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Abstract

For the infinite delay difference equations of the general form, two new uniform asymptotic
stability criteria are established in terms of the discrete Liapunov functionals.
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§1. Introduction

The aim of this paper is to establish the stability criteria for the infinite delay difference

equations of the form

x(n+ 1) = F (n, xn) for n ∈ Z, (1.1)

where F : Z×CH → Rk, Z denotes the integer set, Rk is the n-dimensional Euclidean space,

CH = {φ ∈ C : ∥φ∥ < H} for some constant H > 0, while

C = {φ : {. . . ,−2,−1, 0} → Rk | φ is bounded}
with

∥φ∥ = sup
s≤0

|φ(s)| for φ ∈ C,

and xn(s) = x(n+ s) for s ≤ 0. Here, and in the sequel, | · | is a norm in Rk, and we always

assume the variables n, i, j, and s take integer values and the corresponding intervals and

inequalities are discrete ones.

As usual, we assume that F (n, 0) ≡ 0 so that (1.1) has the zero solution x(n) ≡ 0. Also,

we assume that for any given integer n0 ∈ Z and a given initial function φ ∈ CH , there is a

unique solution of (1.1) defined for all n ≥ n0, denoted by x(n0, φ)(n), such that it satisfies

(1.1) for all n ≥ n0 and

xn0(n0, φ)(s) = φ(s) for s ≤ 0.
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For our purpose, we first introduce the following definitions (cf. [1,2]).

Definition 1.1. The zero solution of (1.1) is uniformly stable (US) if for each ε > 0 and

any n0 ∈ Z, there exists a δ > 0 independent of n0 such that if ∥φ∥ < δ, then

|x(n0, φ)(n)| < ε for all n ≥ n0.

Definition 1.2. The zero solution of (1.1) is uniformly asymptotically stable (UAS) if

it is US and there is a δ0 > 0 such that for each γ > 0, there exists an integer N(γ) > 0

independent of n0 such that if ∥φ∥ < δ0, then

|x(n0, φ)(n)| < ε for all n ≥ n0 +N(γ).

Definition 1.3. A continuous, strictly increasing function W : [0,∞) → [0,∞) with

W (0) = 0 is called a wedge function. (We denote the wedge functions in the sequel by W or

Wi, where i is an integer.)

Definition 1.4. A semi-norm | · |s on C is said to have a fading memory with respect to

the norm ∥ · ∥ on C if |φ|s ≤ ∥φ∥ for all φ ∈ C and if for any given ε > 0 and D > 0 there

exists an integer h0 > 0 such that

|φ|s ≤ max{∥φ(·)∥[−h,0], ε}

whenever an integer h ≥ h0 and ∥φ(·)∥(−∞,−h] ≤ D, where we define for any two integers

a, b with a < b (a may be −∞) that

∥φ(·)∥[a,b] = max
a≤s≤b

|φ(s)|.

More generally, rather than C we can define the state space (or called the phase space)

as follows (cf. [3, 4]).

Let G = G0 ∪ {g0}, where g0(s) = 1 for all s ∈ Z−, and

G0 = {g : Z− → [1,+∞) | g is nonincreasing, g(0) = 1, and

g(s) → +∞ as s→ −∞},

where Z− denotes the set of all non-positive integers.

For any given g ∈ G, we define the state space

Cg = {φ : Z− → Rk | |φ|g < +∞},

where |φ|g = sup
s≤0

|φ(s)|/g(s). Then it is easy to see that (Cg, |·|g) is a Banach space. Trivially,

Cg0 = C is the space of bounded sequences with the supremum norm: ∥φ∥ = sup
s≤0

|φ(s)|.

Definition 1.5. For g, g∗ ∈ G, by g ≤ g∗ we mean that g(s) ≤ g∗(s) for all s ≤ 0; while

by g < g∗ we mean that g ≤ g∗ and lim
n→∞

[
sup
s≤0

(g(s)/g∗(s− n))
]
= 0.

Corresponding to the state space Cg, we should assume that the right-hand functional

F (n, φ) of (1.1) is defined on Z × Cg.

