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Abstract

Let X be a complex Banach space without the analytic Radon-Nikodym property. The

author shows that G = {f ∈ H∞(D, X) : there exists ϵ > 0, such that for almost all θ ∈
[0, 2π], lim sup

r,s↑1
∥f(reiθ)− f(seiθ)∥ ≥ ϵ } is a dense open subset of H∞(D, X). It is also shown

that for every open subset B of T, there exists F ∈ H∞(D, X), such that F has boundary
values everywhere on Bc and F has radial limits nowhere on B. When A is a measurable subset

of T with positive measure, there exists f ∈ H∞(D, X), such that f has nontangential limits
almost everywhere on Ac and f has radial limits almost nowhere on A.

Keywords Analytic Radon-Nikodym property, Radial limits and vector-valued
Hardy space

2000 MR Subject Classification 46B20, 46B25
Chinese Library Classification O177.12 Document Code A
Article ID 0252-9599(2001)04-0513-06

Let X be a complex Banach space and let D be the open unit disc in the complex plane.
We shall denote by H∞(D, X) the Banach space consisting of all uniformly bounded X-
valued analytic functions defined on D equipped with the norm ∥f∥∞ = sup

z∈D
∥f(z)∥. A

complex Banach space X is said to have the analytic Radon-Nikodym property, if each
element f ∈ H∞(D, X) has radial limits almost everywhere on the torus T = {eiθ : θ ∈
[0, 2π]} (see [1]), this means that for almost all θ ∈ [0, 2π], lim

r↑1
f(reiθ) exists in X. The

analytic Radon-Nikodym property has been introduced by A. V. Bukhvalov and A. A.
Danilevich in [1] and it has been extensively studied in the latest years, we refer the reader
to [2–6] for more information about this property.

We have shown that if X is a complex Banach space without the analytic Radon-Nikodym
property, then there exists an element F ∈ H∞(D, X), such that ∥F∥∞ ≤ 1 and that for
almost all θ ∈ [0, 2π], lim sup

r,s↑1
∥F (reiθ)− F (seiθ)∥ ≥ 3/4 (see [2]). We have also shown that

when a complex Banach space X has no the analytic Radon-Nikodym property, then there
exists an element F ∈ H∞(D, X) and there exists rn ↑ 1, such that for all α, β ∈ [0, 2π]
and for all n,m ∈ N, n ̸= m, we have ∥F (rne

iα) − F (rmeiβ)∥ ≥ 1 (see [3]). In this paper,
we are interested in the density of such functions in H∞(D, X), and we shall show that
when a complex Banach space X has no the analytic Radon-Nikodym property, the subset
of H∞(D, X) consisting of all f which has radial limits almost nowhere on the torus T is a
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dense open subset in H∞(D, X). In view of this result, it is natural to ask, if f ∈ H∞(D, X)
has radial limits almost nowhere on some measurable subset of T with positive measure,
whether f has radial limits almost nowhere on T, and we shall see that this is not the case.
We shall see that for every open subset A of T, there exists f ∈ H∞(D, X) so that f has
radial limits nowhere on A and f has boundary values everywhere on Ac (this means that
for each eiθ ∈ Ac, for each sequence zn in D converging to eiθ, the limit lim

n→∞
f(zn) exists

in X). The proof of this result will be devided into several steps: first we shall show that a
stronger result actually is true for closed intervals on T; then for open intervals of T, this
will enable us to establish the desired result since each open subset of T is the union of a
sequence of disjoint open intervals. We do not know whether this result remains true if A
is replaced by an arbitrary measurable subset of T with positive measure. We shall only
establish the following result: when X lacks the analytic Radon-Nikodym property, for each
measurable subset B of T with positive measure, there exists g ∈ H∞(D, X), such that g
has nontangential limits almost everywhere on B and g has radial limits almost nowhere on
Bc.

