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OF NONUNIFORM TIMOSHENKO
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Abstract

The boundary stabilization problem of a Timoshenko beam attached with a mass at one
end is studied. First, with linear boundary force feedback and moment control simultaneously
at the end attached with the load, the energy corresponding to the closed loop system is proven
to be exponentially convergent to zero as time ¢ — co. Then, some counterexamples are given
to show that, in other cases, the corresponding closed loop system is, in general, not stable
asymtotically, let alone exponentially.
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¢1. Introduction

The purpose of this paper is to study the stabilization problem of Timoshenko beam
attached with a load of mass M at one end and forced by linear boundary feedback controls.
The system to be investigated in this paper is described as follows (see [1] for example):

p+ (K(p—w")) =0, 0<z<{ t>0,

I,o— (El¢)Y + K(p—w') =0, 0<z<{ t>0,

w(Ovt) = 90(07t) =0, (1.1)

Muis(€,t) — K()(p(€, 1) —w'(£,1)) = u(t),

EI(0)¢'(L,t) = usa(2).
Here uq (t) and ug(t) are the boundary feedback controls of force and moment respectively,
the meanings of all the other variables, functions and coefficients are the same as those
described in related papers, say paper [1] for example. In this paper, we always assume that
there exists a positive constant c¢; satisfying
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Condition S. p,I,, K, El € C'[0,4], p,1,,K,EIl > c;.

Here and afterwards, the prime and the dot always denote derivatives with respect to
space and time variables, respectively.

Up to now, a lot of results on various boundary feedback stabilization problems of Tim-
oshenko beam equation have been turned out (see [1,3,4]). In paper [1], the authors proved
that with both force and moment feedback controls applied to just one end of a Timoshenko
beam, the energy corresponding to the closed loop system decays uniformly to zero as time
t — oo. In this paper, we consider the asymptotic behavior of a tiploaded Timoshenko
beam with linear boundary controls. As will be seen below, this type of controls, under
some conditions, can stabilize the Timoshenko Beam exponentially, while under others, the
corresponding closed loop system is even not asymptotically stable.

This paper is arranged as follow. In Section 2, by virtue of semigroup theory of linear
operators (see [5, 6]), we prove the well-posedness of the corresponding closed loop system.
In Section 3, by applying the frequency domain multiplier method used in [9], it is shown
that the closed loop system (1.1) and (2.1) is exponentially stable if none of the feedback
constants «, 8, pin (2.1) are zero. Finally in Section 4, we derive some counterexamples
to show that, in general, the closed loop system (1.1) and (2.1) can not even be stabilized
asymptotically in other cases.

§2. The Well-Posedness of the Closed Loop System

For the system (1.1), we apply the following linear boundary feedbacks
{ul(t) = —Oé’ll)(g,t) +6(Q0(£a t) —’U.},(é,t)), (21)
U‘?(t) = —l@(& t)v
with «a, 8, 1 > 0. Set

_ [ Fult) = (b t) —w'(6r), i B#0, (2.2)
L w(, ), if =0. '
Then we have
L T S
— gy (u + EO (o(0,8) —w'(6,1)), if B=0.
Now the closed loop system (1.1) and (2.1) becomes
pi+ (K(p—w')) =0, 0<xz</ t>0,
I —(EI¢)Y + K(p—w')=0, 0<xz</{ t>0, (2.4)

£(t) — g(t) =0,
w(0,1) = 9(0.1) = EI(0)p!(6,8) + pp(L,t) = 0.

To incorporate the above closed loop system into a certain function space, we define a
product Hilbert space H by

H=Vy x L2(0,£) x Vj x L} (0,0) x R,
where
Ve ={p e H*(0,0) | p(0) =0}, k=1,2,
and H*(0,¢) is the usual Sobolev space of order k. The inner product in H is defined as
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follows: for Y = [wk, 2k, 0k, Yk, Ek|” € H, k=1,2,
V4 V4
(viva), = [ Ko ui)(@ - wh)do+ [ Egiwydo
0 0
¢ ¢ B
N / poE di + / TGy do + 7615,
0 0

where =y if f#A#0and 7= M if =0, and v = %. We define a linear operator
A in H by

w K z o, w
) 5 _( (%;w ) 5 D(A)
= b 6 b
2; (EIo")' K / i
I, g(sﬁ -—w )
3 g 13

D(A) = {[w, 20,187 € H | w,p € Vi, 2 € Vi, EIOS(O) + mp(t) = 0},
where
(e { Ma(0) = p(D) +w'(0), i B0,
z(0), if =0,
. {Kgm (MEQ - g)=0, ifB#0,
—a2(0) + EO (p(0) —w'(0), ifB=0.

