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Abstract

The perturbation of semigroup by a multiplicative functional with bounded variation is

investigated in the frame of weak duality. The strong continuity and Schrödinger type equation
of the perturbated semigroup are discussed. A few switching identities and formulae conerning
dual additive functionals and Revuz measures are given.
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§1. Introduction and Preliminaries

Suppose that X is a right Markov process with state space E and transition semigroup

(Pt). Given a multiplicative functional M of X, we define for any nonnegative measurable

function f on E,

Qtf(x) := P x(f(Xt)Mt), x ∈ E, t ≥ 0.

It follows from the multiplicativity of M that (Qt) is also a semigroup of transition functions

on E and usually called a perturbation semigroup of (Pt). The well-known Feynman-Kac

semigroup is a special case where X is a Brownian motion on Rd and

Mt = exp

∫ t

0

ϕ(Xs)ds

for some bounded measurable function ϕ on Rd. If, in addition, M is also a supermartingale,

then (Qt) gives birth to another nice Markov process which we usually call the transformed

process of X by M . There are some interesting questions related to the perturbation semi-

group, such as the strong continuity of (Qt) on Lp-space, the existence of uniqueness of

solutions of corresponding Schrödinger’s equation, perturbation of the Dirichlet forms (if X

is symmetric or nearly symmetric).
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In the last ten years many authors has investigated those problems from various ap-

proaches. The readers who are interested may refer to [9], [4], [1], [2], [5], [10], [11], [12],

etc. In this paper, we shall study the similar problems which were discussed in [5]. While

the additive functionals involved in [5] are assumed to be continuous, we do not assume

the continuity of additive functionals. Though we assume weak duality, the arguments

and conclusions are still true without this assumption. The readers may refer to [5] about

how to work under a Borel right Markov process with an excessive measure, which owns

automatically a moderate Markov process as a dual process.

Let (E,B) be a Lusin space with its Borel σ-algebra and m a σ-finite measure on E.

Assume that X and X̂ are Borel right processes in weak duality with respect to m, with

common state space E, transition semigroups (Pt), (P̂t) and resolvents (Uq), (Ûq), respec-

tively. The weak duality simply means that for f, g ∈ B+,

(Ptf, g)m = (f, P̂tg)m. (1.1)

In this section, we shall introduce basic terminologies and notations used throughout this

paper. Most of them are stated for X and the corresponding ones for the dual process X̂

are similar and distinguished by a hat or a suffix “co”.

Definition 1.1. A subset Λ of Ω is called an Ω-equivalent set if there exists an exceptional

set N such that P x(Λ) = 1 for all x ̸∈ N .

(Additive functionals) We say that A is an additive functional AF of X if A = (At)t≥0

is a [0,∞]-valued adapted process on Ω and there exists an Ω-equivalent set Λ such that for

all ω ∈ Λ,

A.1 At(ω) < ∞ for t < ζ(ω);

A.2 t 7→ At(ω) is right continuous;

A.3 At+s(ω) = At(ω) +As(θtω) for all t, s ≥ 0.

(Multiplicative functionals) We say that M is a multiplicative functional (MF) of X if

M = (Mt)t≥0 is a [0,∞]-valued adapted process on Ω and there exists an Ω-equivalent set Λ

such that for all ω ∈ Λ,

M.1 0 < Mt(ω) < ∞ for t < ζ(ω);

M.2 t 7→ Mt(ω) is right continuous;

M.3 Mt+s(ω) = Mt(ω) ·Ms(θtω) for all t, s ≥ 0.

(m-equivalence) Let A,B be two additive (or mutiplicative) functionals of X. We say that

A is m-equivalent to B (write A ∼ B) if for each t > 0, Pm(At ̸= Bt, t < ζ) = 0.

