maximal elements for the lexicographic ordering, and

their backwards orbit), we obtain the circle; the addition of 1 on the integers extends to a

map on this completion which is the rotation by angle �.

One can proceed similarly with the dual system, writing each integer (this time positive

or negative) as N =
nP
i=0

bi(�1)
iqi. It is remarkable that the �rst number system allows us to
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write positive or negative reals, but only positive integers, while with the the dual system

we can write positive or negative integers, but only positive real numbers.

One would like to try to extend these results to other recurrent sequences, in particular

to recurrent sequences of higher order. This has already been carried out for certain recur-

rent sequences, in particular for the recurrent sequence of degree three (the \Tribonacci"

numbers) de�ned by Tn+3 = Tn+2 + Tn+1 + Tn. In that case one gets a translation on a

2-torus, coded by a fractal domain (cf. [39, 33]).

We remark that with this system, one can develop real numbers only in a compact set.

However, if instead of an in�nite sequence (an)n2Nwe take a biin�nite sequence (an)n2Z,

we can give developments for any real number, in the form of sequences (bn)n>�k. The

same type of development allows one, for example, to give arithmetic formulas for special

Sturmian tilings of the line. Here again, we can de�ne an adic topology; the completion,

which consists of biin�nite sequences (bn), corresponds to the space of all Sturmian tilings.

A special case arises when the continued fraction sequence is periodic. (The simplest case

of this is the well-known Zeckendorf expansion, which corresponds to the golden number.)

It is then easy to build the natural extension of the coding process, by taking the bin�nite

extension of the stationary Markov process associated to the periodic continued fraction.

(This has no meaning in the general case, since there is no single natural way to extend on

the left a given continued fraction if it is not periodic.) In that way, we come to the theory

of hyperbolic toral automorphisms, and the formulas above give an explicit description

of certain Markov partitions for these maps of the torus. We can then obtain explicit

coordinates for a Markov partition of the type (x; y) =
� 1P
n=0

�n�
n;

�1P
n=�1

�n�
0n), where �0

is the conjugate of a Galois integer �, �n; �n belong to a �nite set of elements of Q[�], and

where the sequence is subject to some explicit Markov condition.

x7. Rauzy Induction on the Exchange of Three Intervals

We present here a further model of the scenery 
ow in terms of exchanges of three

intervals.

Recall that an interval exchange transformation (IET) is a one-to-one map of an interval to

itself, which is everywhere continuous on the right, and is continuous with derivative 1 except

on a �nite set. Thus geometrically, an interval exchange transformation consists in cutting

the given interval in a �nite number of (left-closed, right-open) subintervals and permuting

them by translations. Therefore, an interval exchange transformation on k intervals is

completely de�ned by a vector � = (�1; � � � ; �k) of positive reals, giving the length of the

intervals, together with a permutation � of k symbols.

A fundamental property is that the �rst return map of an IET with k intervals on a

subinterval is an IET with at most k+ 2 intervals. Moreover, if the induction subinterval is

carefully chosen, then the �rst return map will again be an IET on k intervals. (For this,

the induction interval must be an admissible subinterval, that is, both extremities must be

of the type T k(ai), for k 2Zand ai a discontinuity point; and the interval must contain no

point of the orbit between ai and T k(ai) (cf. [44]).)

A basic tool for studying dynamics of interval exchanges is the Rauzy induction procedure:

given an interval exchange (�; �), we then induce on the largest admissible subinterval

containing 0; one checks from the de�nition that this interval is [0;min(�n; ���1n)[.

The �rst non-trival example of an interval exchange is the exchange of two intervals,
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that is, a rotation. In the preceding section, the coding using �0 and �1 is the coding one

obtains from the Rauzy induction for this rotation. If one instead, however, induces on a

non-admissible interval, then one will have produced not a rotation but an exchange of three

intervals.

