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Abstract

By means of the theory of harmonic maps into the unitary group U(N), the authors study
harmonic maps into the symplectic group Sp(N). The symplectic uniton and symplectic ex-

tended uniton are introduced. The method of the symplectic Bäcklund transformation and the
Darboux transformation is used to construct new symplectic unitons from a known one.
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§0. Introduction

The construction and the factorization of harmonic maps from R2 (or its simply-connected
domain) into the unitary group U(N) were firstly solved by K.Uhlenbeck in [1], where
the conception of unitons was introduced. Since then various developments have been
contributed[2−5]. Recently, by introducing (singular) Darboux transformations, a purely
algebraic method to construct harmonic maps and unitons into U(N) has been shown
in [6,7]. This method can be also applied to the case of harmonic maps into complex
Grassmannians[8].

The purpose of this paper is to study harmonic maps from R2 into the symplectic group
Sp(N) which is a totally geodesic subgroup of U(2N). It is different from the case of the
unitary group that there is no nontrivial single factor of simplest type acting on harmonic
maps into Sp(N) (Proposition 2.1). We introduce the factor of symplectic simplest type
which consists of double factors of simplest type (§2). The conception of symplectic unitons
and symplectic extended unitons is defined naturally. A theorem for the description of the
action on the space M of symplectic extended unitons is proved (Theorem 2.2). Then,
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the symplectic Bäcklund transformation as well as the singular Bäcklund transformation
for harmonic maps into Sp(N) is given (Propositions 3.1 and 3.3). Finally, the Darboux
transformation method described as in [6,7] is used to construct new symplectic unitons
from a known one via a purely algebraic algorithm (Theorem 4.2).

Throughout this paper we are going to work on a simply-connected domain Ω ⊆ IC∩{∞}.
All results also hold on S2. The notations used here will follow those in [1, 8].

§1. Preliminaries

Let IC2N be endowed with the usual Hermitian metric and {e1, · · · , e2N} the canonical
basis of IC2N . The complex structure J in IC2N may be expressed as

J =

(
0 −IN
IN 0

)
with respect to the canonical basis, where IN is the identity matrix of degree N . For the
sake of simplicity, we introduce the following notation of the algabraic operation:

A∗ := J−1AJ = −JAJ for A ∈ gl(2N, IC). (1.1)

Thus, the symplectic group Sp(N) is defined as

Sp(N) = {A ∈ U(2N) | A∗ = A}, (1.2)

which is a totally geodesic closed subgroup of the unitary group U(2N). The Lie algebra of
Sp(N) is then

sp(N) = {X ∈ u(2N) | X∗ = X}, (1.3)

where u(2N) is the Lie algebra of U(2N).

By direct verfication, the operator defined by (1.1) satisfies the following propertities.

Lemma 1.1. For A,B ∈ gl(2N, IC) and λ ∈ IC, we have (1) (A∗)∗ = A; (2) (A + B)∗ =
A∗ + B∗; (3) (AB)∗ = A∗B∗; (4) (λA)∗ = λA∗; (5) (A∗)

−1 = (A−1)∗ for A ∈ GL(2N, IC);

(6) J∗ = J , I∗ = I; (7) (A∗)∗ = (A∗)
∗, where A∗ = A

t
.

Let Ω ⊆ IC ∪ {∞} be a simmly-connected domain and z the complex coordinate on Ω.
Consider a smooth map φ : Ω → Sp(N) and set A = 1

2φ
−1dφ which is a 1-form valued in

sp(N) and can be decomposed as A = Azdz +Azdz satisfying the following conditions:

φ∗ = φ−1, φ∗ = φ; (1.4)

A∗
z = −Az, (Az)∗ = Az; (1.5)

∂Az − ∂Az + 2[Az, Az] = 0, (1.6)

where ∂ = ∂/∂z and ∂ = ∂/∂z. It is known that φ is harmonic if and only if

∂Az + ∂Az = 0. (1.7)

The Lax pair of the harmonic maps is

∂Φλ = (1− λ)ΦλAz, ∂Φλ = (1− λ−1)ΦλAz, (1.8)

whose integrability condition is just (1.6) and (1.7). Thus, if φ is harmonic and φ(p) = I
for a fixed point p ∈ Ω, then there exists a unique Φλ satisfying the equations (1.8) with
Φ1 ≡ I; Φ−1 = φ; Φλ(p) = I. From (1.5) and (1.8) it follows that

d
(
ΦλΦ

∗
σ(λ)

)
= 0 and d

(
Φ−1

λ (Φσ(λ))∗

)
= 0,
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where σ(λ) = (λ)−1. Thus, Φλ can be normalized so that

Φ∗
σ(λ) = Φ−1

λ and (Φσ(λ))∗ = Φλ. (1.9)

Conversely, if Φλ is a solution to (1.8) satisfying (1.9), then Φ−1 : Ω → Sp(N) is harmonic.
Such Φλ : IC∗ ×Ω → GL(2N, IC), IC∗ = IC\{0}, will be called a symplectic extended solution,
or a symplectic extended harmonic map.