While any AF is increasing, an MF here is generally not. Let A(X) be the set of all

additive functionals of X and for A ∈ A(X), ExpA the Stieltjes exponential of A, which is

the unique solution Z of equation

1 + Zt =

∫ t

0

Zs−dAs. (1.2)

Clearly ExpA is an increasing MF of X. Conversely if Z is an increasing MF, then similarly

the Stieltjes logarithm of Z is the additive functional A determined by (2.2). We also use

M(X) to denote the set of all increasing mutiplicative functionals of X.

For any f ∈ B, define the quasi-supremum norm as ∥f∥Q := inf
N :m−polar

sup
x ̸∈N

|f(x)|. f is

called quasi-bounded if ∥f∥Q < ∞. Clearly the quasi-suprenum norm is no less than the

usual L∞-norm and they are the same when f is finely continuous[12].
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Notations and Conventions. We use ‘:=’ as a way of definition, which is always read

as ‘is defined to be’. For a class F of functions, we denote by bF (resp. pF(= F+)) the

set of bounded (resp. nonnegative) functions in F . We will not distinguish ‘nonnegative’

from ‘positive’. When a number a > 0 or a function f > 0 everywhere, we say they are

strictly positive. For a measure µ and a function f , µ(f) :=
∫
fdµ. We sometimes write

Lp or Lp(m) for Lp(E,m) and (·, ·) for the inner product in L2(m). For f, g ∈ B(E),

f ⊗ g(x, y) := f(x)g(y), x, y ∈ E. Finally we shall use exclusively P x for both probability

measure and expectation.

§2. Switching Identity (I)

In this section we shall present an identity which is a generalized form of what is usually

called the Revuz formula. First the following lemma gives a switching identity for energy

functionals of dual processes. Let Exc q(X) and Sq(X) denote the sets of q-excessive mea-

sures and q-excessive functions of X for q > 0, respectively. The q-energy functional Lq of

X is defined on Exc q(X)× Sq(X) as

Lq(ξ, u) := sup{µ(u) : µUq ≤ ξ}, ξ ∈ Exc q(X), u ∈ Sq(X).

For more about energy functional, please refer to [6].

Lemma 2.1. Let Lq (resp. L̂q) be the q-energy functional of X (resp. X̂) and q > 0.

Then for any f ∈ Sq(X) and f̂ ∈ Sq(X̂),

Lq(f̂m, f) = L̂q(fm, f̂). (2.1)

Proof. Since f̂m ∈ Exc q(X) and fm ∈ Exc q(X̂), two sides of (2.1) make sense. It

follows from the duality of resolvents that (Uqg) · m = (gm)Ûq. By property of energy

functional, we have

Lq(f̂m, Uqg) = (f̂ , g)m = L̂q((gm)Ûq, f̂) = L̂q((Uqg)m, f̂).

Then (2.1) follows directly from the fact that any q-excessive function is the limit of an

increasing sequence of q-potentials.

Now comes the first switching identity.

Theorem 2.1 (Switching identity I). Let L ∈ A(X) and K̂ ∈ A(X̂). Then for

f, g ∈ B+,

νL(Û
q

K̂
f ⊗ g) = ν̂K̂(Uq

Lg ⊗ f), (2.2)

where Uq
L denotes the q-potential operator of L, precisely

Uq
Lf(x) := Ex

∫ ∞

0

e−qtf(Xt)dLt,

and νL the bivariate Revuz measure of L with respect to m.

Proof. Since Ûq

K̂
f is q-coexcessive and Uq

Lg is q-excessive, by Lemma 2.1 we have

Lq(Ûq

K̂
f · m,Uq

Lg) = L̂q(Uq
Lg · m, Ûq

K̂
f). However by (8.7) in [7], Lq(Ûq

K̂
f · m,Uq

Lg) =

νL(Û
q

K̂
f ⊗ g). That completes the proof.