The next case to consider is the exchange of three intervals. In order to get something

non-trivial, one needs to use the permutation (321). The reason is that three of the other

permutations yield interval exchanges with an interval of �xed points, while the remaining

two permutations on three letters yield a rotation. However, as is well-known (cf. [31]), the

Rauzy induction applied to an exchange of three intervals will give a rotation.

Now this induced map is indeed a rotation, but in fact it contains more information than

just the rotation: there is also a distinguished point in one of the two continuity intervals,

coming from the removable discontinuity. In particular, the Rauzy induction for this interval

exchange will not be the same as Rauzy induction applied to the corresponding rotation,

since it will take into account that distinguished point.

Fig. 6.2. Plane Tilings Given by Exchanges of 3 Intervals

One can check that, considering the sequence of permutations obtained by the Rauzy

induction procedure for three intervals, the sequences obtained will consist of all of the

non-eventually-constant in�nite paths in the following graph:

,! (231) ! (321) ! (312) -

In fact, these are equivalent: giving an exchange of three intervals, or giving a rota-

tion together with a distinguished point in its domain. It follows that any Sturmian word

determines (as above) a unique exchange of three intervals.

The Rauzy induction is a two-to-one map, corresponding to the additive continued frac-

tion. Veech (in [44, 45]) explains how to build explicitly the natural extension of this map.

The idea is to build rectangles of respective heights h1; � � �hk over the intervals of length

�1; � � � ; �k, and to chose a point on each vertical boundary of these rectangles. These heights

must be chosen in such a way that it is possible to identify the boundaries so as to get a


at surface, the point on the boundaries giving singularities (cone points) of this surface.

This condition on the heights is given by a set of linear equations that depends only on

the permutation. We will not go into detail here, remarking only that, for example for the

permutation (321), the condition is h2 = h1 + h3, while for the permutation (231), the

condition is h2 = h3. The meaning of these conditions will be clear from Fig.6.2.

One can then use the Rauzy induction to build a 
ow on the space of rectangles. Starting
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with a set of rectangles with total base width equal to 1, we apply Rauzy induction, and

then multiply the �rst coordinate by e
t
2 and the second by e�

t
2 , to reduce the new base

width to again be 1. We can show

Theorem 7.1. The natural extension of Rauzy induction is the �rst-return map of the

scenery 
ow to a cross-section.

This now is a di�erent cross-section from those we gave in x2; it is made of three rectangles

instead of two. One can in this context �nd a symbolic dynamics and arithmetic; we leave

the computation of the precise formulas to the reader.

It would seem at �rst sight that this version does not provide anything new. It is however

interesting to note that, for Rauzy induction on three intervals, the lengths of intervals

are given by 3 � 3 matrices. Therefore in the periodic case we should get for the matrix

eigenvectors of order three. However, since this corresponds to a periodic continued fraction,

we can get in this case only quadratic integers, and not cubic integers as might be expected.

In fact one can, in a similar way, produce matrices of arbitrary size by introducing extra

points and thus considering the rotation to be an exchange of k intervals. By applying the

Rauzy induction, we will then get interval exchanges \of rotation class" (cf. [36]). This leads

to a generalization of the scenery 
ow, where we now follow a �nite set of points in the torus

(cf. the section which follows). There is a similar notion for general interval exchanges:

some interval exchanges can be reduced, by Rauzy induction, to interval exchanges on a

smaller number of intervals, with marked points, while others are primitive in this respect.

It would be interesting to have a combinatorial condition that would insure primitivity.

We mention that a deep study exchanges of 3 intervals has been made recently, by Fer-

enczi, Holton and Zamboni, using a di�erent induction procedure; this yields many surprising

results, notably an example of an interval exchange on 3 intervals that is measurably, but

not topologically, conjugate to a rotation. It would be interesting to understand the link

with the viewpoint of Veech and Rauzy.