Clearly, a harmonic map into Sp(N) can be viewed as a harmonic map into U(2N), while
the inversion is not true, in general.

Lemma 1.2. If Φ′
λ is an extended solution of a harmonic map φ′ : Ω → U(N), then

Φλ =

(
Φ′

λ 0

0 Φ
′
σ(λ)

)
(1.10)

is a symplectic extended solution of the harmonic map φ = Φ−1 : Ω → Sp(N).
Proof. Let A′ = 1

2φ
′−1dφ′ = A′

zdz +A′
zdz. It follows that

(1− λ)−1Φ−1
λ ∂Φλ =

(
A′

z 0
0 −A′t

z

)
is independent of λ, as well as (1− λ−1)−1Φ−1

λ ∂Φλ. By virtue of Theorem 2.3 in [1], Φ−1 is
harmonic. It is easy to check that Φλ defined by (1.10) satisfies the condition (1.9). Hence,
Φ−1 maps Ω into Sp(N).

This lemma provides a way to construct harmonic maps into Sp(N) via harmonic maps
into U(N).

If the Laurent series of Φλ is Φλ =
∞∑

α=−∞
Tαλ

α where Tα : Ω → gl(2N, IC), then the

symplectic condition (1.9) is equivalent to

Φ−1
λ =

∞∑
α=−∞

T ∗
−αλ

α, (Tα)∗ = T−α. (1.11)

§2. Dressing Actions on Symplectic Extended Unitons

Definition 2.1. A symplectic n-uniton is a harmonic map φ : Ω → Sp(N) which has a
symplectic extended solution Φλ : IC∗ × Ω → GL(2N, IC) with

(a) Φλ =
n∑

α=−n
Tαλ

α for Tα : Ω → gl(2N, IC), (b) Φ1 = I,

(c) Φ−1 = Qφ for Q ∈ Sp(N) constant, (d) Φλ satisfies (1.9).
In such a case, Φλ is also called the symplectic extended uniton. Clearly, a symplectic

n-uniton is a 2n-uniton for U(2N).
Let

AR(S
2, G) = {f : S2\{p1, · · · , pl} → G meromorphic with no zeros

or poles at (0,∞) and f(1) = I, f(λ)−1 = f(σ(λ))∗},
B(S2, G) = {f ∈ AR(S

2, G) | f(λ) = f(σ(λ))∗}, (2.1)

where G = GL(2N, IC). Define

Mn(G) = {all of the symplectic extended n-unitons}, M(G) =
∞∪

n=0

Mn(G).

We write f#Φλ = f(λ) ·Φλ ·Rλ for f ∈ AR(S
2, G), R : Ω → AR(S

2, G). f# is the so-called
dressing action by f . By [1], Rλ is determined uniquely by f(λ) and Φλ.
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Theorem 2.1. Given f ∈ B(S2, G), then we have f# : Mn(G) → Mn(G), and there is
a unique R : Ω → B(S2, G).

Proof. It is known in [1] that there exists a unique Rλ : Ω → AR(S
2, G) such that

f#Φλ = f(λ)ΦλRλ is still an extended 2n-uniton when Φλ is an extended 2n-uniton. We
now assume that Φλ is a symplectic extended n-uniton. From (1.9) we see that f#Φλ is still
a symplectic extended n-uniton if and only if

f(λ)ΦλRλ =
(
f(σ(λ))Φσ(λ)Rσ(λ)

)
∗
= f(σ(λ))∗Φλ(Rσ(λ))∗. (2.2)

Since the representation of f(λ)Φλ = (f#Φλ)R
−1
λ is unique (cf. [1, Lemma 5.1]), (2.2)

holds if only f(λ) = f(σ(λ))∗. Moreover, from (2.2) it follows that Rλ = (Rσ(λ))∗, namely,

R : Ω → B(S2, G).