Let M be a decreasing (or equivalently [0, 1]-valued) multiplicative functional of X and

M̂ the dual of M , which is certainly also decreasing. It is well-known that M gives birth to

another right Markov process which is usually called the M -subprocess of X and write as
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(X,M). For any L ∈ A(X), we define the M -potential of L,

V q
Lf(x) := Ex

∫ ∞

0

e−qtMt−f(Xt)dLt, x ∈ E. (2.3)

However V q
L may also be viewed as the potential operator of M -additive functional M− ·L :=∫

M−dL. When L is continuous, Mt− may be replaced by Mt. If [M ] is the Stieltjes

logarithm of M , then M− · d[M ] = dM . Now we state the second switching identity.

Theorem 2.2 (Switching identity II). Let L ∈ A(X) and K̂ ∈ A(X̂). Then for

f, g ∈ B+,

νL(V̂
q

K̂
f ⊗ g) = ν̂K̂(V q

Lg ⊗ f). (2.4)

Proof. Let Lq
M (resp. L̂q

M̂
) be the energy functional of the subprocess (X,M) (resp.

(X̂, M̂)). By Lemma 2.1, we find Lq
M (V̂ q

K̂
f ·m,V q

Lg) = L̂q

M̂
(V q

Lg ·m, V̂ q

K̂
f). By Lemma I.4.5

in [11], it follows that Lq
M (V̂ q

K̂
f ·m,V q

Lg) = ρ
V̂ q

K̂
f ·m

M−·L (g), where the right hand side is the Revuz

measure of M− · L, which is an M -additive functional, taken with respect to the measure

V̂ q

K̂
f ·m, which is q-excessive for the subprocess (X,M). Since V̂ q

K̂
f is cofinely continuous (it

can be decomposed into the difference of two q-coexcessive functions), t 7→ V̂ q

K̂
f(Xt−) is left

continuous a.s. Thus by Theorem II.5.5 in [11] (it is easily seen that this theorem is true for

m∗ replaced with an excessive measure for (X,M)), we have ρ
V̂ q

K̂
f ·m

M−·L (g) = νM−·L(V̂
q

K̂
f ⊗ g).

Finally by Corollary 3.13 in [13], νM−·L = νL. That completes the proof.

Remark. We would like to point out several special cases of (2.4):

(V̂ q

K̂
f, g) = ν̂K̂(V qg ⊗ f), if dLt = dt;

(V q
Lg, f) = νL(V̂

qf ⊗ g), if dK̂t = dt;

(Ûq

K̂
f, g) = ν̂K̂(Uqg ⊗ f), if dLt = dt and A = 0;

(Uq
Lg, f) = νL(Û

qf ⊗ g), if dK̂t = dt and A = 0. (2.5)

The first two were called the generalized Revuz formulas and proved in [11], and the last

two are the classical Revuz formulas and were proved in [7].

§3. Khas’minskii’s Lemma

For A ∈ A(X), we define

kt(A) := ∥E·At∥Q, t > 0; k(A) := inf
t>0

kt(A);

cq(A) :=
∣∣∣∣∣∣ ∫ ∞

0

e−qtdAt

∥∥∥
Q
, q > 0; c(A) := inf

q>0
cq(A).

It is easy to check by the additivity of A that the following statements are equivalent to

each other

(1) kt(A) < ∞ for some t > 0; (2) kt(A) < ∞ for all t > 0;

(3) cq(A) < ∞ for some q > 0; (4) cq(A) < ∞ for all q > 0.

For any bivariate measure ν with left marginal measure λ, we define

cq(ν) := inf{a ∈ R : λÛq ≤ a ·m}, q > 0; c(ν) := inf
q>0

cq(ν).

Lemma 3.1. If A ∈ A(X), then k(A) = c(A) = c(νA).
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Proof. (1) For any q > 0, t > 0 and x ∈ E, we have

Ex

∫ ∞

0

e−qsdAs ≥ Ex

∫ t

0

e−qsdAs ≥ e−qtExAt.

