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Abstract

For an almost complex structure J on U ⊂ R4 pseudo-holomorphically fibered over C a J-
holomorphic curve C ⊂ U can be described by a Weierstrass polynomial. The J-holomorphicity

equation descends to a perturbed ∂-operator on the coefficients; the operator is typically
(0, 2/m)-Hölder continuous if m is the local degree of C over C. This sheds some light on
the problem of parametrizing pseudo-holomorphic deformations of J-holomorphic curve singu-
larities.
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§0. Introduction

Many of the elementary properties of plane holomorphic curves have been established

also for pseudo-holomorphic curves. These include isolatedness of critical points and of

points of intersection, positivity of intersection indices, removable singularities, existence

of (singular) limits under a volume bound (cf. [2] and references therein). Maybe even

more strikingly, singularities of plane pseudo-holomorphic curves topologically look quite

the same as holomorphic curve singularities. In fact, there is a local C1-diffeomorphism of

the ambient space mapping the pseudo-holomorphic curve singularity to a holomorphic one

([5, Theorem 6.2]).

Surprisingly the situation is unclear when it comes to deformations of plane pseudo-

holomorphic curve singularities. In the holomorphic world there is the notion of semi-

universal deformation. It consists of the germ of a holomorphic deformation over some

parameter space (S, 0), its base. Its characterizing property is that up to isomorphism any

deformation of (C, 0), with parameter space (T, 0) say, is obtained by pull-back via a holo-

morphic “classifying” map (T, 0) → (S, 0). The classifying map is unique only up to an
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isomorphism fixing the map on the tangent spaces TT,0 → TS,0. Explicitely, let (C, 0) be the

germ of a plane holomorphic curve given by F ∈ OC2,0 ≃ C{z, w}. Then (S, 0) = (Cτ , 0) is

a smooth space of dimension equal to the Tyurina number

τ = dimC C{z, w}/(F, ∂zF, ∂wF ) .

The interest in a similar result for pseudo-holomorphic curves for us comes from a possible

analytic treatment of the isotopy problem for symplectic submanifolds of CP2 or the two

S2-bundles over S2 (cf. [6]). There are some indications that on these spaces symplectic

submanifolds are isotopic iff they are homologous. One crucial obstacle in proving this

statement by the technique of J-holomorphic curves is the lack of understanding that we

have for deformations of singular J-holomorphic curves. One question which we should

answer and is related to the holomorphic deformation theory discussed above runs as follows.

Question I. Let J be an almost complex structure on the unit ball B ⊂ C2 and C ⊂ B a

J-holomorphic curve with 0 ∈ C. Does there exist an open neighbourhood U ⊂ B of 0 and

an open subset M in a Banach space parameterizing J-holomorphic curves in clU that are

sufficiently close to C ∩ clU in the Hausdorff topology?

This is of course true holomorphically. For example, taking appropriate linear coordinates

z, w on C2 the defining equation of C can be taken in Weierstrass form

F (z, w) = wd − a1(z)w
d−1 + · · ·+ (−1)dad(z)

for (z, w) in a polycylinder ∆×∆ contained in B. Here d is the intersection multiplicity of

the line z = 0 with C, and ai are holomorphic functions on cl∆. Obviously, deformations

of C are in one-to-one correspondence with deformations of the coefficients ai. Introducing

an appropriate Banach space completion of O(cl∆) answers the holomorphic analogue of

Question I affirmatively.

A related question that is both relevant to the isotopy problem and interesting in its

own right is the local isotopy problem for plane pseudo-holomorphic curves. Let U ⊂ C2

be an open set with piecewise smooth boundary. We call two submanifolds with boundary

(Σ, ∂Σ), (Σ′, ∂Σ′) in (clU, ∂U) isotopic if there is a continuous family of submanifolds

(Σt, ∂Σt) ⊂ (clU, ∂U), t ∈ [0, 1], connecting Σ and Σ′ (Σ = Σ0, Σ′ = Σ1). Note that

∂Σt is then a tame isotopy of the links ∂Σ, ∂Σ′ ⊂ ∂U . In case Σ,Σ′ are symplectic (or

pseudo-holomorphic, J-holomorphic respectively) then the isotopy will be called symplectic

(pseudo-holomorphic, J-holomorphic) if Σt can be chosen symplectic (pseudo-holomorphic,

J-holomorphic) for all t. Here “pseudo-holomorphic” means J-holomorphic for some J .

Question II. Let C ⊂ B be a J-holomorphic curve with singular locus Csing = {0}. If

{Σn} and {Σ′
n} are two sequences of J-holomorphic curves in B with Hausdorff limit C,

then are Σn and Σ′
n (symplectically, pseudo-holomorphically, J-holomorphically) isotopic for

n sufficiently large?

In the holomorphic category this again has a positive answer, for the set of tuples

(a1, · · · , ad) ∈ M parametrizing singular holomorphic curves in Weierstrass form does not

disconnect M. On a technical level this follows by a straightforward application of the

Sard-Smale theorem on an appropriate space of paths in M.

In the almost complex setting it is still possible to bring C and all small deformations of C

into Weierstrass form. To do this we may assume by a real, linear change of coordinates that
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J|0 is the standard complex structure on C2. Let (z, w) be the standard linear coordinates

on C2. Possibly after another (now complex-) linear change of coordinates we may assume

the tangent lines of smooth irreducible components of C at 0 to be disjoint from z = 0, and

that the closed polycylinder |z| ≤ 1, |w| ≤ 1 maps to the domain of definition of J and C.