First we recall the notion of nontangential limit for element in h∞(D, X). Let eiθ ∈ T
and let 0 ≤ α < π. We denote by Sα(θ) the subset of D consisting of all z verifying
|Arg((z − eiθ)/eiθ)| < α. A function f ∈ h∞(D, X) is said to have nontangential limit on
eiθ, if for every 0 ≤ α < π, for every sequence (zn)n≥1 in Sα(θ), zn → eiθ, the sequence
(f(zn))n≥1 converges in X. It is clear that when f has nontangential limit on eiθ, f has
radial limit on eiθ. Inversely when f has radial limits almost everywhere on the torus, if
we denote by the same letter f(eiθ) for its radial limit on eiθ, then the harmonic extension

of f via the Poisson kernel Preiα(e
iθ) = 1−r2

1+r2−2r cos(θ−α) coincides with f on D. Using the

same argument as in the scalar case, we can show that when f ∈ h∞(D, X) has radial limits
almost everywhere on the torus, f has also nontangential limits almost everywhere on the
torus.

We shall use the following well-known fact about conformal mapping between simply
conneted regions in the complex plane. Let γ be a Jordan cuvre consisting of two disjoint
intervals of circles I and J . We suppose that I is an open interval of the unit circle T. Let
E be the bounded simply conneted region determined by γ. Then by the Riemann mapping
theorem, there exists a conformal mapping h which maps D onto E; h can be continuously
extented to T so that h is one to one from T onto I ∪ J , the boundary of E. As I is
an open interval of the unit circle, h can be analytically extented on h−1(I), so for every
eiθ ∈ h−1(I), h(eiθ) = eiα ∈ I, for every 0 ≤ s < π, there exists 0 ≤ t < π, such that if
(zn)n≥1 is a sequence in Ss(α), zn → eiα, then the sequence (h−1(zn))n≥1 belongs to St(e

iθ)
when n is big enough and lim

n→∞
h−1(zn) = eiθ. Hence if f ∈ H∞(D, X) has no nontangential

limit on eiα, then the function f(h(z)) has no nontangential limit on eiθ.
One of the main results in this paper is the following
Theorem 1. Let X be a complex Banach space without the analytic Radon-Nikodym

property. Then the set

G =
{
f ∈ H∞(D, X) : There exists ϵ > 0, such that for almost all θ ∈ [0, 2π],

lim sup
r,s↑1

∥f(reiθ)− f(seiθ)∥ ≥ ϵ
}

is a dense open subset of H∞(D, X).
Proof. In [2], we have shown that if X is a complex Banach space without the analytic

Radon-Nikodym property, then there exists F ∈ H∞(D, X), such that ∥F∥∞ ≤ 1 and for
almost all θ ∈ [0, 2π],

lim sup
r,s↑1

∥F (reiθ)− F (seiθ)∥ ≥ 3/4.

First let us show that the subset G of H∞(D, X) is open. If f ∈ G, then there exists
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ϵ > 0, such that for almost all θ ∈ [0, 2π], we have lim sup
r,s↑1

∥f(reiθ)− f(seiθ)∥ ≥ ϵ. Let g ∈

H∞(D, X) be such that ∥f−g∥∞ < ϵ/4. For almost all θ ∈ [0, 2π], we have lim sup
r,s↑1

∥g(reiθ)−

g(seiθ)∥ ≥ lim sup
r,s↑1

∥f(reiθ)−f(seiθ)∥−lim sup
r,s↑1

∥(f−g)(reiθ)−(f−g)(seiθ)∥ ≥ ϵ−2∥f−g∥∞ ≥

ϵ/2, this implies that g ∈ G, therfore G is an open subset of H∞(D, X).
Now let us show that G is also dense in H∞(D, X). Let f ∈ H∞(D, X), ϵ > 0 and

