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Abstract

This paper is concerned with the global existence and the partial regularity for the weak
solution of the Landau-Lifshitz-Maxell system in two dimensions with Neumann boundary
conditions.
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§1. Introduction

In 1935, Landau-Lifshitz) proposed the following coupled system of the nonlinear evo-
lution equation

Zp=—a1Z x (Z x (AZ + H)) 4+ axZ x (AZ + H), (1.1)
. OF .
VXH—E‘FUE, (12)
. 9H _0Z
E=-—"--p— 1.
v 5% P (1.3)
V-H+BV-Z=0, V-E=0, (1.4)

where o1, a9, o, B are constants, oy > 0, o > 0, Z(m,t) = (Z1(z,t), Za(z,t), Zs(z,1))
denotes the microscopic magnetization field, H = (Hy(x,t), Ha(x,t), Hs(x,t)) the magnetic

—

field, E(z,t) = (Ey(x,t), By(x,t), Es(z,t)) the electric field, H® = AZ + H the effective
magnetic field, A = .V = (2 0 ... 2 “x” the cross product of the

1_7187037 Oz1’ Oz’ > dmy,

vector in R*.
If H=0, F =0, we obtain the Landau-Lifshitz system with Gilbert term

Zy=—anZ x (Z x NZ) + anZ x NZ, (1.5)
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where ay is the Gilbert damping coefficient. In [2-4], the properties of the solution for
system (1.5) and the links between the solution and the harmonic map on the compact
Riemann manifold have been studied extensively. When aq = 0, the system (1.5) becomes

Zy = aaZ x NZ. (1.6)

In the case of n = 1, it is an integral system and has soliton solution. In [5-13], the
authors have studied in detail the solutions for (1.6), the interaction among solitons, the
infinite conservative laws, the inverse scattering method, and the relation with the nonlinear
Schrodinger equations. As pointed out in [20], the system (1.6) is strongly coupled degener-
ate quasilinear parabolic system. In [14-22], the authors have investigated extensively the
classical and generalized solutions to the initial value problem and other kinds of boundary
value problem for the system (1.6). Some properties of the solutions and the existence of
global generalized solutions for n > 2 were obtained.
In [23], the authors considered the following problem
hi—5E x B = NT+ ANEP 4 E X (Z % [(Z, x, 1) (1.7)

with the conditions
Z(2,0) = Zo(2), Zloa = Zo(x)|oa, |Zo(z)| =1, (1.8)

and proved that if Zo(z) € C%%(f2), then problem (1.7)-(1.8) admits unique solution in
oyt 11e/2(0 % [0,00) \ A), where A is a set consisting of only countably many lines under
some assumptions on f(p, z, t). If f(p, =, t) = 0, then A consists of only finitely many
points 24,

In [25,26] the existence and uniqueness of the global smooth solution for the periodic initial
value problem and initial value problem of the Landau-Lifshitz-Maxwell system (1.1)—(1.4)
(with or without dissipation) in one and two space dimensions are proved (when N = 2, the
initial data is assumed small).

In [27], Guo and Su studied the existence of the global generalized solutions for the
3-dimensional Landau-Lifshitz-Maxwell system (1.1)—(1.4) with the periodic initial value
condition or the initial value condition.

However, there has been little discussion of the boundary value problem so far.

In this paper, we shall study the two dimensional Landau-Lifshitz-Maxwell system (1.1)—
(1.4) with the initial value condition:

Z(x,0) = Zo(z), H(z,0) = Ho(z), E(z,0)=Ey(z) (ze€QcCR? (1.9)

and Neumann boundary conditions:
0z - .
%bsz =0, H-vjpo=0, Exv|pg=0, (1.10)
which indicates that the energy current vanishes on the boundary, where Q C R? is a bound-
ary smooth domain, v is the unit outer normal vector to 9Q, and Zy, € H(Q; S?), Ep €
L2(Q), Hy € L2() satisfy
- . - Y
V-Hy+pV-Zy, V-Ey=0, 2| =0,
ov laa

so that (1.4) is automatically satisfied since we have from (1.2) and (1.3) that

_ T _8 il i —otﬁ ot i
0=V (VXH)_E(V EY+oV-E=e 815(6 V-E),
o:v-(vXE)zﬁ(v-ﬁwv-Z).

ot

Throughout this paper, we let a3 = as = 1.
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Similarly to [2], for |ZO\ = 1, we have the following equivalent form of (1.1)—(1.4) in the
classical sense