On putting P(2N) = {π ∈ L(IC2N , IC2N ) | π2 = π and π∗ = π}, we let f(λ) = π+ξα(λ)π
⊥

where

ξα(λ) =
(λ− α)

(αλ− 1)

(α− 1)

(1− α)
for α ∈ IC∗. (2.3)

Such f(λ) is called the factor of simplest type in [1]. As distingushed from the case of
unitary groups, we have

Proposition 2.1. Let π ∈ P(2N) and ξα(λ) be defined by (2.3). Then π + ξα(λ)π
⊥

belongs to B(S2, G) if and only if |α| = 1, i.e., ξα(λ) = 1. In other words, there is no
nontrivial factor of simplest type in B(S2, G).

Proof. Assume that f(λ) = π + ξα(λ)π
⊥ ∈ B(S2, G) and rankπ = k. We can choose

Q ∈ U(2N) such that

Q∗f(λ)Q =

(
Ik 0
0 ξα(λ)I2N−k

)
, Q

∗
f(σ(λ))Q =

(
Ik 0
0 ξα(λ)

−1I2N−k

)
.

By writting Q
∗
JQ =

(
J1 J2
J3 J4

)
, where J1 and J4 are respectively k×k and (2N−k)×(2N−

k) matrices, we see that the condition f(λ) = (f(σ(λ)))∗ yields that ξα(λ)J2 = J2, J3 =
ξα(λ)

−1J3 and (ξα(λ))
2J4 = J4. Noting that J2, J3 and J4 can not vanish simultaneously,

we have either ξα(λ) = 1 or (ξα(λ))
2 = 1. In the latter case, from (2.3) it follows that

|α| = 1, which implies that ξα(λ) = 1.

Example 2.1. Let G′ = GL(N, IC) and f ′ ∈ AR(S
2, G′). By Lemma 1.2, we then have

f(λ) =

(
f ′(λ) 0

0 f ′(σ(λ))

)
∈ B(S2, G), G = GL(2N, IC). (2.4)

If f ′(λ) ∈ AR(S
2, G′) is the factor of simplest type, i.e., f ′(λ) = π′+ξα(λ)π

′⊥ for π′ ∈ P(N),
then from (2.4) we see that

f(λ) =

(
π′ + ξα(λ)π

′⊥ 0
0 π′ + ξα(λ)

−1π′⊥

)
= (π + ξα(λ)π

⊥)(π∗ + ξα(λ)
−1π⊥

∗ ) ∈ B(S2, G), (2.5)

where π =

(
π′ 0
0 IN

)
∈ P(2N), π⊥

∗ = (π⊥)∗ = (π∗)
⊥.

In general, we have the following

Lemma 2.1. Let π1, π2 ∈ P(2N), and f(λ) = (π1 + ξα(λ)π
⊥
1 )(π2 + ξα(λ)

−1π⊥
2 ). Then,

f(λ) ∈ B(S2, G) if and only if π1π
⊥
2 = (π⊥

1 π2)∗.
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Proof. By (2.1), we have f(λ) = f(σ(λ))∗, from which it follows that

π1π2 + π⊥
1 π

⊥
2 = π1∗π2∗ + π⊥

1∗π
⊥
2∗, π1π

⊥
2 = π⊥

1∗π2∗, π⊥
1 π2 = π1∗π

⊥
2∗.

By Lemma 1.1, these are equivalent to the condition that π1π
⊥
2 = (π⊥

1 π2)∗.
Lemma 2.2. Let πi ∈ P(2N), i = 1.2. If π1π

⊥
2 = (π⊥

1 π2)∗, then rankπ1 = rankπ2.
Proof. Let rankπi = ki, i = 1, 2. Since

null(π⊥
2 π1) = null(π1π

⊥
2 ) = null(π1π

⊥
2 )∗ = null(π⊥

1 π2),

ker(π⊥
2 π1) = kerπ1 ⊕ (Imπ1 ∩ kerπ⊥

2 ) = kerπ1 ⊕ (Imπ1 ∩ Imπ2),

ker(π⊥
1 π2) = kerπ2 ⊕ (kerπ⊥

1 ∩ Imπ2) = kerπ2 ⊕ (Imπ1 ∩ Imπ2),

we have

2N − k1 + dim(Imπ1 ∩ Imπ2) = 2N − k2 + dim(Imπ1 ∩ Imπ2), (2.6)

i.e., k1 = k2.
The factor f(λ) in Lemma 2.1 with (π⊥

1 π2)∗ = π1π
⊥
2 will be called the factor of symplectic

simplest type. By Lemma 2.2, rankπ1 (= rankπ2) will be called the rank of the factor f(λ).
In particular, for π ∈ P(2N), if π⊥π⊥

∗ = 0 (or ππ∗ = 0), then it is easy to verify that the
factor (π+ ξα(λ)π

⊥)(π∗+ ξα(λ)
−1π⊥

∗ ) is of symplectic simplest type, where ξα(λ) is defined
by (2.3).