Then we can write the closed loop system (2.4) as the following linear evolution equation
in H:

ay () _
o =AY (1), (2.5)

where Y(t) = [w(7 t)’ w(’ t)) 30('7 t)a 90(7 t)’ f(t)r

Theorem 2.1. Let A be defined as above, then A generates a Cqy semigroup T(t) of
contraction in H. Moreover, A has compact resolvent and 0 € p(A).

Proof. For any Y = [w,z,0,¢,£]” € D(A), integrating by parts and referring to the
boundary condition of Y € D(A), we have

_ KO8 e(0) = w' (O] — ayMB2[2(O) — ulp ()2, if B #0,

Re(Av. )= { i it 5 =0,
which implies the dissipativity of A.

For the maximal dissipativity of A, it is sufficient to show that VY = [w,Z, §, {/;, g]T €H,
there exists Y = [w, z, p, ¥, £]” € D(A), such that AY = Y. This assertion, however, can be
easily obtained via the direct calculation.

It is easy to show the compactness of the resolvent of A by using the Sobolev embedding
theorem. Finally a direct calculation shows that 0 € p(.A). The proof is finished.

Thus according to the semigroup theory, we obtain:

Theorem 2.2. For any Yy € H, (2.5), and hence the closed loop system (1.1) and (2.1),
has a unique weak solution Y (t) = T(t)Yy, where T(t) is the linear semigroup of contraction
generated by A. Moreover, if Yo € D(A), Y(t) = T(t)Yo becomes the strong solution to
(2.5).
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¢3. Exponential Decay of the Closed Loop System

We now discuss the exponential stability of the closed loop system (2.5) in the case of
aBu # 0. The energy corresponding to the solution to the closed loop system (2.5) is

1 L 4 L 4
ol [ Eetde s [ Klp-wPdot [ plofde+ [ 1igfds+ rle].
0 0 0 0

where Y (t) = [w(-,t),w(-, 1), o(-, 1), (-, 1), &(t)]7 is the solution to (2.5). It is easy to check
that in the case of Yy € D(A) and afu # 0,
E(t) = =K(0)y5 () = w'(0)]> = ayMB72|2(£)|> = ul(0). (3.1)

Let 2R denote the imaginary axis.

Lemma 3.1. iR C p(A), the resolvent set of A.

Proof. Since A has compact resolvent, it is sufficient to prove iRNo,(A) = (). Assuming
the contrary, then there exists an eigenvalue iA € iR of A. Obviously A # 0. Let ¥ =
[w, z,p,1,&]" € D(A) be an eigenfunction of A corresponding to ¢A. From the assumption
that a, 8, p > 0 and the fact that

Re (AW, W)y = K (0787 o(€) — ' (O — ayMB72|2(O)* — pl () = 0,

it follows that w and ¢ satisfy

(K(w' — 9))' + A2pw = 0,

(EI¢") — K(p—w') 4+ N, =0,

w(l) = p(l) =w'(l) = ¢'(£) = 0,

— %z(ﬁ) + o) —w'(¢) = 0.

Thus, according to the general theory of ordinary differential equations, we get w = ¢ =
& =0, and hence ¥ = 0, a contradiction.

Theorem 3.1. Suppose that Condition S holds. Then in the case of aBpu > 0, the energy
corresponding to the closed loop system (2.5) decays exponentially, that is, for every Yy € H,
there exist positive constants M, w, independent of Yy, such that E(t) < Me~“!||Yo|>.

Proof. From Lemmas 2.1 and 3.1, and according to [7], we need only to prove that

[(EX — A) 7| < +oo.