Hence kt(A) ≤ eqtcq(A). It follows that k(A) ≤ cq(A) and then k(A) ≤ c(A). Now assume

that c(A) < a < ∞. We may find q > 0 and b < a such that cq(A) < b < a and choose t

small enough such that eqtb < a. Then kt(A) ≤ eqtcq(A) < a and k(A) < a. It follows that

k(A) ≤ c(A). Let k(A) < a < ∞, then there exists t > 0 and b < a such that kt(A) < b.

We may find an m-polar set N with ExAt < b for x ̸∈ N . By the Markov property we have

ExAnt ≤ nb for any integer n ≥ 0. It follows that for s ≥ 0 and x ̸∈ N , ExAs ≤ b + b
t s.

Now for any T > 0,

Ex

∫ T

0

e−qsdAs = e−qTExAT + qEx

∫ T

0

Ase
−qsds

≤ e−qT
(
b+

b

t
T
)
+ q

∫ T

0

(
b+

b

t
s
)
e−qsds

= e−qT
(
b+

b

t
T
)
+ b(1− e−qT ) +

b

t

[
Te−qT +

1

q
(1− e−qT )

]
.

As T goes to infinity, we have

Ex

∫ ∞

0

e−qsdAs ≤ b+
b

qt
.

Hence cq(A) < a as q is large enough. It implies that c(A) < a and c(A) ≤ k(A).

On the other hand, since cq(A) = ∥Uq
A1∥Q, the equality c(A) = c(νA) follows directly

from the Revuz formula λAÛ
q = Uq

A1 ·m.

The following result generalizes the Khas’minskii’s lemma, which was originally stated

for Brownian motion (refer to [9]). The same result was proved in Lemma 2.1 of [12] for

symmetric case, however the proof may be used here with no modification.

Lemma 3.2. Let A ∈ A(X).

(1) If there exist some t > 0 and 0 < a < 1 such that P xAt ≤ a for all x ∈ E, then for

all x ∈ E, Ex(ExpA)t ≤ 1
1−a .

(2) If k(A) < 1, then there exist constants c, β > 0 such that for all t > 0,

∥E·(ExpA)t∥Q ≤ c · eβt.

Let us now introduce more notations for A,L ∈ A(X) and q > 0,

U
q−A−
L f(x) := Ex

∫ ∞

0

e−qt(ExpA)t−f(Xt)dLt.

When L is continuous, (ExpA)t− may be replaced by (ExpA)t. Particularly, when Lt = t,

write U
q−A−
L as Uq−A.

Corollary 3.1. Let A ∈ A(X). If k(A) < 1, then for q large enough, there exists c > 0

such that

∥Uq−A1∥Q + ∥Uq−A−
A 1∥Q + ∥Uq

A1∥Q ≤ c,

namely, they are all quasi-bounded.

Proof. By Lemma 3.2, it is obvious that Uq−A1 is quasi-bounded for q large enough.

We need only to show that U
q−A−
A 1 is bounded for q large enough since Uq

A1 ≤ U
q−A−
A 1.
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However for t > 0,∫ t

0

e−qs(ExpA)s−dAs =

∫ t

0

e−qsd(ExpA)s = e−qt(ExpA)t − 1 + q

∫ t

0

e−qs(ExpA)sds.

From Lemma 3.2, the quasi-boundedness follows.

§4. Switching Identity (II)

We shall first present a formula similar to the well-known resolvent equation, which can

be shown by a direct computation and readers may refer to Lemma 3.1 (c) in [12].

Lemma 4.1. Suppose A, L ∈ A(X). Then for q ≥ 0 and f ∈ B+ with Uq
Lf(x) < ∞, it

holds that

U
q−A−
L f(x) = Uq

Lf(x) + Uq
AU

q−A−
L f(x). (4.1)

Therefore U
q−A−
L f is q-excessive.

Now comes another switching identity.