1o 1= = . o 444
3% = §Z><Zt:AZ+|VZ\2Z—Z>< (Z x H), (1.11)
Vxﬁ—£+dﬁ (1.12)
ot ’ '
. 9H 07
VXE=——-3—. 1.13
8 o o (113)
Therefore, it is natural to consider the following penalty system
1= 15 = .15 - . -
5 et — EZE X Zst = AZE + ?Zs(l - |Z€‘2) - ZE X (ZE X po * HE)v (114)
. JE .
VxHe =55 +0k, (1.15)
o OH. 0Z.
Vx B =20 1.16
8 o e (1.16)

with the initial and boundary conditions (1.9)—(1.10) in which pd is the usual mollifier. Here

and in the following we assume that I;TE is identically zero outside €.

We shall prove that the weak solution of (1.14)—(1.16) approximates the solution of (1.11)—
(1.13). Besides the existence of the weak solution, we also obtain the higher (partial) regu-
larity for the spin vector Z(z, t) than that in [25].

A key estimate in [23, 24] is the gradient estimate sup |VZ.| < Ce™! under the
Qx[0,00)
assumption that |f(p,z,t)| < g(z,t) in {p € R* : [p| < 1} x Q x [0,00) with g(z,t) €
L (2% [0,00)). This is the reason we mollify H. in (1.14) so that for H. € L®(0,T; L?(2))
we have [lu x (ux pd * He )|l Lo (oxp0,1)) < CllHellLo<(0,m72(0))-
In the sequel, we denote Qr = {(z,t), x € Q, 0 <t < T}, B.(z) = B(z,r) a disk
centered at x with radius r, Qr = Q x [0,T] and Q(T) = Q x {T'}. We also denote

VTz{(Z, i, B : QT—>R3><R3><R3‘
T — — — —
| [ 1202+ sup |92+ 18P+ |EP) < oo},
0o Jo 0,71 /o
vi={(Z H, B): 0r — $*x B x IY|

T

/ /|Zt|2—|—sup/(|VZ|2+\H|2+|E|2) <o},

o Jo [0,7]Ja
Our main results are the following

Main Theorem. Let (Zy, Eo, Hy) € (HY(Q;5?), L*(Q), L?()). Then the prob-

lem (1.9)-(1.13) admits at least one solution (Z, E, H) in Vi. Moreover, for any o €
0,1), Z(z,t) € Cllota’(Ha)/z(Q x (0,T]\ A) where A consists of at most countably many
lines in Q.

§2. Weak Solution to (1.9)—(1.13)

In this section, we shall prove the existence of weak solution for the problem (1.9)—(1.13),
and derive some uniform estimates for the problem (1.14)—(1.16), (1.9)—(1.10) for the need
in the next section.
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By Galerkin method, it is not difficult to prove as in [23] the following lemmas.
Lemma 2.1. Assume Zo(x) € H'(Q;52), f e L2(Qr). For any given § > 0 and & > 0,
there exists Z.(x,t) € L>(0,T : HY(Q)), Z.s € L?>(Qr) solves the following problem
15 15 1

§Zet - §Ze X Zet = AZ& + ?ZE(I - |Ze|2) - Ze X (Ze X po * fﬂ)7 (2.1)
. VA
Ze(z,0) = Zo, 51/5 log =0, (2.2)

and the following estimates hold

|Z(z,t) <1, Vt>0, (2.3)

/ot/g Zail +/Q vZP +si2/ﬂ(1 —lZpy <o (1 +/1t/Q fl2> L (24)

where C' is independent of § and ¢
Moreover, for any given § >0 and e > 0, Z. is smooth on € x (0, 00).
Sending § — 0 and &,, — 0 for some subsequence of ¢ > 0, noting that %iné PO * f: f
—

strongly in L?(Qr), we obtain

Lemma 2.2. Assume Zo(z) € HY(Q; S2), f e L2(Qr). There exists Z(z,t) €
L*(0,T; HY (% 52)), Z, € L2(Qr) solves the following problem

1o 15 = L soge A5 R
5Zt_§Z><Zt:AZ+Z|VZ|2—Z><(Z><f)7 (2:5)
. YA
Z(r.0) = 7 o4 -0 2.6
(33,) 0 ay|aﬂ ) ( )

and the following estimate holds

/Ot/ﬂ|z*t2+/g|vz*2gc(1+/ot/gf|2>. 2.7)

Lemma 2.3.128) Let §(z,t) € L2(Qr), Ho(z) € L2(Q), and Eo(z) € L2(Q). There exists
(H(z,t), E(x,t)) € L®(0,T; L2(Q)) x L>=(0,T; L2(Q)) satisfying

. OE .