A = {eiθ : lim sup
r,s↑1

∥f(reiθ)− f(seiθ)∥ ≥ ϵ/4}. Define the function h on T by h(eiθ) = ϵ/16

if eiθ ∈ A and h(eiθ) = ϵ if eiθ ∈ Ac. As ln|h| ∈ L∞(T), there exists an outer function
h′ ∈ H∞, such that |h′(eiθ)| = h(eiθ) for almost all θ ∈ [0, 2π]. Considering the function
g = f + h′F ∈ H∞(D, X), we have ∥f − g∥∞ = ∥h′F∥∞ ≤ ϵ. For almost all eiθ ∈ A,

lim sup
r,s↑1

∥g(reiθ)− g(seiθ)∥

≥ lim sup
r,s↑1

∥f(reiθ)− f(seiθ)∥ − lim sup
r,s↑1

∥(h′F )(reiθ)− (h′F )(seiθ)∥

≥ ϵ/4− 2∥F∥∞∥h′∥∞ ≥ ϵ/4− ϵ/8 = ϵ/8.

For eiθ ∈ Ac, we have that lim
r↑1

h′(reiθ) exists, lim
r↑1

|h′(reiθ)| = ϵ and so

lim sup
r,s↑1

∥g(reiθ)− g(seiθ)∥

≥ lim sup
r,s↑1

∥(h′F )(reiθ)− (h′F )(seiθ)∥ − lim sup
r,s↑1

∥f(reiθ)− f(seiθ)∥

≥ lim sup
r,s↑1

∥F (reiθ)− F (seiθ)∥ϵ− ϵ/4 ≥ 3ϵ/4− ϵ/4 = ϵ/2.

Hence for almost all eiθ ∈ T, we have lim sup
r,s↑1

∥g(reiθ)− g(seiθ)∥ ≥ ϵ/8 and so g ∈ G. This

shows that G is dense in H∞(D, X) and completes the proof.
In view of Theorem 1, we may hope to show that when f ∈ H∞(D, X) has no radial

limits on a subset of T with positive measure, f should have radial limits almost nowhere
on the torus. The following result shows that this is not the case. We shall say that
F ∈ H∞(D, X) has boundary value on eiθ ∈ T, if for every sequence zn ∈ D, lim

n→∞
zn = eiθ,

the limit lim
n→∞

F (zn) exists in X; F is said to have boundary values everywhere on some

measurable subset A of T, if F has boundary value on each point of A. It is clear that when
F has boundary values on eiθ, F has radial limit on eiθ.

Theorem 2. Let X be a complex Banach space without the analytic Radon-Nikodym
property and let I be an open interval of T. Then there exists F ∈ H∞(D, X), such that F
has boundary values everywhere on I and F has radial limits nowhere on Ic.

Proof. Let γ be the Jordan cuvre consisting of the closed interval A = {eiθ : θ ∈ [−1, 1]}
of T and the open segment B = {λei + (1− λ)e−i : 0 < λ < 1} in D. Let E be the simply
connected region inside the cuvre γ, we have E ⊂ D. From the Riemann mapping theorem,
there exists a conformal mapping h which maps D onto the interior of E. By Caratheodory’s
theorem, h can be extended to a continuous function from D onto E and h is one to one
from T onto the boundary of E. Let T1 = h−1(B) and T2 = h−1(A). We have T = T1 ∪ T2,
T1 is an open interval of T and T2 is a closed interval of T since h is continuous and one to
one from T onto A ∪B, the boundary of E.

Now let I = {eiθ : θ ∈ (a, b)} be any open interval of T and let J = T \ I. There exists
a conformal mapping g from D onto D so that the image of I by g is T1, and the image of
J by g is T2. Recall that g is continuous and one to one from T onto T.
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As X lacks the analytic Radon-Nikodym property, there exists f ∈ H∞(D, X) and rn ↑ 1
so that for all α, β ∈ [0, 2π], and for all m,n ∈ N, n ̸= m, we have ∥f(rneiα)−f(rmeiβ)∥ ≥ 1
(see [2]). Let F (z) = f(h(g(z))) be the composition of f, h and g, it is easy to see that F
is analytic and F ∈ H∞(D, X). The function f is continuous on the open segment B since
f is analytic on D and B ⊂ D. Hence F is also continuous on I = g−1(T1) = g−1(h−1(B))
and so F has boundary value on eiθ for every eiθ ∈ I. Hence F has boundary values
everywhere on I. We shall see that F has radial limits nowhere on J . Let eiα ∈ J be fixed
and h(g(eiα)) = eiθ ∈ A. As rn ↑ 1, there exists sn ↑ 1 such that |h(g(sneiα))| = rn when
n is big enough. Hence if m,n ∈ N is big enough and if n ̸= m, ∥F (smeiα) − F (sne