Theorem 2.2. Let πi : IC2N → Vi ⊆ IC2N (i = 1, 2) be Hermitian projections with
π2π

⊥
1 = (π⊥

2 π1)∗. Let f(λ) = (π2 + ξα(λ)π
⊥
2 )(π1 + ξα(λ)

−1π⊥
1 ) with |α| ≠ 1. Then, for

Φλ ∈ Mn(G), there exist π̃i : Ω → P(2N), i = 1, 2, such that

f#Φλ = f(λ)Φλ(π̃1 + ξα(λ)π̃
⊥
1 )(π̃2 + ξα(λ)

−1π̃⊥
2 ) (2.7)

with π̃1π̃
⊥
2 = (π̃⊥

1 π̃2)∗. Moreover, we have π̃i : Ω× IC2N → ηi, i = 1, 2, where

η1 = Φ−1
α V1, η2 = Φ̃∗

αV2, Φ̃α = Φαπ̃1 + π⊥
1 Φα + β̃π⊥

1 Φ̇απ̃1 (2.8)

with β̃ = (1− |α|2)(1− α)/(1− α) and Φ̇α = (dΦλ/dλ) |λ=α.
Proof. Set

Φ̃λ = (π1 + ξα(λ)
−1π⊥

1 )Φλ(π̃1 + ξα(λ)π̃
⊥
1 )

= (π1 + ξσ(α)(λ)π
⊥
1 )Φλ(π̃1 + ξσ(α)(λ)

−1π̃⊥
1 ). (2.9)

By Theorem 6.1 and Corollary 6.2 in [1], one can see that Φ̃λ is an extended 2n-uniton and

η1 = Φ∗
σ(α)V1 = Φ−1

α V1. Then, by (2.9), f#Φλ = (π2 + ξα(λ)π
⊥
2 )Φ̃λ(π̃2 + ξα(λ)

−1π̃⊥
2 ). By

the same reason, f#Φλ is an extended 2n-uniton and η2 = Φ̃∗
αV2. Noting that π⊥

1 Φαπ̃1 = 0
(see [1, (20)]), from (2.4) and (2.9) we have

Φ̃α = lim
λ→α

Φ̃λ = π1Φαπ̃1 + π⊥
1 Φαπ̃

⊥
1 + lim

λ→α
ξσ(α)(λ)

−1π⊥
1 Φλπ̃1

= Φαπ̃1 + π⊥
1 Φα + β̃π⊥

1

(
lim
λ→α

Φλ

λ− α

)
π̃1 = Φαπ̃1 + π⊥

1 Φα + β̃π⊥
1 Φ̇απ̃1.

Since π2π
⊥
1 = (π⊥

2 π1)∗, we have, by Lemma 2.1 and Theorem 2.1, f#Φλ ∈ Mn(G) and
Rλ = (π̃1 + ξα(λ)π̃

⊥
1 )(π̃2 + ξα(λ)

−1π̃⊥
2 ) : Ω → B(S2, G), so that π̃1π̃

⊥
2 = (π̃⊥

1 π̃2)∗.
Corollary 2.1. Let Φλ ∈ Mn(G) satisfy the initial condition that Φλ(p) = I for a fixed

point p ∈ Ω. Then π̃i, πi (i = 1, 2) described as in Theorem 2.2 satisfy π̃i(p) = πi, i = 1, 2.
Thus, if Rλ = (π̃1 + ξα(λ)π̃

⊥
1 )(π̃2 + ξα(λ)

−1π̃⊥
2 ) is of symplectic simplest type at a point

p ∈ Ω, then so is it everywhere on Ω.
Now consider actions of S1 on Mn(G).
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Proposition 2.2. If γ ∈ S1 and Φλ ∈ Mn(G), then γ#Φλ = ΦλγΦ
−1
γ ∈ Mn(G), i.e.,

γ# : Mn(G) → Mn(G).
Proof. By Theorem 7.1 of [1], γ#Φλ is an extended 2n-uniton. It is easy to see that

(γ#Φσ(λ))∗ = (Φσ(λ)γ)∗(Φ
−1
γ )∗ = ΦλγΦ

−1
γ = γ#Φλ. Hence, γ#Φλ ∈ Mn(G).