Theorem 4.1 (Switching identity III). Suppose A ∈ A(X) and Â is the dual additive

functional of A, L ∈ A(X) and K̂ ∈ A(X̂). If k(A) < 1, k(L) < ∞, k̂(Â) < 1 and

k̂(K̂) < ∞, then

νL(Û
q−Â−

K̂
f ⊗ g) = ν̂K̂(U

q−A−
L g ⊗ f). (4.2)

Proof. By the lemma above, U
q−A−
L g and Û

q−Â−

K̂
f are q-excessive and q-coexcessive

respectively. Hence by Lemma 2.1 we have

Lq((Û
q−Λ̂−

K̂
f) ·m,U

q−Λ−
L g) = L̂q((U

q−Λ−
L g) ·m, Û

q−Λ̂−

K̂
).

However

Lq((Û
q−Λ̂−

K̂
f) ·m,U

q−Λ−
L g) = Lq((Û

q−Λ̂−

K̂
f) ·m,Uq

Lg) + Lq((Û
q−Λ̂−

K̂
f) ·m,Uq

AU
q−Λ−
L g)

= νL(Û
q−Λ̂−

K̂
⊗ g) + νA(Û

q−Λ̂−

K̂
f ⊗ U

q−Λ−
L g),

Lq((U
q−Λ−
L g) ·m, Û

q−Λ̂−

K̂
f) = ν̂K̂(U

q−Λ−
L g ⊗ f) + ν̂Â(U

q−Λ−
L g ⊗ Û

q−Λ̂−

K̂
f).

Since νA is in duality with ν̂Â, we see that (4.2) holds as soon as

νA(Û
q−Λ̂−

K̂
⊗ U

q−Λ−
L g)) < ∞.

However νA is a σ-finite measure and hence we may assume that it is a finite measure.

In this case we need only to verify that Û
q−Λ̂−

K̂
f ⊗ U

q−Λ−
L g is quasi-bounded or Û

q−Λ̂−

K̂
f ,

U
q−Λ−
L g are quasi-bounded. It suffices to show that U

q−A−
L 1 is bounded. There exists α > 0

such that k(A+ αL) < 1. By Corollary 3.1, there exists a large enough s such that

α∥Us−A−
L 1∥Q = ∥Us−A−

αL 1∥Q ≤ ∥Us−(A+αL)−∥Q < ∞.

Therefore U
s−A−
L 1 is bounded. From a generalized resolvent equation,

U
q−A−
L = U

s−A−
L + (s− q)Uq−AU

s−A−
L ,

it follows that U
q−A−
L 1 is bounded.

If we take K̂t = Lt = t, then νL and ν̂K̂ concentrate on the diagonal of E × E as m.

Therefore we have



No.4 JIN, M. W. & YING, J. G.ADDITIVE FUNCTIONALS AND PERTURBATIONOF SEMIGROUP 509

Corollary 4.1. Let A ∈ A(X) and Â ∈ A(X̂) with k(A) < 1, k(Â) < 1. If they are dual,

then for q large enough, Uq−A and Ûq−Â are dual, i.e., for f, g ∈ B+,

(Uq−Af, g)m = (f, Ûq−Âg)m.

§5. Strong Continuity of Perturbated Semigroup

Let A ∈ A(X) and Â be the dual of A. We define for any nonnegative measurable function

f ,

Qtf(x) := Ex[(ExpA)tf(Xt)], Q̂tf(x) := Êx[(Exp Â)tf(X̂t)]. (5.1)

Obviously (Qt) is a semigroup of kernels on E and is usually called the perturbated semigroup

of (Pt) by A. It follows from the duality of A and Â that (Qt) and (Q̂t) are dual, i.e., for

nonnegative measurable functions f, g, and t > 0, (Qtf, g) = (f, Q̂tg).