Another point of interest is that the 
ow on the natural extension of the Rauzy induction

has a well-de�ned geometric interpretation, as the Teichm�uller 
ow on strata of quadratic

di�erentials (cf. [46]). In the next section, we will show how to interpret the scenery 
ow

as Teichm�uller 
ow on the twice punctured torus.

x8. A Geometric Model: Pairs of Foliations
and the Teichm�uller Scenery Flow

It is well known that the diagonal 
ow on the quotient SL(2;Z)nSL(2;R) is naturally

isomorphic to the geodesic 
ow on the modular surface, and can be identi�ed with the

Teichm�uller 
ow of conformal structures on the torus.

If we consider the once-puctured torus, the Teichm�uller 
ow stays the same. The reason

is that the torus is a homogeneous space, with a transitive group of automorphisms. So, if

T and T 0 are two tori equipped with conformal structures, and if there is a conformal auto-

morphism from T to T 0, then, for any x 2 T and x0 2 T 0, there is a conformal automorphism

that sends x to x0.

Another way to explain this is as follows. The Teichm�uller 
ow acts on the space of

quadratic di�erentials. (A quadratic di�erential q is locally de�ned by q = f(z) dz2, where

z is a local complex coordinate and f is a holomorphic function; a change of coordinates

z = �(w) tranforms this formula in q = g(w) dw2, where g(w) = f Æ �(w) � �0
2
(w); the

function f is allowed to have poles only at the punctures, if any, of the surface.) On the
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compact torus, a quadratic di�erential has no pole, so, by the index formula, it has no zero

and hence must be a constant. On the once-punctured torus, a quadratic di�erential has at

most a simple pole, at the puncture; its quotient by a constant quadratic di�erential gives a

conformal function on the torus with at most a simple pole, whence this conformal function

must be constant, i.e. the puncture is a removable singularity. We see therefore that the

space of quadratic di�erentials is the same for the torus and the once-punctured torus, so

their Teichm�uller 
ows are the same.

Things are di�erent for the twice-punctured torus: we have here (cf. [35]) three possible

cases, describing three strata of quadratic di�erentials:

|two simple poles and two zeroes of order 1, giving a stratum of non-orientable quadratic

di�erentials (this is the \main stratum", of maximal dimension: almost all (in the measure

or topological sense) quadratic di�erentials on the twice punctured torus belong to this

stratum);

|two simple poles and a zero of order 2, giving a stratum of non-orientable quadratic

di�erentials;

|no pole and no zero, giving a stratum of constant (orientable) quadratic di�erentials.

For the same reason as above, it is impossible to have only one simple pole: either the two

singularities are removable and the quadratic di�erential is constant, or neither is removable.

The �rst two strata are quite complicated; the last one seems almost trivial, and one

could think that, since it consists in constant quadratic di�erentials, it is isomorphic to the

case of the non-punctured torus. This however is not the case: the formal de�nition of this

constant quadratic di�erential includes the two punctures, and since the group of conformal

automorphisms is transitive, but not 2-transitive on the torus, a given quadratic di�erential

with di�erent choices for the punctures will give di�erent elements of this stratum.

In fact, as one can check, the space of constant quadratic di�erentials on the twice punc-

tured torus is a set of full measure in the space SA(2;Z)nSA(2;R) we de�ned in x1 (since

the two punctures must, by de�nition, be distinct, we cannot get the points (M;
�!
0 ); the

corresponding punctures would in that case be the same). Using the fact that a quadratic

di�erential can be locally (away from the zeroes and the punctures) written as the square

of a holomorphic one-form q = !2, one gets two transverse foliations, given by the real

and imaginary part of this holomorphic one-form. It is elementary to check that these two

foliations possess a well-de�ned transverse invariant measure. In fact these two foliations

together with their transverse invariant measures de�ne a 
at structure on the surface, hence

a conformal structure, and moreover a quadratic di�erential.