Definition 1.6. The zero solution of (1.1) is uniformly stable in Cg (g-US) if for each

ε > 0 and any n0 ∈ Z, there exists a δ > 0 independent of n0 such that if ∥φ∥g < δ, then

|x(n0, φ)(n)| < ε for all n ≥ n0.

Definition 1.7. The zero solution of (1.1) is uniformly asymptotically stable in Cg (g-

UAS) if it is g-US and there is an δ0 > 0 such that for each γ > 0, there exists an integer
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N(γ) > 0 independent of n0 such that if ∥φ∥g < δ0 then

|x(n0, φ)(n)| < ε for all n ≥ n0 +N(γ).

Definition 1.8. A function β : Z → R+ is said to belong to B, denoted by β ∈ B, if

there exist constants α, L > 0 such that
n+L−1∑
s=n

β(s) ≥ α for all n ∈ Z.

In [1] and [5] we have established several results on the UAS of (1.1). However, the results

we are going to establish in this work are different from them but are the counterparts of

the relevant results in [2] and [4] which deal with the infinite delay differential equations.

§2. Main Results

The first result is on UAS of (1.1).

Theorem 2.1. Suppose that there exists a Liapunov functional V : Z × CH → R+, a

semi-norm | · |s having a fading memory with respect to ∥ · ∥, a function Φ : Z+ → R+ with
∞∑
s=0

Φ(s) <∞, and a positive constant η (η < H) such that

(i) W1(|φ(0)|) ≤ V (n, φ) ≤W2[|φ(0)|+
∞∑
s=0

Φ(s)W3(|φ(−s)|)] +W4(|φ|s),

(ii) ∆V(1)(n, φ) ≤ −W5(|φ(0)|),
(iii) W1(u)−W4(u) > 0 for all u ∈ (0, η],

where

∆V(1)(n, φ) ≡ V (n+ 1, xn+1(n, φ))− V (n, φ)

with xn+1(n, φ) being a solution of (1.1). Then the zero solution of (1.1) is UAS.

Proof. (I) First, we show the US of the zero solution of (1.1).

Let J =
∞∑
s=0

Φ(s). For any given ε > 0 (ε < H) and n0 ∈ Z, choose δ = δ(ε) > 0 (δ < ε)

so small that W2(δ + JW3(δ)) + W4(δ) < W1(ε). Then let φ ∈ Cδ, and denote x(n) =

x(n0, φ)(n), xn = xn(n0, φ), V (n) = V (n, xn), and ∆V (n) = ∆V(1)(n, xn).

By assumption, | · |s has a fading memory w.r.t. ∥ · ∥, we have |φ|s ≤ ∥φ∥ < δ, and thus

by (i) and (ii),

W1(|x(n)|) ≤ V (n) ≤ V (n0) ≤W2(δ + JW3(δ)) +W4(δ) < W1(ε) for all n ≥ n0,

which implies that |x(n)| < ε for all n ≥ n0. This shows that the zero solution of (1.1) is

US.

(II) Furthermore, we can assert that the zero solution is UAS.

For ε = η, we can find the corresponding δ = δ(η) > 0 (δ < η) by the US. Let δ0 = δ(η).

Then [n0 ∈ Z, ∥φ∥ < δ0, n ≥ n0] imply that V (n) < W1(η) and |x(n)| = |x(n0, φ)(n)| < η.

Now for any given γ > 0, we will find an integer N(γ) > 0 such that [n0 ∈ Z, ∥φ∥ <
δ0, n ≥ n0 +N ] imply that |x(n)| = |x(n0, φ)(n)| < γ.