H=="=+0F 2.
V x 5 T oL (2.8)

. oH

E(x,0) = Eg(z), H(x,0)=Hy(z), Exvlpga=0, H-v|pg=0.
(2.10)
Combining Lemma 2.1-Lemma2.3, we obtain the following two lemmas.
Lemma 2.4. For every T > 0 the problem (1.14)—(1.16) and (1.9)—(1.10) admits a
solution (Z., Eg.ﬁs) € Vr and there holds

T T
. . 1 . . . .
/ /|Zet|2+/ |vzs|2+7/<1—|zs|2>2+a/ /|Es|2+/ \Es\2+/|Hs|2SM,
0o Jao Q €“ Ja 0o Jao Q Q
(2.11)

where M > 0 depends only on the data and T.
Proof. The existence follows from Lemma 2.1 and Lemma 2.3 with f and ¢ replaced by
H. and Z.; respectively. We only need to prove (2.11).
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Multiplying (1.14) by Z., and integrating it over  we obtain

120+ 55 [ (V2P + 550 -1202) = [ (Zx (Zxpbs i) 2 (212
dt Q

Integrate (2.12) over (O T) to give

//|Z€t|2 /|VZ|2 y (1—|ZL\2)2

= 7/ \VZO\2+/ /(z} X (Z-x pdx H.)) Zy, (2.13)
2 Jo 0o Ja

T
/ /\Zatl2 /|VZ |2+ (1—|ZE|2)2§CO—|—C/ /|HE|2. (2.14)
Q 0 Q

Multlplylng (1.15) by E, (1.16) by H and integrating over Q and noting that from (1.10)
(E X V|ag = 0

v (H. x E.) /(lxﬁg).yz—/ (E. xv)-H=0,
o0
we have

(VxH)-E—-VxE)-H]

/

[ [R5 [ Zus
this combined with (2.12) y1e1ds

53 LNBL VAL + V2P + 5 (=12 + g [ 1ZaP +o [ 122 <c [ AP
Then (2.11) following from Gronwall inequality. This competes the proof.

Lemma 2.5. The problem (1.9)~(1.13) admits a solution (Z,E, H) € V3 for every given
T > 0 and there holds

T T
/ /|Zt\2+/ |VZ|2+U/ /|E\2+/ |E|2+/ A2 < M, (2.15)
0 Q Q 0 Q Q Q

where M > 0 depends only on the data and T'. Moreover, there holds

I I | . N
7/ / | Z:|% + f/ VZ|? = / IV Zo|? + / / (Z x H))Z,. (2.16)
2Jo Ja 2 Ja
Proof. The existence follows from the estimate (2.11) and the fact that if H, — H
weakly in L?(Qr) then
pdx H. — H strongly in L*(Qr). (2.17)
The proof of (2.15) and (2.16) is similar to that of (2.11).

Lemma 2.6. Let ZE and Z be as above. Then we have a subsequence denoted by an
such that

Zeot— Zy  strongly in L*(0,T; L*(Q)), (2.18)
VZ. (t) = VZ(-,t) strongly in L*(Q), Vt>0. (2.19)

Proof. Since we have from Lemma 2.4 that there is some sequence of ZE, denoted by
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Zln , such that

Z., — Z strongly in L*(0,T; L*(R)),

Z}nt—>zt weakly in  L?(0,T; L*(Q)),

VZ. —VZ weakly * in L?*(0,T;L*(Q)),
2.

letting w., = Z., — Z we obtain from these relations, (2.13), (

T
| e+ [ v,
//w |+ /[VZPHVZEH / "z
<2/ /|Zt\2+2/|VZ|2—2/ / T 1Ty — /VZ VZ
+2 / / Zei(Ze, % (Zo, % pox H.,)) — Zo(Z x (Z x H))]
0 Q
T — — — — — —
:2/ /(Zt_Zent)Zt+2/ VZ-(VZ-VZ.)
0 Q Q

T
b2 [ [ 1oy 5 2oy x 3 1)) = 242 % (2 x )
0 Q

16) that as €, — 0,

1) +2/T/[ant(26n < (7o x po % 0.)) — Z(Z x (Z x 0))].