Lemma 5.1. Let A ∈ A(X). (1) If k̂(Â) < 1, then f = 0 a.e. implies that Qtf = 0 a.e.

for each t ≥ 0. (2) If k(A) < 1 and k̂(Â) < 1, then for 1 ≤ p ≤ ∞, (Qt) is a semigroup of

bounded operators on Lp(m) for each t ≥ 0 and for p ∈]0,∞[,

∥Qt∥Lp ≤ ∥Qt1∥
1
p′

Q ∥Q̂t1∥
1
p

Q, (5.2)

where p′ is the conjugate number of p: 1
p′ +

1
p = 1.

Proof. (1) For any f ∈ B, we have

m(|Qtf |) ≤ m(Qt|f |) = m(|f | · Q̂t1) ≤ ∥Q̂t1∥Qm(|f |).
Thus f = 0 a.e. implies that Qtf = 0 a.e. and Qt is a bounded operator on L1(m) and

∥Qt∥L1 ≤ ∥Q̂t1∥Q.
(2) If k(A) < 1 and k̂(Â) < 1, then it is easily seen that Qt is a bounded operator on

Lp(m) for each t ≥ 0 and 1 ≤ p ≤ ∞. In particular if 1 < p < ∞ and f ∈ B, we find

m(|Qtf |p) ≤ m((Qt1)
p
p′ (Qt|f |p)) ≤ ∥Qt1∥

p
p′

Q ·m(|f | · Q̂t1) ≤ ∥Qt1∥
p
p′

Q ∥Q̂t1∥Qm(|f |p).
The conclusion follows.

The following theorem gives a sufficient condition that guarantees that the perturbation

semigroup is a strongly continuous semigroup of bounded operators on Lp-spaces. The proof

is basically similar to that in §3 in [5].

Theorem 5.1. Let A ∈ A(X) with k(A) < 1 and k̂(Â) < 1. Then (Qt) is a strongly

continuous semigroup of bounded operators on Lp(m) for 1 ≤ p ≤ ∞.

Proof. To show (Qt) is strongly continuous on Lp(m) it suffices to show that it is weakly

continuous, that is, if g ∈ Lp′
(m) and f ∈ Lp(m), then as t ↓ 0,

(g,Qtf) → (g, f). (5.3)

However L1(m) ∩ L∞(m) is dense in Lp′
(m) and U1(L1(m) ∩ L∞(m)) is dense in Lp(m)

(see [5]). Hence we need only to verify (5.3) for g ∈ L1(m) ∩ L∞(m) and f = U1h with

h ∈ L1(m)∩L∞(m). From the dominated convergence theorem and the fact that h is finely

continuous, it follows that QtU
1h converges to U1h q.e. as t ↓ 0 and then (g,QtU

1h) →
(g, U1h) as t ↓ 0. That completes the proof.

By the theorem above, it is reasonable to discuss the class of additive functionals A which

satisfy the Kato type condition: k(A) < 1 and k̂(Â) < 1. We call this class the extended

Kato class and denote it by AK .
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§6. Schrödinger Type Equations

A multiplicative functional M is said to be of bounded variation if t 7→ Mt is of bounded

variation on any compact interval a.s. Let M(X) be the set of multiplicative functionals

with bounded variation. For M ∈ M(X), we may (and do) define

At :=

∫ t

0

dMs

Ms−
, t > 0. (6.1)

Then A is an adapted process which is of bounded variation and has additivity and clearly

∆A = M
M−

− 1 > −1. Therefore A may be written into A1 − A2 with A1, A2 ∈ A(X) and

∆A2 < 1 a.s.

Natually we denote by A(X) the totality of processes A1 − A2 with A1, A2 ∈ A(X)

and ∆A2 < 1 a.s. Clearly the Stieltjes logarithm establishes a one-to-one correspondence

between M(X) and A(X). Let A = A1 − A2 ∈ A(X) and ν := νA := νA1 − νA2 . Then

ν may be decomposed as ν = ν+ − ν−. It is clear that ν+ ≤ νA1 and ν− ≤ νA2 . Hence

ν+ and ν− are also bivariate smooth measures and there exists A+, A− ∈ A(X) such that

ν+ = νA+ , ν− = νA− , A = A+ −A− and ∆A+ ·∆A− = 0. Hence

ExpA = ExpA+ · Exp (0−A−).