In particular, if a quadratic di�erential on the twice punctured torus is non-singular, it

is constant, and so it de�nes a pair of tranverse linear measured foliations on the torus. We

choose by convention one of the punctures to be 0; taking the universal cover of the torus,

the two foliations lift to transverse measured foliations, which can be used as coordinates;

the puncture 0 lifts to some lattice �, and the other puncture lifts to some distinct translate

of �. The choice of which of these two punctures is 0 is irrelevant, since it amounts to a

change by �Id, while we must in any case quotient by the group of automorphisms of the

twice-punctured torus.

The Teichm�uller 
ow consists in multiplying one of the transverse measures by et=2 and

the other by e�t=2. Restricting to the stratum of constant quadratic di�erentials, and

coordinatizing by means of the space SA(2;Z)nSL(2;R), we obtain

Theorem 8.1. The Teichm�uller 
ow on the stratum of constant quadratic di�erentials
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on the twice punctured torus is conjugate to the restriction of the scenery 
ow gt de�ned in

x1 to the subset f(M;�!v )j�!v 6= 0g in E.

It is clear that the analogous procedure can be carried out in the general case, the modular

space of a Riemann surface. One then gets a �ber bundle, with �ber the given surface; this

contains a suspension of any pseudo-Anosov di�eomorphism (sitting over periodic orbits).

We expect to come back to this subject in a future paper.

x9. Shannon-Parry Measures for Induction on Sturmian Sequences

If one considers the Sturmian system associated to a �xed periodic continued fraction

expansion, by taking the coding sequence one gets a subshift of �nite type. By taking

the natural extension, one can code in this way all toral automorphisms. We get here

three measures: the invariant measure for the automorphism, and the invariant transverse

measures for the stable and unstable foliations.

It is possible to recover these measures directly at the symbolic level. The recoding of

Sturmian sequences gives a subshift of �nite type, and we construct the Parry-Shannon

measure (which is the measure of maximal entropy for the subshift) as in [10]. In other

words it is the Gibbs measure for the potential function which is identically zero; so we call

it the Gibbs state. Via the isomorphism to the 
at torus, this is exactly Lebesgue measure

projected from R2.

The transverse measures are the following symbolically: they are the conditional Gibbs

measures. These are dual, one conditioned on the past, and one on the future, and there are

two interpretations for each: as transverse measure to one foliation, and as a measurement of

length along the other. This measurement of length de�nes a sequence of scaling functions,

when evaluated on 0-cylinders at successive levels k; the scaling function assigns lengths

to nested sub-tiles. In this way one builds up the scenery (a nested tiling of the real line),

labelled by an in�nite past or future in the symbol space, with lengths given by the sequence

of scaling functions or equivalently by the conditional Gibbs measure for that tail.

These ideas are just as valid for the non-constant case. Consider a Sturmian system


0; to each element of this system, we associate a coding sequence, and by shifting, some

element in a Sturmian system 
1. In this way we de�ne a sequence of Sturmian systems 
n,

together with shift maps �n : 
n ! 
n+1. Taking the natural extension, let us suppose that

this sequence is biin�nite. We then de�ne an operator L : C(
n)! C(
n+1) by L(f)(x) =P
y:�n(y)=x

f(y). We also de�ne the dual operator L�. Here, the notion of eigenvector is

replaced by a sequence of positive vectors invariant by the operator. We have the following

Proposition.

Theorem 9.1. Let 
 be a Sturmian system of type 0, de�ned by the coding sequence

(an)n2N. Let 
n be the sequence of Sturmian systems obtained by recoding, and let (�n)

be a sequence of measures invariant by the associated dual operator. If � is the number

with [a0; a1; � � � ] as continued fraction expansion, and if we denote by [0] and [1] the basic

cylinders in 
 (in the usual notation, and not with the recoding), we have

�0([1])

�0([0])
= �:

Proof. The essential property is that it is easy to compute �0([0]) and �0([1]) if we know

the same quantity for �1. Indeed, we have �0([0]) = �1([0]) + �1([1]) and �0([1]) = �1([1]).
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More generally, if we denote by Vn the vector

�
�n([0])

�n([1])

�
, we compute immediately Vn =

MnVn+1, where Mn =

�
1 1

0 1

�
if 
n is of type 0, and Mn =

�
1 0

1 1

�
if it is of type 1.