Theorem 2.2 and Proposition 2.2 give two ways to construct new symplectic extended
unitons from known ones.

§3. Symplectic Bäcklund Transformations

Proposition 3.1. Let φ : Ω → Sp(N) be a harmonic map, and A = 1
2φ

−1dφ as usual.

Let πi ∈ P(2N), i = 1, 2, satisfying π1π
⊥
2 = (π⊥

1 π2)∗. Then a family of new harmonic maps
into Sp(N) parametrized by α ∈ IC∗ can be found by solving the following system of ordinary
differential equations for π̃i : Ω → P(2N) with π̃i(p) = πi for a point p ∈ Ω :

∂π̃1 = (1− σ(α))π̃1Azπ̃
⊥
1 − (1− α)π̃⊥

1 Azπ̃1,

∂π̃2 = (1− α)π̃2(Az + β∂π̃1)π̃
⊥
2 − (1− σ(α))π̃⊥

2 (Az + β∂π̃1)π̃2, (3.1)

where β = 1−|α|2
(1−α)(1−α) . The new harmonic maps can be written as

φ̃ = Q̃φ(π̃1 − γπ̃⊥
1 )(π̃2 − γπ̃⊥

2 ), (3.2)

where γ = (1−α)(1+α)
(1+α)(1−α) ∈ S1 and Q̃ ∈ Sp(N).

Proof. Let Φλ be the symplectic extended solution of φ, so that Φ−1 = Qφ for some
Q ∈ Sp(N). By using Theorem 6.3 of [1] and noting that ξα = ξ−1

σ(α), we know that

Ψλ = (π1 + ξα(λ)
−1π⊥

1 )Φλ(π̃1 + ξα(λ)π̃
⊥
1 )

is a new extended solution if and only if π̃1 satisfies the first equation in (3.1), i.e., Bz :=
(1 − λ)−1Ψ−1

λ ∂Ψλ is independent of λ. A straightforward computation gives Bz = Az +

β∂π̃1 with β = 1−|α|2
(1−α)(1−α) . By the same reason, we see that

Φ̃λ = (π2 + ξα(λ)π
⊥
2 )Ψλ(π̃2 + ξα(λ)

−1π̃⊥
2 )

= (π2 + ξα(λ)π
⊥
2 )(π1 + ξα(λ)

−1π⊥
1 )Φλ(π̃1 + ξα(λ)π̃

⊥
1 )(π̃2 + ξα(λ)

−1π̃⊥
2 )

(3.3)

is also a new extended solution if and only if π̃2 satisfies the second equation in (3.1).
On the other hand, by Corollary 2.2, we have π̃1π̃

⊥
2 = (π̃⊥

1 π̃2)∗ on Ω everywhere. So,

Φ̃λ ∈ M(G). Now, (3.2) follows directly from taking λ = −1 in Φ̃λ.
Proposition 3.1 gives a description of a Bäcklund transformation for harmonic maps into

Sp(N). The factor (π̃1 + ξα(λ)π̃
⊥
1 )(π̃2 + ξα(λ)

−1π̃⊥
2 ) of symplectic simplest type where π̃i

satisfy (3.1) will be called the symplectic Bäcklund factor. Clearly, the factor of symplectic
simplest type constructed by π̃i (i = 1, 2) described as in Theorem 2.2 is just a symplectic
Bäcklund factor.

It is known in Lemma 4.1 of [7] that every extended n-uniton can be written as a product
of n factors of the form (π + λπ⊥). Thus, every symplectic extended n-uniton may be
expressed as a product of n factors of the form (π1 + λπ⊥

1 )(π2 + λ−1π⊥
2 ). We now consider

the symplectic one-uniton.
Proposition 3.2. φ :→ Sp(N) is a symplectic one-uniton if and only if φ = Q(π1 −

π⊥
1 )(π2 − π⊥

2 ) for Q ∈ Sp(N), where πi : Ω → P(2N), i = 1, 2, satisfy the following: (1)
π⊥
1 π2 = (π1π

⊥
2 )∗; (2) π2(∂π2 − (∂π1)π

⊥
2 ) = 0; (3) π2π

⊥
1 (∂π1) = 0; (4) π⊥

1 (∂π1)π
⊥
2 =

0; (5) π⊥
2 π1(∂π1)π2 = 0.
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Proof. By Theorem 2.3 of [1], Φλ = (π1 + λπ⊥
1 )(π2 + λ−1π⊥

2 ) is an extended solution of
Φ−1 if and only if (1− λ)−1Φ−1

λ ∂Φλ is independent of λ, i.e.,

(π2 + λπ⊥
2 )