To this end, we first choose a suitable constant µ with 0 < µ < η such that

W2(3µ) +W4(µ) < W1(γ). (2.1)

By the assumption (iii) there exists a σ > 0 such that 0 < σ < µ and

W1(u)−W4(u) ≥ σ +W2(3σ) for u ∈ [µ, η]. (2.2)
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Since W1 is uniformly continuous on [µ, η], there exists a constant ρ with 0 < ρ < µ − σ

such that

W1(u)−W1(u− ρ) < σ for all u ∈ [µ, η]. (2.3)

It now follows from (2.3) and (2.2) that

W1(u− ρ)−W4(u) > W1(u)− σ −W4(u) ≥W2(3σ) for u ∈ [µ, η]. (2.4)

Since | · |s has a fading memory w.r.t. ∥ · ∥, for D ≡ η + δ0 and the above σ > 0 there

exists an integer h0 > 0 such that

|ψ|s ≤ max{∥ψ∥[−h,0], σ} (2.5)

whenever an integer h ≥ h0, ψ ∈ C and ∥ψ∥(−∞,−h] ≤ D = η + δ0. We may choose h ≥ h0
so large that

W3(D)

n−h∑
s=−∞

Φ(n− s) =W3(D)

∞∑
s=h

Φ(s) < σ.

Noting that |x(n)| < η < D for all n ∈ Z, i.e., ∥xn∥ < D for all n ∈ Z, which implies

∥xn∥(−∞,−h] < D, we derive from (2.5) that

|xn|s ≤ max{∥x∥[n−h,n], σ} for any n ∈ Z.

On the other hand, for any n and n̄ with n ≥ n̄ ≥ n0 we have

V (n) ≤ V (n̄)−
n−1∑
s=n̄

W5(|x(s)|) ≤W1(D)−
n−1∑
s=n̄

W5(|x(s)|).

It follows that there exists an integer N0 > 0 such that for each n̄ ≥ n0 there exists some

n∗ ∈ [n̄, n̄+N0] with |x(n∗)| < σ.

Hence, we can find a sequence {ni} such that

ni−1 + h ≤ ni ≤ ni−1 + h+N0, and |x(ni)| < σ for i = 1, 2, · · · .

Then we have for any n ≥ n0 + h that

V (n) ≤W2[|x(n)|+
n∑

s=n−h

Φ(n− s)W3(|x(s)|)

+
n−h∑

s=−∞
Φ(n− s)W3(|x(s)|)] +W4[max{∥x∥[n−h,n], σ}]

≤W2[|x(n)|+
n∑

s=n−h

Φ(n− s)W3(|x(s)|) + σ]

+ max{W4(∥x∥[n−h,n]),W4(σ)}.

Thus

V (ni) ≤W2[2σ +

ni∑
s=ni−h

Φ(ni − s)W3(|x(s)|)] + max{W4(∥x∥[ni−h,ni]),W4(σ)}. (2.6)

Let Q = max
0≤s≤h

Φ(s), and K > 0 be the least integer such that

W1(η)−KW5[W
−1
3 (σ/(Q(h+ 1))] < 0.
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By (ii) we have for any n ≥ ni+K + 1,

V (n) ≤ V (ni)−
n−1∑
s=ni

W5(|x(s)|) ≤W1(η)−
i+K∑
j=i+1

nj∑
s=nj−h

W5(|x(s)|). (2.7)

We now claim that there must be some integer l : i+ 1 ≤ l ≤ i+K such that

Q

nl∑
s=nl−h

W3(|x(s)|) < σ. (2.8)

In fact, suppose it is not true, i.e.,

Q

nj∑
s=nj−h

W3(|x(s)|) ≥ σ for all j ∈ [i+ 1, i+K],

which implies that there exists at least one s∗ in each interval [nj − h, nj ] such that

W3(|x(s∗)|) ≥ σ/(Q(h+ 1)) and thus |x(s∗)| ≥W−1
3 [σ/(Q(h+ 1))],

then it follows from (2.7) that

V (n) ≤W1(η)−
i+K∑
j=i+1

W5(W
−1
3 [σ/(Q(h+ 1))]) =W1(η)−KW5(W

−1
3 [σ/(Q(h+ 1))]) < 0

if n ≥ ni+K + 1. It is a contradiction. Hence, (2.8) holds.