We write M− := Exp (0−A−), which is a decreasing multiplicative functional of X. We say

thatA ∈ A(X) is an additive functional of extended Kato class if there exists a representation

A = A1 − A2 with A1 ∈ AK , and we write as A ∈ AK in that case. We also denote by

(Qt) and (V q) the transition semigroup and resolvent of the M−-subprocess of X. Then

V
q−A+

−
L = U

q−A−
L for generalized potential operators. The following identities are easy to

verify.

Proposition 6.1. Let A ∈ A(X) and q be large enough. Then the following identities

hold:

(1) Uq−A + Uq
A−U

q−A = Uq + Uq
A+U

q−A.

(2) Uq−A = V q + V q
A+U

q−A.

(3) If L ∈ A(X), U
q−A−
L + Uq−A

A− Uq
L = Uq

L + U
q−A−
A+ Uq

L.

In this section we assume that A ∈ AK , ν = νA. The classical Schrödinger equation and

theory of Feynman-Kac semigroup suggest that L+ν should be the generator in some sense

for the strongly continuous semigroup (P−A
t ) where L is the generator of (Pt). We shall first

make it clear what our Schrödinger type equation

(q − L− ν)u = f (6.2)

means exactly.

Suppose 1 < p < ∞ and f ∈ Lp. We say that a function u on E is a solution of (6.2)

with parameter p provided that (1) u is quasi-continuous; (2) for all g ∈ D(L̂), we have

ν+(|g| ⊗ |u|) < ∞, ν−(|g| ⊗ |u|) < ∞,

((q − L̂)g, u)− ν+(g ⊗ u) + ν−(g ⊗ u) = (g, f), (6.3)

where L̂ is the generator of (P̂t) on Lp′
(m) with 1

p + 1
p′ = 1.

Clearly if u is a solution with parameter p of (6.2), then u ∈ Lp(m). Thus we sometimes

say a solution in Lp(m) instead of a solution with parameter p.
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Theorem 6.1. Let f ∈ Lp. Then for q large enough, u := Uq−Af is a solution of (6.2)

in Lp(m).

Proof. Without loss of generality, we assume that f is nonnegative. First u is a difference

of two q-excessive functions and is certainly quasi-continuous. We know that Uq−A+

f ∈
Lp(m). By Proposition 6.1,

Uq−Af + Uq
A−U

q−Af = Uqf + Uq
A+U

q−Af ≤ Uqf + Uq
A+U

q−A+

f = Uq−A+

f.

Therefore for g = Ûqv ∈ D(L̂) with v ∈ Lp′
(m), we have

ν+(|g| ⊗ Uq−Af) ≤ ν+(Uq|v| ⊗ Uq−Af) = (Uq
A+U

q−Af, |v|)m ≤ (Uq−A+

f, |v|)m < ∞;

ν−(|g| ⊗ Uq−Af) < ∞.

Now using the switching identity again,

((q − L̂)g, u)m = (v, Uq−Af)m

= (v, Uqf)m + (v, Uq
A+U

q−Af)m − (v, Uq
A−U

q−Af)

= (Ûqv, f) + ν+(Ûqv ⊗ Uq−Af)− ν−(Ûqv ⊗ Uq−Af)

= (g, f) + ν+(g ⊗ u)− ν−(g ⊗ u).

Hence u is a solution of (6.2) in Lp(m).

Now we turn to the uniqueness of solution. Let ν∗ := ν+ + ν− and ρ∗ := ν∗(1⊗ ·).
Lemma 6.1. Let A ∈ AK(X) and q be large enough. Then Uq−A(Lp(m)) ⊂ Lp(ρ∗) for

1 < p < ∞.