E(t)

(3.2)

lim
AER, [A|[—=+o0
Assuming the contrary, then there must be \, € iR and Z, = [wp, 2n, On, ¥n,&]" €
D(A), n=1,2,--- such that

1Zulle =1, [An]| = +o0 (as n — 00),
()\" - A)Z" = Zn é (~nagn>¢nv1znagn)T —0 (as n — OO),

which means that as n — oo,

¢ V4
/Kma%fmrw%waM+/Emam—mwm:dm (3.3)
0 0

¢ ¢
[ oz (K =) ot [t = (BLG) + Kon = wi) o
=o(1) (3.4)
2, ayM s K~y / 2
Re (A — A)Zn, Zn)w = pln (0] + 32 |20 (O)]7 + FWM(@ —w,(0))|"dz

= o(1), (3.5)
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K(0) MK{) « B
(ot )60 = (FH2 =5 ) 01 = ol (3:6)
It follows from (3.5) and (3.6) that
Anals [&nls 2 (O], [n (O], @n(l) = wy (0)] = o(1). (3.7)

From the definitions of A and ZL, we have
¢ ¢
)\n(/ Klpn —w;|2dx+/ Ellg, )
0 0
¢ ¢
- [ K@= )@, - wde - [ Bl
0 0
¢ ¢
— [ K@@, - wde + | EEd
0 0
Using Hélder inequality and the fact of ||Z, |3 = 1 and || Z,|l3 — 0 as n — 0o, we obtain

¢ ¢
)\n(/ K|<pn—w;l\2d:17+/ EI|gp’n|2dx)
0 0
¢ ¢
- [ K~ )@, ~wds - [ B = o) (38)
0 0
Referring to the definition of 4 and ZL, and integrating by parts, we get

4 14 4
([l + Lonf)e) + [ K G =) o0 —wida+ [ Bl

14 0 o
+ EL(0)y, (£, (£) = K(€)(pn(0) — w;, (6))Zn(0)
e ¢ S ) %Z E
= | Ezadat [ 1ds o (OF + K06 = G20 (0) 200

B
By the same argument as in proving (3.8) and by using (3.7), it follows that

¢ ¢ ¢
([ planl? + L) + [ K@ =200~ wi)de+ [ B 01de = o(1). (39)
0 0 0
Hence from (3.8) and (3.9) we get

l l ¥/
([ Klow = wiPdot [ Bl Pdn— [ (planl + LlonP)de) = of0),
0 0 0 (3.10)
¥/ ¢ ¥/
/ K| — wl)2di + / Bl Pda — / (Pleal® + LlulDdz = o(1).  (3.11)
0 0 0

Consequently, using (3.3) and the fact that
and &, = o(1), we obtain
Jo Klpn = w,da + [ B, Pde = § = o(1)
f() (p|zn|2 + Ip|d)n|2)dz - % = 0(1)3 (3'12)
4
fo ‘)‘n|2(p|wn‘2 + Ip|@n|2)dx - % = 0(1)'
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We now prove that
)\nwn( )a )‘n@n(e) 0( ) (313)
wy, (0), ¢, (£) = o(1), (3.14)
wa (), @n() = o(1) in L*(0,0). (3.15)
First we show (3.13). From (3.3), (3.7) and Condition S, we have

¢
/O EIl)‘nQDfn - ¢;L|2d$ = 0(1)7 1/%(@ = 0(1)7

and then by using Holder inequality it follows that

l
Anpn(l) = /0 O, — )+ i (0) = o(1),

Similarly, using (3.3), (3.7) and Holder inequality, we get
¢

Apw (€) :/Z ()‘ (w/ _ZI) (Anon — 1pn))‘“""/o( nPn — Yn)dr + 2,(£)

// gl — W )dsd + o(1) = o(1).