(
(π1 + λ−1π⊥

1 )∂π1(π2 + λ−1π⊥
2 ) + λ−1∂π⊥

2

)
(3.4)

is independent of λ. Hence, by (3.4), it is necessary and sufficient that

π⊥
2 π1(∂π1)π2 = 0, π2π

⊥
1 (∂π1)π

⊥
2 = 0,

π2∂π
⊥
2 + π2π1(∂π1)π

⊥
2 + π2π

⊥
1 (∂π1)π2 + π⊥

2 π
⊥
1 (∂π1)π

⊥
2 = 0. (3.5)

By multiplying (3.5)2 on the left by π⊥
2 and on the right by π2, we can get respectively

π⊥
2 π

⊥
1 (∂π1)π

⊥
2 = 0, π2π

⊥
1 (∂π1)π2 = 0, π2∂π

⊥
2 + π2π1(∂π1)π

⊥
2 = 0.

It is easy to verify that these conditions is equivalent to (2)–(5) in the proposition. By the
proof of Lemma 2.1, we can see that the extended solution Φλ is symplectic if and only if
the condition (1) in the proposition holds.

Corollary 3.1. If π : Ω → P(2N) satisfies that π ⊥π⊥
∗ = 0, then φ = Q(π−π⊥)(π∗−π⊥

∗ )
for some Q ∈ Sp(N) is a symplectic one-uniton if and only if π⊥∂π = 0 and π⊥

∗ ∂π = 0.

Example 3.1. Let π′ : Ω × ICN → η′ where η′ is a holomorphic subbundle of Ω × ICN ,

namely, π′⊥∂π′ = 0. Consider π : Ω → P(2N) defined by π =

(
π′ 0
0 IN

)
and π⊥

∗ =(
0 0
0 π′⊥

)
. Clearly, such a π satisfies the conditions in Corollary 3.1. Hence, forQ ∈ Sp(N),

φ = Q(π − π⊥)(π∗ − π⊥
∗ ) = Q

(
π′ − π′⊥ 0

0 π′ − π′⊥

)
(3.6)

is a symplectic one-uniton with the symplectic extended solution

Φλ = (π + λπ⊥)(π∗ + λ−1π⊥
∗ ).

More general, by Lemma 1.2, any extended n-uniton Φ′
λ = (π′

1 + λπ′⊥
1 ) · · · (π′

n + λπ′
n
⊥)

can be used to construct a symplectic extended n-uniton

Φλ =
n∏

i=1

(πi + λπ⊥
i )(πi∗ + λ−1π⊥

i∗) =
n∏

i=1

(πi + λπ⊥
i )

n∏
i=1

(πi∗ + λ−1π⊥
i∗),

where πi =

(
π′
i 0
0 IN

)
for i = 1, · · · , n.

It is known that the symplectic Bäcklund transformations described as in Theorem 3.1 is
degenerate as α → 0. By Theorem 12.1 of [1], we can get the following singular Bäcklund
transformations.

Proposition 3.3. Let Φλ ∈ M(G) and A = 1
2Φ

−1
−1dΦ−1. For πi : Ω → P(2N), i = 1.2,

satisfying π⊥
1 π2 = (π1π

⊥
2 )∗, if

π1Azπ
⊥
1 = 0, π⊥

1 (∂π1 +Azπ1) = 0;

π⊥
2 (Az + ∂π1)π2 = 0, π2(∂π2 −Azπ

⊥
2 − (∂π1)π

⊥
2 ) = 0, (3.7)

then

Φ̃λ = Φλ(π1 + λπ⊥
1 )(π2 + λ−1π⊥

2 ) ∈ M(G). (3.8)

The proof is similar to that of Proposition 3.1. So, we omit it here.

Clearly, (3.7) is the limit of (3.1) as α → 0. The factor (π1+λπ⊥
1 )(π2+λ−1π⊥

2 ) satisfying
(3.7) will be called the symplectic flag factor. For example, let Φλ be the symplectic extended
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solution given by (1.10), and (π′ + λπ′⊥) be the flag factor of Φ′
λ in (1.10). Then (π +

λπ⊥)(π∗ + λ−1π⊥
∗ ) is a symplectic flag factor of Φλ, where π =

(
π′ 0
0 IN

)
.

§4. Darboux Transformations

In [6,7] the Darboux transformation and the renormalization procedure are used to con-
struct new unitons from a known one via a purely algebraic algorithm. We now will apply
this method to the construction of symplectic Bäcklund factors and symplectic flag factors
via double Darboux transformations.