Therefore, there exists a subsequence {si} of {ni} such that

Q

si∑
s=si−h

W3(|x(s)|) < σ (2.9)

with si−1 + h ≤ si ≤ si−1 +K(h+N0) for i = 1, 2, · · · . Hence, we know from (2.6) that

V (si) ≤W2(3σ) + max{W4(∥x∥[si−h,si]),W4(σ)}. (2.10)

Let Ii = [si − h, si]. On each Ii we have either

(A) ∥x∥[si−h,si] ≤ µ; or

(B) |x(τi)| > µ for some integer τi ∈ Ii.

Suppose (A) holds. Then for n ≥ si we have by (i), (ii), (2.10) and (2.1) that

W1(|x(n)|) ≤ V (n) ≤ V (si) ≤W2(3σ) +W4(µ) < W1(γ).

(Note that σ < µ.) This implies that |x(n)| < γ for n ≥ si.

Now if (B) holds, then let Mi = ∥x∥[si−h,si], and we claim that

|x(n)| < Mi − ρ for all n ≥ si, (2.11)

where ρ is the one given by (2.3).

In fact, suppose there exists some n∗ ≥ si such that |x(n∗)| ≥Mi − ρ. Then we have

W1(Mi − ρ) ≤W1(|x(n∗)|) ≤ V (n∗) ≤ V (si) ≤W2(3σ) +W4(Mi).

This leads to a contradiction to (2.4). Hence, (2.11) holds. Now choose the least positive

integer Ñ such that η − Ñρ ≤ µ.

Suppose (B) holds on Ii for i = 1, 2, · · · , Ñ . Then for n ≥ sÑ we have

|x(n)| < MÑ − ρ < MÑ−1 − 2ρ < · · · < M1 − Ñρ < η − Ñρ ≤ µ.
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This means that (A) must hold on some Ii with i ≤ sÑ+1. Thus

|x(n)| = |x(n0, φ)(n)| < γ for all n ≥ sÑ+1.

Since sÑ+1 ≤ n0 +K(Ñ + 1)(h+N0), if we let N = K(Ñ + 1)(h+N0), which is obviously

independent of n0 and φ, then we have |x(n)| = |x(n0, φ)(n)| < γ for all n ≥ n0+N. This

proves the UAS of the zero solution of (1.1).

In particular, if we choose |φ|s = |φ|g for any g ∈ G, then we immediately obtain the

following result.

Corollary 2.1. Suppose that there exists a Liapunov functional V : Z × CH → R+,

a function g ∈ G, a function Φ : Z+ → R+ with
∞∑
s=0

Φ(s) < ∞, and a positive constant

η (η < H) such that

(i) W1(|φ(0)|) ≤ V (n, φ) ≤W2[|φ(0)|+
∞∑
s=0

Φ(s)W3(|φ(−s)|)] +W4(|φ|g),

(ii) ∆V(1)(n, φ) ≤ −W5(|φ(0)|),
(iii) W1(u)−W4(u) > 0 for all u ∈ (0, η].

Then the zero solution of (1.1) is UAS.

Proof. Trivially, it suffices to show that | · |g has a fading memory with respect to ∥ · ∥.
In fact, since φ ∈ C, we have |φ|g = sup

s≤0
|φ(s)|/g(s) ≤ ∥φ∥. On the other hand, for any

given ε > 0 and D > 0 there exists an integer h0 > 0 such that D < εg(−h0). Thus,

whenever h ≥ h0 and ∥φ(·)∥(−∞,−h] ≤ D, there holds

|φ|g = max
{

sup
−h≤s≤0

|φ(s)|
g(s)|

, sup
s≤−h

|φ(s)|
g(s)

}
≤ max{∥φ(·)∥[−h,0], ε}.

Hence, | · | has a fading memory with respect to ∥ · ∥.
The next result is on g-UAS on (1.1).