This means that, if we denote by � the positive cone ofR2, V0 must belong to the positive

cone that is the intersection of the M0M1 � � �Mn�. But it is classical that this intersection

reduces to a line whose slope is given by the continued fraction.

We deduce from this that the measure �0 (and hence the eigenmeasure sequence �n) is

uniquely de�ned up to a multiplicative constant; the theorem is true for all �n, and knowing

the measure �n on cylinders of length 1 allows one to compute the measure �0 on cylinders

of length n.

The same turns out to be true for the eigenfunction: by the same proof, it is constant

on each of the two cylinders, and the ratio of the two values is de�ned by the negative part

of the biin�nite sequence (an). The product of the eigenfunction by the eigenmeasure is a

sequence of invariant measures for the shift. We think of this in the following way: instead

of �nding an invariant measure for a toral automorphism, we are now given a sequence of

toral automorphisms on a sequence of tori, and we can de�ne a natural invariant measure.

This brings us to the notion of mapping families (cf. [3]).

Remark 9.1. What we have found here are special cases of invariant measures for adic

systems (cf. [49]). However, it is interesting to consider not only invariant measures for

a given dynamical system, but sequences of related measures for sequences of dynamical

systems linked by induction. Examples are provided by a generalization of the Ruelle-

Perron-Frobenius Theorem to nonstationary subshifts of �nite type. This is related to

random dynamics on the one hand and to the study of invariant di�erentiable structures on

the other (cf. [3, 11] and the references given there).

x10. Some Generalizations

There are two main possible generalizations. The �rst one is to extend these ideas to

other surfaces than the torus. A large part of this has already been done in the work of

Veech (cf. [44{46]); in fact, one of the starting points for this paper was the study of [46],

and in particular the role of the punctures that turn out to be removable singularities.

The symbolic dynamics associated to this situation is well understood: these are some

types of sequences of complexity (k�1)n+1, generated by a �nite number of substitutions,

the admissible sequences of substitutions being de�ned by a so�c system (given by the

so-called Rauzy graph).

There are still some unclear points: in particular, there should be a dual algorithm to

the Rauzy algorithm; some other algorithms have been proposed (cf. [14, 16, 32]), and they

are probably the dual algorithm we are looking for. What kind of arithmetical formulas one

should get is not yet clear.

Another possible generalization is to go to a higher dimension; the paradigm here should

be the Markov partitions for hyperbolic automorphisms of the torus Tn. The situation here

seems to be much more diÆcult, due to the fact that, by a theorem of Bowen (cf. [12]), the

boundaries of such Markov partition, in dimension larger than 2, and for irreducible auto-

morphisms, cannot be smooth. In fact, some explicit examples (with nice fractal boundaries)

are known (cf. [39, 33]); in these cases, it has been possible to give explicitly symbolic dy-

namics and arithmetic formulas.
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However, the only cases that have been explicitly studied as of this writing are \periodic"

cases, and in particular those for which the eigenvalue is a Pisot number. The work of

Dumont, Kamae and Takahashi (cf. [19]) could open some possibilities for the study of

non-Pisot examples. We hope that it will be possible to extend the methods of the present

paper to cover some non-periodic cases.

It is worth remarking that these two di�erent generalizations could be linked: it is known

(cf. [6]) that some particular symbolic dynamical systems can represent both an interval

exchange and a translation on a torus of dimension three or more.

One can also try to extend to multidimensional continued fraction algorithms, such as the

well-known Jacobi-Perron algorithm. A step in this direction has been made in [1], where

this algorithm has been linked toZ2-action by rotations on the circle. In that case, one can

obtain a generalized Ostrowski expansion for elements of R2, but as yet it is unclear whether

there is in this case any structure which corresponds to the scenery 
ow.
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