Therefore, (2.18) and (2.19) can be proved if we have

/ / [Z. ((Z- x (Zo, x pdx H. ) — Z(Z x (Z x H))] = o(1). (2.20)

Now we prove (2.20). In fact, the left-hand side of (2.20) equals to

// et — Zt X(Zgnxpé*ﬁgn))

+/O /Qz“t[z}n } (Zo. x pox Ho )= 7 x (7 x H)]
:/ /(z NGy % (Zey X pOx He)) = Z % (2, X p % H)]
(Zert — Z)[Z x (Zo, x p6 % H. ) — Z x (Z x pd* H.,)]

Q

/ Zon = 207 % (Z % poxil.,) — 7 x (Z x )]
| o= 2002 x (2 x 1)
Q

Zy|Ze % (Ze, x pbxH. ) —Z x (Z x H)]
Q
Iy + 13+ 14+ Is.

f
f
[
ok
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For I, we have from (2.11) that

L] < llp6 % e, [l () - //|ZE P+ 1Z2) //|z -2} — o).

The estimates for the other terms cas be done in the similar manner. In the proof, we have
used (2.17) and the fact that if H. is uniformly bounded in L?(Qr) then

196 * He| oo (@ry < CllHc| oo (07:22(2)) < C- (2.21)

§3. The a Priori Estimates for the Penalty Problem

In this section we shall give some uniform estimate for the solution of the penalty problem.
In the following we denote by (Z., E., H.) the solution of (1.14)-(1.16) and (1.9)-(1.10)
obtained in Lemma 2.4. Our aim is to obtain higher regularity for the spin vector Z(x, t),
where (Z, E, H) is the solution obtained in Lemma 2.5.

In view of (2.21), by the same method in [23,24] we have the following two lemmas.
Lemma 3.1. There exists a constant C > 0 independent of € and 6 such that

|Z.| <1, |VZ.|<Ce', V(xt)eQx]0,00). (3.1)
Lemma 3.2. There exist constant Ao > 0, po > 0 independent of € and t such that if
1 =
= (1= 1Z*)* < po, (3.2)
€% JaNn Bx

provided that 1/s > Ao, 0 <1 <1, then
L1
|ZE\2§, verﬂBl, (3.3)

where By is any sphere in R? with radius .

According to Lemma IV.1 of [29], we have a family of disks {B(z;, Ao&) }ier such that
x; € Q, B(zi, Aoe/4) (N Blxj, Aoe/4) = ¢ (i # j) and Q C |J B(x;, Aoe). We call B(z;, Aoe)

i€l

“good disk” if & fQﬂB (z0,2200) (1 = |Z.|?)2 < po. Otherwise, we call it “bad disk”. Denote
J={jel, B(IJ, Ao€) is a bad disk}. Then we can prove the following version of Lemma
IV.2 of [29].

Lemma 3.3. There exists a positive integer N independent of € and t such that CardJ <
N and

Z| =< on Q\ | B(z;, \o)e). (3.4)
JjeJ
Moreover, we can choose (see [29, Section IV.2]) J': J' C J and A > Ao such that

‘xz_xj‘ZS)\Ea 2#37 ZaJGJ/7
U B(l’j, )\08) - U B(.Z'j7 )\E),

L\D\H

jed jeJ (3.6)
o1
Ze| > 5 on 2\ U B(z;, re).

jeJ’

In the following of this section, we want to derive some estimates uniformly in ¢ for ZE
determined in Lemma 2.4.
Lemma 3.4. Letxg € Q, Py, = Ba,(w0) X [to, to+4r?] forxg € Q, Py, = (Bar(x0) Q) ¥

[to,to + 4r%] for zg € 0. If |Zl\ > ag > 0 on P, then there exists a constant C > 0
independent of e such that [, |D*Z.|* < C.
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Proof. Let & be the standard cut-off function of By, (o). Multiplying (1.14) by AZ.
and integrating over Ps, by part, we get (dropping the footnote e for simplicity)

AP < /P (A7 |ur] + /P 2|0 Z)p5  H]

Py
1 = = 1 — —
[ SenIra-1Zp vz [ ez vou-|zp)
2 € Py, &

Replacing % (1 — |Z|2) by |Z|_1|%Zt - %Zt x Zy — NZ + Z(Z x pd * H)| and using Holder
inequality we have

1 4 — —
o[ nze<c | eups [ epsaps [ enzt

Py P Py Psy

This combined with (2.11) and the theorem of parabolic equations implies that

L[ epezp < c+c/ 2V (3.7)
Par.

Ps,.