Theorem 2.1 Suppose that for some g∗ ∈ G, for each (n0, φ) ∈ Z × Cg∗ , the solution

x(n0, φ)(n) of (1.1) globally exists, and there exists a Liapunov functional V , a constant

η > 0, and a function ta ∈ B such that in Z × Cg∗ there hold

(i) W1(|φ(0)|) ≤ V (n, φ) ≤W2(|φ(0)|) +W3(|φ|g∗),

(ii) ∆V(1)(n, φ) ≤ −ta(n)W4(|φ(0)|),
(iii) W1(u)−W3(u) > 0 for all u ∈ (0, η].

Then the zero solution of (1.1) is g-US for any g ∈ G with g ≤ g∗ and is g-UAS for any

g ∈ G with g < g∗.

Remark 2.1. Note that g0 < g∗ for any g∗ ∈ G0 and g0-UAS is equivalent to UAS.

Hence, for any g∗ ∈ G0, under the assumptions (i), (ii), and (iii) we can conclude that the

zero solution of (1.1) is UAS.

Proof. (I) First, we claim the g-US. Fix g ∈ G with g ≤ g∗. Since Cg ⊆ Cg∗ and

|φ|g∗ ≤ |φ|g, we have from (i) that

V (n, φ) ≤W2(|φ(0)|) +W3(|φ|g). (2.12)

For any given ε > 0 (ε < η), choose δ = δ(ε) > 0 (δ < ε) such thatW2(δ)+W3(δ) < W1(ε).

Now for any n0 ∈ Z, and φ ∈ Cg with |φ|g < δ, we denote x(n) = x(n0, φ)(n), V (n) =

V (n, xn), and ∆V (n) = ∆V(1)(n, xn). Then it follows from (i), (ii), and (2.12) that

W1(|x(n)|) ≤ V (n) ≤ V (n0) ≤W2(δ) +W3(δ) < W1(ε) for all n ≥ n0,
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which implies that |x(n)| < ε for all n ≥ n0. Hence, the zero solution of (1.1) is g-US.

(II) Next, we show the g-UAS. Fix g ∈ G with g < g∗. By the g-US, for ε = η, there

exists the corresponding δ = δ(η) > 0. Let δ0 = δ(η). Then [n0 ∈ Z, |φ|g < δ0, n ≥ n0]

imply that

|x(n)| = |x(n0, φ)(n)| < η. (2.13)

Let γ > 0 be any given number. We should find an integer N(γ) > 0 such that [n0 ∈
Z, |φ|g < δ0, n ≥ n0 +N ] imply that |x(n)| = |x(n0, φ)(n)| < γ.

First of all, we pick a constant µ with 0 < µ < η such that

W2(µ) +W3(µ) < W1(γ). (2.14)

By the assumption (iii) there exists a σ > 0 such that 0 < σ < µ and

W1(u)−W3(u) > σ +W2(σ) for u ∈ [µ, η]. (2.15)

Let α > 0 and L > 0 be the corresponding numbers in the definition of β. Choose N∗ ∈ Z

so that

W2(δ0) +W3(δ0)−N∗αW4(σ) < 0, η/g∗(−N∗) < µ,

sup
s≤0

δ0g(s)/g
∗(s−N∗) < µ, W2(δ0) +W3(δ0)−N∗σ < 0. (2.16)

It now follows from (ii) and (2.12) that

V (n) ≤ V (n0) ≤W2(|x(n0)|) +W3(|xn0
|g) ≤W2(δ0) +W3(δ0) for all n ≥ n0. (2.17)

Let P0 = W2(σ) +W3(µ). We assert an important fact that: “If there exists an integer

n∗ ≥ n0 +N∗(L+ 1) with V (n∗) > P0, then there must be some integer n̂ ∈ [n∗ −N∗(L+

1), n∗] such that V (n̂) > V (n∗) + σ.”

In fact, we first can claim that there must be some integer s∗ ∈ [n∗ − N∗L, n∗] with

|x(s∗)| ≤ σ. On the contrary, we suppose that |x(s)| > σ for all s ∈ [n∗ − N∗L, n∗].