iα)∥ =
∥f(h(g(smeiα))) − f(h(g(sne

iα)))∥ ≥ 1. This shows that F has no radial limit on eiθ, and
so F has radial limits nowhere on J . This finishes the proof of Theorem 2.

It is interesting to know what are the subsets I of T which verify the same conclusion of
Theorem 2. First we have the following

Theorem 3. Let X be a complex Banach space without the analytic Radon-Nikodym
property. Let En be a sequence of disjoint subsets of T with positive measure so that for
each n ∈ N, there exists an element Fn ∈ H∞(D, X), such that Fn has radial limits nowhere
on En and Fn has boundary values everywhere on Ec

n. Then there exists F ∈ H∞(D, X)

such that F has radial limits nowhere on E =
∞∪

n=1
En and F has boundary values everywhere

on Ec.
Proof. Without loss of generality, we can suppose that ∥Fn∥∞ ≤ 1 for each n ∈ N.

Define F =
∞∑

n=1

Fn

2n . Then F ∈ H∞(D, X) and ∥F∥∞ ≤ 1. We shall show that F verifies

the conclusion of the theorem. Let eiθ ∈ E. There exists n ∈ N such that eiθ ∈ En. As Fm

has boundary values everywhere on En for every m ̸= n, we have lim
r↑1

Fm(reiθ) exists in X

for every m ̸= n. lim
r↑1

Fn(re
iθ) does not exist in X since Fn has radial limit nowhere on En.

Let ϵ = lim sup
r,s↑1

∥Fn(re
iθ)−Fn(se

iθ)∥ > 0. There exists n0 ∈ N such that
∞∑

j=n0

1
2j ≤ ϵ/2n+2,

hence

lim sup
r,s↑1

∥F (reiθ)− F (seiθ)∥ ≥ 1

2n
lim sup
r,s↑1

∥Fn(re
iθ)− Fn(se

iθ)∥

−
∑

1≤j<n0, j ̸=n

1

2j
lim sup
r,s↑1

∥Fj(re
iθ)− Fj(se

iθ)∥ −
∞∑

j=n0

1

2j
lim sup
r,s↑1

∥Fj(re
iθ)− Fj(se

iθ)∥

≥ ϵ

2n
− 2

∞∑
j=n0

1

2j
∥Fj∥∞ ≥ ϵ

2n
− ϵ

2n+1
=

ϵ

2n+1
.

Now let eiθ ∈ Ec. As each Fi has boundary values everywhere on Ec, it is easy to see
that F has boundary value on eiθ. This finishes the proof.

It is useful to note that in the proof of Theorem 3, the factor 1
2n in the definition of the

function F can be replaced by any sequence of positive numbers ϵn verifying
∞∑

n=1
ϵn < ∞.

The following result is one of the main results of this paper which states that one can take
every open subset of T instead of a closed interval Ic of T.

Theorem 4. Let X be a complex Banach space without the analytic Radon-Nikodym
property. Then for each open subset A of the torus, there exists F ∈ H∞(D, X) such that
F has boundary values everywhere on Ac and F has radial limits nowhere on A.

Proof. As each open subset A of T is the union of a sequence of disjoint open intervals
of T, by Theorem 3, to show the theorem, it will suffice to show that the same conclusion
is true for open interval I of T. As each open interval of T is the union of a sequence of
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disjoint intervals J of T of the form {eiθ : θ ∈ (a, b]} for some a, b, it will suffice to show
that the same conclusion is true for intervals I of the form I = {eiθ : θ ∈ (a, b]}. We shall
only give the proof for the interval I = {eiθ : θ ∈ (0, 1]}, the proof for the general case is
similar.