We have from embedding theorem that

/ IDZ)|'¢ §c+c/ |vZ|2/ D272,
Py, P, P,

It following from (3.7) that
D Z? < C+C/ |VZ|2/ 2 D2Z2.
Pay Pay Py,

Note that from (2.11), Cfpg. |VZ|? < 1/2 if r is small enough. The Lemma is proved.

Lemma 3.5. Let Qs = B.(x0) X [to — s, to+ 8] for xo € Q, Qrs = (Br(x0) () X

[to — s, to+s] for xg € ON. If |Z;\ > ag >0 on Q. s, then for any ¢ > 2 there is a constant
Cq > 0 independent of € such that

”ZE”qu’l(QT/zS/Q) < Cq~ (3-8)

Proof. First of all, we have from Lemma 3.4 that ||ZE||L3Q , < Cy. Moreover we have

for U = % (1 — |Z.|?) that
1 -
552% — AU+ 2050 < 2[AZ|? in Q. (3.9)

Take cut-off function {(x) € CF°(B,(x0)), £ = 1 in B, a(w0), n(t) € C§([to — s, to +
s]), n=1in [t — s/2, to+ /2], [VE| < C/r, | < C/s, 0<¢ <0, 0<n <1 Multiply
(3.9) by &2(z)n?(t)¥?~! and integrate it over Q, s to give

2
= ewrougt-2 [ @ruriavi [ e
2q /3, Qr.s Qr.s

2
= _ 13
< 2/ EPIVZ Pt +;/ &, | v,
Qre

T8
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i.e.

Lo / U2 VTP 4 203 / 2w

T8 T8

<a/ &y 2\1ﬂ+c/ PV 2|

*/ &nlny| \Ifq+—/ n?|Verwe,

Set 0 = a3 in above mequahty. We have

- 2¢2 g2
o [ ervse | epwzps 2 [ vt [ o
Qr.s Qr.s a—1JQ,. 4 JQ.,,s

Hence

1 1
a?)/ EPu < C, + 052/ <2\Iﬂ + \Iﬂ> .
Qr\Qryziesz \T s

T, s

Fixing r, s and taking € small enough such that CE < a%, < § % we obtain
oﬂ
a%/ EnPUl < 0+ —0/ v,
s 2 JQr\@r /2.2
It follows from hole-filling method that
/ v <y Vg > 2. (3.10)
Qr/2,s/2

It is concluded from (3.10) and L? theory of parabolic system that (3.8) holds.
Corollary 3.1. Under the assumption of Lemma 3.5, we have for any v € (0,1)

||VZE\\Lw(Q,,.,S) <C, (3.11)
||ZE||CI+% a2, < C (3.12)
with C independent of €.

§¢4. The Partial Regularity

It is easy to see that the main theorem is a consequence of the followmg

Theorem 4.1. There exists 0 < Ty < Ty < --- and a] €, j=1,---,N;, i =

1,2,---, N; <N, such that, ¥~ € (0,1), we have for some sequence {Z.,} that
Tn = 2 in O (@0 (0,77 A),

where A =J U ({a%} x [T, T)), Z is determined by Lemma 2.5.

i g=1
According to Section 3, it suffices to give C'*+7(1+7)/2_estimates (Vv € (0, 1)) uniformly
in e for Z. on any compact subset of (2 x (0,77 \ A).
Lemma 4.1. There exists Ty > 0 independent of € such that

- 1 _
|Z:] < 3 on € x[0,T1]. (4.1)

Proof. Vo € , let ¢ be the standard cut-off function on Bsgr(zg) such that 0 < ¢ <
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1, £ =1on Bg(zo), |V < £. Test (1.14) by €27, to give for any 8 > 0,

I ) 1 q
2 ), [ €\Zal+ sw [f EVZLL+ 5 | €0~ \Z|>]
0<7<t Q(r) Q(r)

< §2|V<p|2+6 f |Zst|2+0ﬁ \VSI VZ. |2+Cﬁ 52 |pd + He|*.
=3

Taking 8 = 7 in above inequality, we have from (2 11) and (2.21) that
L (" [ 5= 1 - 1 -
= Zal + su 7/ 2v22+—/ 2(1—|Z.»)?
4/0 /Qg |2t og%b Q(T)§ VZ 4e? Q(‘r)f =120 }
1 t . T =
3 [evetec [ [wervzpec [0 @i

Q 0 Q

%/gﬂwﬁ 4Ct/ Vol? + CR. (4.2)
Q

Fixing R = Ry >0, t =T}, > 0 in (4.2) so that

IN

IN

1

- 40T
: / Vel < po/s, R + 20T
B:r,

2 / |V<)0|2 S /’LO/Sa
Q

we deduce

1 .
sup = (1= 1Z:1*)* < no-

- 2
0<t<Ty € JBry(wo)

It following from this and Lemma 3.2 that |Z.| > 2 on Bp,(zo) x [0,71]. This implies the
desired result.