Let φ : Ω → Sp(N) be a symplectic uniton which has the extended solution of the form

Φλ =
n∑

α=−n
Tαλ

α with (Tα)∗ = T−α (see (1.11)). Let ε ∈ IC∗ satisfy | ε |̸= 1, and let L1, L2

be k × 2N and (2N − k)× 2N constant matrices respectively such that(
L1

L2

)
∈ GL(2N, IC), L1L

∗
2 = 0, L1JL

t
1 = 0. (4.1)

We set Hε =

(
L1Φε

L2Φσ(ε)

)
, Λε =

(
ω1Ik 0
0 ω2I2N−k

)
for ω1 = 1 − ε, ω2 = 1 − σ(ε),

Sε = H−1
ε Λ−1

ε Hε. It has been proved in [6,7] that

Φ
(1)
λ (ε) = Φλ(I − (1− λ)Sε) (4.2)

is a new extended solution and

Sε =
1

ω1
π⊥
ε +

1

ω2
πε, (4.3)

where

πε = H−1
ε

(
0 0
0 I2N−k

)
Hε, π⊥

ε = I − πε (4.4)

are Hermitian projections satisfying the first equation of (3.1) with α = σ(ε). Substituting
(4.3) into (4.2) yields

Φ
(1)
λ (ε) = Φλ(πε + ξε(λ)π

⊥
ε )ζε(λ), (4.5)

where

ξε(λ) =
(λ− ε)(ε− 1)

(ελ− 1)(1− ε)
, ζε(λ) =

λ− σ(ε)

1− σ(ε)
. (4.6)

Following [7], πε and π⊥
ε can be expressed explicitly as

πε = Φ−1
ε L∗

2(L2Φσ(ε)Φ
−1
ε L∗

2)
−1L2Φσ(ε),

π⊥
ε = Φ∗

εL
∗
1(L1ΦεΦ

∗
εL

∗
1)

−1L1Φε. (4.7)

It follows from (4.5) and (4.6) that Φ
(1)
λ (ε) is degenerate as λ = ε or λ = σ(ε). So, we put

Φ̃λ(ε) = (ζε(λ)
−1ρ+ ζσ(ε)(λ)

−1ρ⊥)Φ
(1)
λ (ε), (4.8)

where

ρ = L∗
2(L2L

∗
2)

−1L2, ρ⊥ = L∗
1(L1L

∗
1)

−1L1. (4.9)

Clearly, Φ̃λ(ε) is still an extended solution. From (4.1)2, (4.7) and (4.9) we know that

ρ⊥Φεπε = 0, ρΦσ(ε)π
⊥
ε = 0. (4.10)



No.4 HE, Q. & SHEN, Y. B. ON HARMONIC MAPS INTO SYMPLECTIC GROUPS Sp(N) 527

Thus, we have

Φ̃ε(ε) = lim
λ→ε

Φ̃λ(ε) = Φεπε + ρ⊥Φε +
(1− ε)(ε− σ(ε))

(ε− 1)σ(ε)
ρ⊥Φ̇επε,

Φ̃σ(ε)(ε) = ρΦσ(ε) +Φσ(ε)π
⊥
ε +

(1− ε)(ε− σ(ε))

ε(1− ε)
ρΦ̇σ(ε)π

⊥
ε , (4.11)

where Φ̇σ(ε) = (dΦλ/dλ) |λ=σ(ε). One then can verify directly that Φ̃εΦ̃
∗
σ(ε) = I, which

implies that Φ̃λ(ε) defined by (4.8) is nondegenerate for λ ∈ IC∗. Here and from now on, we

denote simply Φ̃ε(ε) and Φ̃σ(ε)(ε) by Φ̃ε and Φ̃σ(ε).

Set H̃ε =

(
L1JΦ̃σ(ε)

L2JΦ̃ε

)
, Λ̃ε =

(
ω2Ik 0
0 ω1I2N−k

)
, S̃ε = H̃−1

ε Λ̃−1
ε H̃ε. Then, by the

same reason as above,

Φ
(2)
λ (ε) = Φ̃λ(ε)(I − (1− λ)S̃ε) (4.12)

is a new extended solution and

S̃ε =
1

ω2
π̃⊥
ε +

1

ω1
π̃ε, (4.13)

where

π̃ε = H̃−1
ε

(
0 0
0 I2N−k

)
H̃ε, π̃⊥

ε = I − π̃ε (4.14)

are Hermitian projections satisfying the second equation of (3.1) with α = ε related to Φλ.
Moreover, they can be expressed explicitly as