Next we prove (4.14). From (3.7) and (3.13), we obtain

wi,(0) = wy, () = ou(0) +n(l) = 0(1), @, (6) = —pEI(()" 4 (0) = o(1).
Finally (3.15) follows directly from the third assertion of (3.12).
Based on the above estimates, we now show that

0
lim [ (JApwn|* + [Anpnl?) =0, (3.16)

n—oo 0

which contradicts (3.12), and hence the proof of the theorem will be finished.
We have

n

1 - ~
Nw, — (K (W), — 0n)) = Zn + Apn, (3.17)
p

1 ~ ~
)\Z(Pn - T[(EI(,D;)/ - K(Qpn - w;z)] = ¢n + )\n(pn‘ (318)
p

Multiplying both sides of (3.17) and (3.18) by p(e"™ — 1)w,, and I,(e"* — 1)%,, respectively,
then integrating from 0 to ¢ and adding, we get

¢
Re (/ A2 p(e" — 1) w,w,d —l—/o AL, (e"™ — 1), @, dx

-/ (e - (K (w), — g e - / (e = 1) (B — Ko — ) )7ada)
2

L2x L2
P P

= Re ((z” + )‘n@m{/}vn + Ann), (€ — 1)(1‘};17 ‘P:J)

where 7 is a positive constant to be determined. It is not difficult to check that

A, =o0(1) (as n — o).
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Referring to (3.13) and integrating by parts, we obtain

¢ ¢
1
Re / 2 p(e" — 1w, W, dx = 5/ (ne"mp + (" — l)p’) Aty |2dz + o(1),
0 0

(3.20)
¢ 1
Re / N L,(e" — 1) pnpl,dr = 7/ (nemlp + (™ — 1)1;,) |An@n|?dx + o(1).
0 2 Jo (3.21)
From (3.3), (3.14) and (3.15), it follows that
¢
Re [ (e~ V(K (], - )W do
0
¢ ¢
= —Re / ne™ K (w), — on)w,dx — Re / (€™ — 1)K (w), — pp)wadz + o(1)
0 0
¢ ¢
= —/ ne™ K |w!|?dr — Re / (" —1)Kw,w) dx
0 0
¢
+ Re / (" — 1)K, wldx + o(1), (3.22)
0
¢ 1 7t
Re / (" —1)Kw,w dx = 75/ [ne™ K + (" — 1)K']|w, |*dz + o(1),
0 0 (323)
¢ ¢
Re / (" —1)Kp,wydr = —Re / (e" — 1) wndx + o(1). (3.24)
0 0
Combining (3.22), (3.23) and (3.24), we deduce
¢
Re / (e — 1)(K(w), — ) w,dx
0
1 ‘ ( nx T ! /12
=—= ne™ K — (e — 1)K>|wn| dx
2 Jo
¢
—Re / ("™ — 1)Ky, w,dx + o(1). (3.25)
0
Similarly, we have
¢
Re [ (e~ DI(ELG) - Ko~ ) )¢ ds
0
1 ‘ T x ! /2
=—5 [ me"™El - (™ — 1) El|py |"dz
0
¢
+ Re / ("™ — 1)Kw!, gl dx + o(1). (3.26)
0

From (3.19), (3.20), (3.25) and (3.26), we obtain
¢ ¢
/ (77/76’”” + (e — 1)/7/) Anwn|*dz + / (nemfp + (€™ — 1)1;/)) [ Anpn|?dz
0 0

¢ ¢
—|—/ (ne"“K — (e — 1)K’) |w!,|?da +/ (ne”wEI — (e — 1)EI'> ! |2dx
0 0
=o0(1) (asn— o). (3.27)
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Therefore, the assertion (3.16) follows from (3.27). The proof is then complete.

§¢4. Asymptotic Behavior of the Closed Loop System

Throughout this section, we assume that all p, I,, EI, K are positive constants. We
now discuss the case of afu = 0, and prove that the closed loop system (2.5), in general, is
not asymptotically stable. The main result in this section is the following

Theorem 4.1. Assume that apn = 0. Then there exist some constants po, Ko, 1,, and
Ely such that the corresponding closed loop system (2.5) with the coefficients po, Ko, I,
and Ely is not asymptotically stable.

Proof. Since the resolvent of A is compact, according to [8], for the closed loop system
(2.5) to be not asymptotically stable it is necessary and sufficient that there exists w € R
such that éw € 0,(A), the point spectrum of A.