Proof. Let p′ be the conjugate of p and f ∈ Lp(m). First

ρ+(|Uq−Af |p) ≤ ρ+((Uq−A1)
p
p′ (Uq−A|f |p)) ≤ ∥Uq−A1∥

p
p′

Q ν̂Â+(U
q−A|f |p ⊗ 1)

= ∥Uq−A1∥
p
p′

Q (Û
q−Â−

Â+
1, |f |p)m ≤ ∥Uq−A1∥

p
p′

Q ∥Ûq−Â+
−

Â+
1∥Q ·m(|f |p).

Hence Uq−A : Lp(m) → Lp(ρ+) and

∥Uq−A∥Lp(m)→Lp(ρ+) ≤ ∥Uq−A1∥
1
p′

Q · ∥Ûq−Â+

Â+
1∥

1
p

Q.

Similarly in order to show that Uq−A carries Lp(m) into Lp(ρ−), it suffices to show that

∥Ûq−Â−

Â− 1∥Q < ∞. As a matter of fact,

0 ≤ Uq−A
A− 1 ≤ P x

∫ ∞

0

e−qt[Exp (A+ −A−)]t−dA
−
t

= −P x

∫ ∞

0

e−qt(ExpA+)t−d(Exp (−A−))t

= 1 + P x

∫ ∞

0

e−qt(Exp (−A−))t(ExpA
+)t−dA

+
t − qP x

∫ ∞

0

e−qt(Exp (A+ −A−))tdt

≤ 1 + Uq−A+

A+ 1.

That completes the proof.

Theorem 6.2. Let f ∈ Lp(m). Then Uq−Af is the unique solution in Lp(m + ρ∗) of

(6.2); more precisely if u is a solution of (6.2) and u ∈ Lp(m+ ρ∗), then u = Uq−Af .
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Proof. It suffices to show that if u is a solution of (6.2) for f = 0 and u ∈ Lp(m+ ρ∗),

then u = 0. First we shall verify that Uq
A+u and Uq

A−u are finite q.e. In fact, by the switching

identity,

m(|Uq
A+u|p) ≤ m((Uq

A+1)
p
p′ · Uq

A+ |u|p) ≤ ∥Uq
A+1∥

p
p′

Q (Uq
A+ |u|p, 1)m

= ∥Uq
A+1∥

p
p′

Q νA+(Ûq1⊗ |u|p) ≤ ∥Uq
A+1∥

p
p′

Q

1

q
ρ+(|u|p).

Thus that u ∈ Lp(ρ∗) implies that |Uq
A+u|+ |Uq

A−u| < ∞ q.e.

Now since f = 0, for any v ∈ Lp′
(m) we have

(v, u) = ν+(Ûqv ⊗ u)− ν−(Ûq ⊗ u) = (v, Uq
A+u− Uq

A−u).

Hence u = Uq
Au q.e. Using the switching identity again,

m(|Uq−A−
A+ u|p) ≤ ∥Uq−A−

A+ 1∥
p
p′

Q m(U
q−A−
A+ |u|p)

≤ ∥Uq−A−
A+ 1∥

p
p′

Q νA+(Ûq−Â1⊗ |u|p)

≤ ∥Uq−A−
A+ 1∥

p
p′

Q ∥Ûq−Â1∥Qρ+(|u|p),

m(|Uq−A−
A− u|p) ≤ ∥Uq−A−

A− 1∥
p
p′

Q ∥Ûq−Â1∥Qρ−(|u|p).

It follows that |Uq−A−
A+ u|+ |Uq−A−

A− u| < ∞ q.e. By Lemma 6.1 (3), we have

U
q−A−
A u = Uq

Au+ U
q−A−
A Uq

Au = u+ U
q−A−
A u q.e.

Therefore u = 0 q.e. That completes the proof.
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