π̃ε = Φ̃∗
εJL

t
2(L2JΦ̃εΦ̃

∗
εJL

t
2)

−1L2JΦ̃ε,

π̃⊥
ε = Φ̃−1

ε JLt
1(L1JΦ̃σ(ε)Φ̃

−1
ε JLt

1)
−1L1JΦ̃σ(ε). (4.15)

By inserting (4.5), (4.8) and (4.13) into (4.12), we obtain finally

Φ
(2)
λ (ε) = (ζε(λ)ρ

⊥ + ζσ(ε)(λ)ρ)ΦλRε(λ), (4.16)

where

Rε(λ) = (πε + ξε(λ)π
⊥
ε )(π̃ε + ξε(λ)

−1π̃⊥
ε ) (4.17)

is just the symplectic Bäcklund factor described as in Theorem 2.2. In fact, it follows from
(4.7) and (4.15) that

rangeπε = span {Φ−1
ε L∗

2}, range π̃ε = span {Φ̃∗
εJL

t
2},

range ρ = span {L∗
2}, range ρ∗ = span {JLt

2},
which imply that πε and π̃ε are respectively π̃1 and π̃2 described as in Theorem 2.2, where
π1 = ρ and π2 = ρ∗. On the other hand, (4.1)3 yields that ρ⊥ρ⊥∗ = 0. So, by Theorem 2.2,
we have π⊥

ε π̃ε = (πεπ̃
⊥
ε )∗, which implies that Rε(λ) defined by (4.17) is symplectic. Hence,

we have proved the following

Theorem 4.1. Let Φλ ∈ Mn(G), and πε and π̃ε be defined by (4.7) and (4.15) respec-
tively. Then, Rε(λ) defined by (4.17) is a symplectic Bäcklund factor, so that (ζε(λ)

−1ρ⊥∗ +

ζσ(ε)(λ)
−1ρ∗)Φ

(2)
λ (ε) ∈ Mn(G), where Φ

(2)
λ (ε) is defined by (4.16).

We now consider singular Darboux transformations. Since Φλ =
n∑

α=−n
Tαλ

α, by a renor-

malization procedure for εnΦ∗
σ(ε)L

∗
2 as in [7], we can show πε → π as ε → 0. Moreover,
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rankπ = rank (lim
ε→0

πε) = 2N − k as in (4.4). Similarly, π⊥
ε → π⊥ as ε → 0. It follows from

(4.10) that

ρ⊥T−nπ = 0, ρTnπ
⊥ = 0. (4.18)

Thus, (4.11) together with (4.18) yields

lim
ε→0

εn+1Φ̃ε = 0, lim
ε→0

εn+1Φ̃σ(ε) = 0. (4.19)

(4.19) implies that we have the Laurent expression Φ̃ε =
n∑

α=−n
T̃αε

α for ε(̸= 0) small enough.

Similarly, by a renormalization procedure for εnΦ̃∗
εJL

t
2, we can show π̃ε → π̃ as ε → 0

and rank π̃ = 2N − k. Hence, from (4.16) and (4.17) we have

lim
ε→0

Φ
(2)
λ (ε) = (ρ⊥ + λρ)Φλ(π + λπ⊥)(π̃ + λ−1π̃⊥) (4.20)

with π⊥π̃ = (ππ̃⊥)∗. Thus, we have proved the following
Theorem 4.2. Let Φλ ∈ Mn(G), and π and π̃ be Darboux limits of πε and π̃ε, repectively,

as ε → 0. Then R(λ) = (π + λπ⊥)(π̃ + λ−1π̃⊥) is a symplectic flag factor of Φλ, so that
ΦλR(λ) ∈ M(G).

The constant matrices L1, L2 as above always exist. In fact, the condition (4.1)3 implies
that ρ⊥ρ⊥∗ = 0 so that k ≤ N . On putting L1 = (C D) where C and D are k×N matrices,
we see that L1JL

t
1 = 0 only if CDt is a symmetric k × k matrix. For example, we may

take C = D. On the other hand, the condition (4.1)3 can be replaced by L2JL
t
2 = 0. In

such a case, we have ρρ∗ = 0 so that k ≥ N . Therefore, by choosing L1 and L2 suitably,
we can construct symplectic flag factors of arbitrary rank via a purely algebraic algorithm.
We think that such symplectic flag factors may be used to factorize the symplectic extended
unitons. This problem will be studied in a forthcoming paper.
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