Now we define T} > T} by

Ty = inf{T|T > 0, thereis z( € Q such that lir% inf | Z.(zo, T)| = 0}. (4.3)
e—

From the definition of T} we know that there is no bad disk on Q(¢) if 0 < ¢ < T} and for

any 0 < T < Tj there holds ”ZE”Cllot”’(“”)/z(ﬁx(O,T]) <C.

Denote the bad disks on Q(Ty) by {B(z5, Ae) x {T1}}, i =1,--- , Ny, whereN; < N, N
is determined by Lemma 3.3. Passing to a subsequence, we assume

xan*)a}a j:17”'7N17 NlSNla all#ali (l%k)

_ N -
At this time, on any compact subset of € x (0,71]\ U1 ({aj} x{T1}), we have |Z., | > 1/2
j=1

if n is large enough. Therefore the conclusion of Corollary 3.1 holds on such compact subset.
Now we work starting from ¢t = T7. We first prove
Lemma 4.2. For the function ¥ defined in (3.9) we have

Ny
Ve LS. (2 x [0, 73]\ | ({aj} x {T1})). (4.4)
j=1

Proof. The interior estimates and the estimates near the boundary are done in the
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following one step. Denote

Ny
K = By (w0) x [0,T1] € @ x [0, T3]\ | J({a}} x {T1}), =0 €,

K = (Bar(z0)[]9) x OTl\U{a}x{Tl}) xy € 0N

Again denote by & the standard cut-off functlon of B, (xg). We get
"at (g\p) — 22 A(EW) + U < 4|V Z,, |2 — 4e2VE - VU — 22 WAL, (4.5)
It following from Section 3 that on the compact subsets K and K, the right-hand side of
(4.5) is bounded uniformly in n. Then Lemma 4.3 follows from the maximum principle (see
also [24]). )

Lemma 4.3. There exists To > 11 independent of €, such that on any compact subset

M of @ x (1T U (o)} x (10,2,

\Z.,| > on M. (4.6)

DN | =

_ Ny
Proof. For any o € Q\ |J {aj}, take R > 0 so small that Byr(zo) does not contain
j=1
a;(l < j < Ny). Let &(x) be the cut-off function of Bag(xg) and define

=5 [ E1ZP+ 5 [ ea—1zpy

It following from simple computations that for ¢ > T,

t
Be(Z., (2,t)) < Be(Zo, (. T1)) + C / / VE[2IVZ., 2 + CR2(t - T))
T JQ

< &Ivz., e -2,

1
2 Bog(zo)x{T1} 4621 Bagr(zo)x{T1}

c It ,
+ﬁ/ / VZ. P+ CR2(t—T)).
T1 J Bar(zo)

Hence we have from this inequality, (2.11), Lemma 2.6 and Lemma 4.3 that
C(t—1T)
R2
Now the desired conclusion follows from Lemma 3.2 if one fixes R = Ry, t = Ty > T} so

that

Ee(Z., (x,1)) < o(1) + CR? + + CR%(t —Th).

C(Ty, —T: .
o(1) + CR2 + % +CRT, —Ty) < %.
0
As before, we define T, > T by
Ny
T, = inf{T|T > T1, thereis o€ Q\ | J{a}} such that lin inf |Z.(x0,T)] = 0}. (4.7)
e—
j=1

Denote the bad disks on Q(T) by B(z5,\e), k = 1,--- Ny, Ny < N. Passing to a
further subsequence, still denoted by Z.,, we assume z;" — al, l=1,---,Ny < Ny with
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a? different from each other. On the Compact subset of

Q x [Ty, Ty] \ ( U{a x [T, 5] Cj{a%} X {T2})7
=1

repeating above proof, we obtain
Lemma 4.4. For any v € (0,1) and any compact subset M of

Q x [Ty, To) \ (U{a [Ty, T3] UILVj{a?}X{Tz}>
=1

we have for some constant C > 0 mdependent of n that

1 Ze i (M) < C.
Summing up, we have proved Theorem 4.1 by virtue of Lemma 4.4.
Remark. It is clear that the energy E.(Z.(z,-)) need not be non-increasing. Therefore,
we can only get the same smoothness for A (x,t) as in [22].
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