Then by (ii), (2.17) and (2.16) there holds

V (n∗) ≤ V (n∗ −N∗L)−W4(σ)
n∗−1∑

s=n∗−N∗L

β(s) ≤W2(δ0) +W3(δ0)−N∗αW4(σ) < 0,

which leads to a contradiction. Hence, there must be some integer s∗ ∈ [n∗ −N∗L, n∗] with

|x(s∗)| ≤ σ. Then by assumption, we derive that

W2(σ) +W3(µ) = P0 < V (n∗) ≤ V (s∗) ≤W2(σ) +W3(|xs∗ |g∗),

which implies that |xs∗ |g∗ > µ.

Thus, in virtue of (2.13) and (2.16), and noting that n0 − s∗ ≤ −N∗, we arrive at

sup
s≤−N∗

|x(s∗ + s)|
g∗(s)

= max
{

sup
s≤n0−s∗

|x(s∗ + s)|
g∗(s)

, sup
n0−s∗≤s≤−N∗

|x(s∗ + s)|
g∗(s)

}
≤ max

{
sup
s≤0

δ0g(s)

g∗(s−N∗)
,

η

g∗(−N∗)

}
< µ.

Since |xs∗ |g∗ > µ, it follows that

|xs∗ |g∗ = sup
−N∗≤s≤0

|x(s∗ + s)|
g∗(s)

≤ sup
s∗−N∗≤s≤s∗

|x(s)|.
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Hence, there exists n̂ ∈ [s∗ −N∗, s∗] such that

|x(n̂)| = sup
s∗−N∗≤s≤s∗

|x(s)| ≥ |xs∗ |g∗ . (2.18)

Suppose now that V (n̂) ≤ V (n∗) + σ. Then we would have

W1(|x(n̂)|) ≤ V (n̂) ≤ V (n∗) + σ ≤ V (s∗) + σ ≤W2(σ) +W3(|x(n̂)|) + σ,

which imply by (2.13) and (2.15) that |x(n̂)| < µ, and thus by (2.18) we obtain

|xs∗ |g∗ ≤ |x(n̂)| < µ.

Again, it is a contradiction.

Therefore, we must have V (n̂) > V (n∗)+σ, where n̂ ∈ [s∗−N∗, s∗] ⊂ [n∗−N∗(L+1), n∗]

as desired. This proves our assertion.

Now suppose there exists an integer n∗ ≥ n0 + N∗N∗(L + 1) with V (n∗) > P0. By

repeatedly applying N∗ times, we can conclude that there exists an integer nN∗ ≥ n0 such

that V (nN∗) > P0 +N∗σ. It now follows from (2.17) and (2.16) that

P0 < V (nN∗)−N∗σ ≤W2(δ0) +W3(δ0)−N∗σ < 0.

It is a contradiction. Hence, we must have V (n) ≤ P0 for all n ≥ n0 +N∗N∗(L+ 1). Let

N = N∗N∗(L+ 1). Then there holds

W1(|x(n)|) ≤ V (n) ≤ P0 =W2(σ) +W3(µ) < W1(γ) for n ≥ n0 +N

in virtue of σ < µ and (2.14). Hence we arrive at |x(n)| < γ for all n ≥ n0+N. Obviously,

N is independent of n0 and φ. Therefore, the zero solution of (1.1) is g-UAS. This completes

the proof of Theorem 2.2.

In particular, if g∗ = g0, then Cg0 = C and we have the following

Corollary 2.2. Suppose that for each (n0, φ) ∈ Z × C, the solution x(n0, φ)(n) of (1.1)

globally exists, and there exists a Liapunov functional V , a constant η > 0, and a function

ta ∈ B such that

(i) W1(|φ(0)|) ≤ V (t, φ) ≤W2(|φ(0)|) +W3(∥φ∥),
(ii) ∆V(1)(n, φ) ≤ −ta(n)W4(|φ(0)|),
(iii) W1(u)−W3(u) > 0 for all u ∈ (0, η].

Then the zero solution of (1.1) is US.

Remark 2.2. Under the assumptions of Corollary 2.2, we cannot assert the UAS or

g-UAS since there does not exist any g ∈ G with g < g0.
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