First we divide the interval I into a sequence of closed intervals. Let In = {eiθ : θ ∈
[ 1
n+1 ,

1
n ]} for n ∈ N, we have I =

∞∪
n=1

In. It will be useful to note that for n,m ∈ N, n ̸= m,

In ∩ Im = ∅ except for m = n− 1 or m = n+1. By Theorem 2, there exists for each n ∈ N,
an element Fn ∈ H∞(D, X), so that Fn has boundary values on Icn and Fn has radial
limits nowhere on In. We may suppose that ∥Fn∥∞ ≤ 1. The function F ∈ H∞(D, X)
which verifies the conclusion of the theorem for I = {eiθ : θ ∈ (0, 1]} will be of the form

F =
∞∑

n=1
ϵnFn and the sequence (ϵn)n≥0 will be chosen by induction on n. The condition

0 < ϵn ≤ 1
2n for each n will be imposed, so F is analytic and F ∈ H∞(D, X).

First note that with the same proof as that of Theorem 3, it is easy to verify that F has

boundary values on Ic =
∞∩

n=1
Icn and F has radial limits nowhere on

∞∪
n=1

{eiθ : θ ∈ ( 1
n+1 ,

1
n )}.

Therefore it will suffice to ensure that F has no radial limit on e
i
n for every n ∈ N.

Let ϵ1 = 1
2 . By the choice of Fn, Fn has boundary value on e

i
2 for n ≥ 3, hence

lim sup
r,s↑1

∥F (re
i
2 )− F (se

i
2 )∥

≥ 1

2
lim sup
r,s↑1

∥F1(re
i
2 )− F1(se

i
2 )∥ − ϵ2 lim sup

r,s↑1
∥F2(re

i
2 )− F2(se

i
2 )∥

≥ 1

2
lim sup
r,s↑1

∥F1(re
i
2 )− F1(se

i
2 )∥ − 2ϵ2∥F2∥∞.

As lim sup
r,s↑1

∥F (re
i
2 ) − F (se

i
2 )∥ > 0 and ∥F2∥∞ ≤ 1, there exists 0 < ϵ2 ≤ 1

4 so that

lim sup
r,s↑1

∥F (re
i
2 )− F (se

i
2 )∥ > 0. Suppose that 0 < ϵn ≤ 1

2n has been chosen for n ≤ k. We

know that Fn has boundary value on e
i

k+1 for n ≥ k + 2 and n ≤ k − 1, hence it will suffice

to study the behavior of Fk(re
i

k+1 ) and Fk+1(se
i

k+1 ) when r ↑ 1. As lim sup
r,s↑1

∥Fk(re
i

k+1 ) −

Fk(se
i

k+1 )∥ > 0 and ∥Fk+1∥∞ ≤ 1, the same method as in the previous cases shows that

there exists 0 < ϵk+1 ≤ 1
2k+1 so that lim sup

r,s↑1
∥F (re

i
k+1 )−F (se

i
k+1 )∥ > 0. In this way we can

choose 0 < ϵn ≤ 1
2n for n ∈ N so that F has no radial limit on e

i
n for each n ∈ N. This

finishes the proof.
In the proof of Theorem 2, as for all α, β ∈ [0, 2π], for all m,n ∈ N, n ̸= m, ∥F (rne

iα)−
F (rmeiβ)∥ ≥ 1, the function f ∈ H∞(D, X) actually has the following stronger property:
for each eiθ ∈ Ic, for each Jordan curve γ inside D with parameterization ϕ : [0, 1) → D such
that lim

t↑1
ϕ(t) = eiθ, the limit lim sup

z,z′→eiθ,z,z′∈γ

∥f(z)− f(z′)∥ ≥ 1. This enables us to show that

in Theorem 4, the function f ∈ H∞(D, X) actually has the following stronger property: for
each eiθ ∈ A, for each Jordan curve γ inside D with parameterization ϕ : [0, 1) → D such
that lim