(1) a8 #0, u=0. Let AV = 4wV with ¥ #£ 0 and
W = [, 2, ,€]7 € D(A).
It is obvious that w # 0. From Re (AV, ¥)3, = 0, we get
2(0) = p(f) —w'(£) = 0.
Then w and ¢ satisfy

%(w” — ) +w?z =0,

B B (o) 4wy =0, (11)
w(0) = ¢(0) = w(l) = ¢'(£) = o) —w'(f) = 0,
K . MK «
(4.1) can be rewritten as
7' = AZ,
B1Z(0) =0, (4.2)
ByZ(¢) =0,
where
r 0 1 0 0
2 2
_ / / T A —pP1w 0 0 1
L 0 —c c—piw? 0
[1 0 0 0
31:[3828],32:0 0 0 1],
|0 -1 1 0

p1=p/K, pa=\/1,/EI, a=piv® b=psw’, c=K/EIL

Let Z = PZ,, with

aq aq Q2 Q2
2 2 2 2
ag —o1 Qg —Qy

P=1 a8 —aBi afs —ap

a1 aciBi aasfBa acnfs
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. b++/(a—0)2+4
a1 = 7,\/a+ + (a2 ) + ac, (43)
z\/a“"— Vi@azbitdae ey S o

Qo = 2 (44)
\/y/(afb)2+24ac7(a+b)7 ith< e
—b) — —b)2+4
Bi=1+a2ja= 7Y ;a ) tdac (4.5)
a
—b —b)2+4
By—1+a2ja— @V TV @D Hdac (4.6)
2a
Then the first equation of (4.2) becomes Z{ = AZ,, where
AL plip— diag{a1, —ai, as, —as}.
The general solution to this equations can be written as
Zy(z) = diag{e® ¥, e” "% €727 72710
where O is a 4 x 1 constant vector. Denote
aq aq Qi a2
A af —af aB2 —afs
Q= et et age®2t age 2t . (4.7)
aa Bre®t acy Bre= o1t acBae2t ac fre= 2t
(aBy — a2)e** (a2 —aBr)e " (afy —a)e*2’ (a3 — afy)e 2t
Then (4.2) has nontrivial solution if and only if
1 1
rank (Q1) = 2 + rank oqsinh o o sinh Lo < 4, (4.8)
[1coshay (B cosh bag
or equivalently
ay sinh a1l = g sinh aigl, (4.9)
(1 cosh a1 £ = B3 cosh axl. ’

It is easy to see that there exist two positive numbers ug, vg satisfying
. . m
g Sin ug = vg sin vy, O<vg<§<uo<7r.

Set a1 = tug, as = vy, and

2, 2
ap = M, bo = (1= B1 — P2)ao, co = —P1f2a0
2—p1— P2
with
~ (v§ —u)cosvy ~ (v§ — ud) cosug
61_v8cosv0—ugcosuo’ > V2 cosvg — ul cosug

We can easily check that
B1 <0< pPy<,, (l—ﬁg)u%=<1—61)vg, ag > by > co >0,

and (4.3)—(4.6), (4.9) hold.
From the definitions of a,b and c, it is trivial to find pg, Ko, I,,, Ely and wg, such that

twy € 0,(A) for the system (1.1) with coefficients po, Ko, I,, and Ely.
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(2) uB # 0, a = 0. By the similar discussion, it follows that the closed loop system (2.5)
does not decay asymptotically if and only if

{ a1 sinh agl = g sinh a1 4, (4.10)

31 cosh ol = By cosh ai l

has positive solution (ag, bg,co). But the solvability of (4.10) can be proven by the similar
argument as above.

As for other cases of ap = 0, it is trivial to prove the desired conclusion. The proof is
then complete.

Theorem 4.2. Assume that o, 1t > 0 and 8 # 0. Then for all p, K, 1, and EI satisfying
Condition S, the energy of the loop system (2.5) decays asymptotically, but not exponentially.

The proof of the first assertion of Theorem 4.2 is similar to that of Lemma 3.1. Since
the control operator is compact, it follow from [4] that the closed loop system can not be
exponentially stable.
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