t↑1
ϕ(t) = eiθ, we have lim sup

z,z′→eiθ,z,z′∈γ

∥f(z) − f(z′)∥ > 0. It is interesting to note that

f ∈ H∞(D, X) has boundary values everywhere on Ac if and only if for each eiθ ∈ Ac, for
each Jordan curve γ inside D with parameterization ϕ : [0, 1) → D such that lim

t↑1
ϕ(t) = eiθ,
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we have lim sup
z,z′→eiθ,z,z′∈γ

∥f(z)− f(z′)∥ = 0.

We do not know whether Theorem 4 remains true when A is an arbitrary measurable
subset of T with positive measure. We have only the following

Theorem 5. Let X be a complex Banach space without the analytic Radon-Nikodym
property and let A ⊂ T with positive measure. There exists F ∈ H∞(D, X), such that F
has radial limits almost nowhere on A and F has nontangential limits almost everywhere on
Ac.

Proof. Without loss of generality, we can suppose that the measure of Ac is positive. Let
g1 be the bounded measurable function on T defined by g1(t) = 0 if t ∈ A and g1(t) = −1 if
Ac. g1 can be extended via the Poisson kernel in D so that g1 becomes a bounded harmonic
function on D. Let g2 be the harmonic conjugate of g1 satisfying g2(0) = 0, consider the
analytic functions g(z) = g1(z) + ig2(z) and h(z) = eg(z) on D. We have |h(z)| = eg1(z) ≤ 1
as g1(z) ≤ 0. By principle of maximum, h is analytic on D with values in D.

AsX lacks the analytic Radon-Nikodym property, there exists F ∈ H∞(D, X) and rn ↑ 1,
such that for all n ∈ N, 0 ≤ r ≤ rn and (α, β) ∈ [0, 2π]2, we have ∥f(reiα)−f(rn+1e

iβ)∥ ≥ 1
(see [3]). Let f(z) = F (h(z)) for z ∈ D. f is uniformly bounded and analytic. We shall
show that f verifies the conlcusion of the theorem.

Let eiθ ∈ Ac be fixed. As g1 and h have nontangential limits almost everywhere on T, we
can suppose that g1 and h have nontangential limits on eiθ and the nontangential limit of g1
on eiθ is −1. Let 0 ≤ α < π and let zn be a sequence inside the region Sα(θ) converging to

eiθ. The limit lim
n→∞

h(zn) = a exists and |a| = lim
n→∞

|h(zn)| = e
lim

n→∞
g1(zn)

= e−1. This means

that h(zn) converges to some point a ∈ D when n tends to ∞, hence f(zn) = F (h(zn))
converges to F (a) since F is continuous on a. This shows that f has nontangential limits
almost everywhere on Ac.

Now let eiθ ∈ A be fixed. As g1 and h have nontangential limits almost everywhere on
T, we can suppose that g1 and h have nontangential limits on eiθ and the nontangential
limit of g1 on eiθ is 0. We get that the limit lim

s↑1
h(seiθ) = b exists and |b| = lim

s↑1
|h(seiθ)| =

e
lim
s↑1

g1(se
iθ)

= 1. This means that h(seiθ) converges to some point eiα ∈ T when s ↑ 1. As
rn ↑ 1 and h(seiθ) is continuous on the variable s ∈ [0, 1), there exists 0 ≤ sn < 1 such
that |h(sneiθ)| = rn when n is big enough and sn ↑ 1. We get that lim

n→∞
f(sne

iθ) does not

exist since ∥F (rne
iα)−F (rmeiβ)∥ ≥ 1 for every α, β ∈ [0, 2π] and m,n ∈ N, m ̸= n. Hence

∥f(rneiθ)− f(rmeiθ)∥ ≥ 1 when m ̸= n are big enough. This shows that f has radial limits
almost nowhere on A. The claim is proved.
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