In [9, Lemma 5.4], it is shown that possibly after shrinking the polycylinder there is a local

diffeomorphism of the form

Θ : (z, w) 7−→ (z, w + φ(z, w))

such that w 7→ Θ(z, w) is an embedded J-holomorphic disk with Θ(z, 0) = (z, 0) for every

z. Moreover, ∇φ can be made arbitrarily small by considering a sufficiently small polycylin-

der, that is by rescaling z and w. Changing coordinates by Θ we may therefore assume

that for every z ∈ cl∆ the disk {z} × ∆ is J-holomorphic and not contained in C. The

antiholomorphic tangent space may now be written as

T 0,1
C2,J = ⟨∂w̄, ∂z̄ − a∂z − b∂w⟩ (0.1)

for complex valued functions a and b. The point here is of course that ∂w is contained in

a J-holomorphic disk and hence lies in the holomorphic tangent space. Now let d > 0 be

the intersection index of the disk z = 0 with the disjoint J-holomorphic curve C at 0. Then

possibly after rescaling w and z, for every z ∈ ∆ there are exactly d points of intersection

of {z} ×∆ with C, counted with multiplicities. We obtain a map from the domain of z to

the d-fold symmetric product Sd∆ of w, which is an open subset of SdC ≃ Cd. Explicitely,

to a zero cycle
d∑

i=1

λi we associate the complex polynomial

(w − λ1) · · · (w − λd) = wd − a1w
d−1 + · · ·+ (−1)dad

with ai = σi(λ1, · · · , λd) the i-th elementary symmetric polynomial. This yields d complex

functions a1(z), · · · , ad(z) with

C = {(z, w) ∈ ∆×∆ |wd − a1(z)w
d−1 + · · ·+ (−1)dad(z) = 0} .

The same argument holds for J-holomorphic curves that are sufficiently close to C in the

Hausdorff topology. Moreover, using local representatives as given in [5] it is not hard to

check that the ai are continuous. In turn, the C0-topology on the ai induces the Hausdorff

topology on the space of J-holomorphic curves.

The crucial point is then to characterize those tuples a1, · · · , ad actually corresponding

to J-holomorphic curves. We will find that this can be done by a nonlinear ∂̄-equation

provided the projection (z, w) 7→ z is holomorphic, in the almost complex sense. This is

the case iff a ≡ 0 in (0.1). In other words we require that J is given by only one complex

function b instead of two:

T 0,1
C2,J = ⟨∂w̄, ∂z̄ − b∂w⟩ . (0.2)

For the precise statement we assume that b is extended to all of ∆ × C with uniformly

bounded C1-norm. From b we will construct d complex functions b1, · · · , bd on ∆ × SdC.
Let D ⊂ SdC be the discriminant locus. The br are smooth away from ∆ ×D and Hölder

of some exponent 0 < α ≤ 1 depending only on d (Lemma 1.2). We are now ready to state

our first theorem.
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Theorem 0.1. There is a one-to-one correspondence between the sets{
J-holomorphic curves C ⊂ ∆× C that are proper of degree d over ∆

}
and {

a = (a1, · · · , ad) ∈ W 1,p
loc (∆;C)

∣∣∣ δ(a) ̸≡ 0 , ∂z̄ar = br(z,a) , r = 1, · · · , d
}

(any finite p > 2). The J-holomorphic curve belonging to (a1, · · · , ad) is

{(z, w) ∈ ∆× C |wd − a1(z)w
d−1 + · · ·+ (−1)dad(z) = 0} .

Moreover, the ar are even of class C1,α(∆;C) for some α = α(d) > 0.

Remark 0.1. By dropping the requirement δ(a) ̸≡ 0, the correspondence extends to

any J-holomorphic cycles. To see this we first observe that the map from the first set to

the second is still well-defined: Given a J-holomorphic cycle C =
∑
i

miCi, where Ci is a

branched cover over ∆ of degree di, let fi be the Weierstrass polynomial of Ci constructed in

Theorem 0.1. Put f =
∏
i

fmi
i . Its coefficients aj define a map toW 1,p

loc (∆;Cd). This map can

be also regarded as a pseudo-holomorphic section of the d-fold relative symmetric product

of ∆ × C over ∆. This latter symmetric product has a pseudo-holomorphic stratification

according to partitions of d. The section which arises from C =
∑
i

miCi belongs to the

stratum associated to d =
∑
i

midi. In order to prove that the extension gives rise to a

one-to-one correspondence, we need to show that a pseudo-holomorphic section a stays in

one stratum except at finitely many points. This is true but a bit delicate. It follows

from a unique continuation theorem for pseudo-holomorphic sections of the above type,

that is, if the intersection of a pseudo-holomorphic curve with the closure of a stratum has

an accumulation point, then it lies in the closure of the stratum. By induction, one can

reduce it to the case that the stratum is a hypersurface. If the stratum is the hypersurface

corresponding to d = 2+1+ · · ·+1, then it amounts to check that the discriminant either is

identically zero or has only finitely many zeroes. In general, one can have a function which

plays the role of the discriminant.

If the br are Lipschitz, we can easily proceed to parametrize solutions (a1, · · · , ar) of the
nonlinear PDE by a Banach space of d holomorphic functions on ∆, possibly after shrinking

the domain of z. Unfortunately this is not generally true. If one stratifies the discriminant

locus D according to partitions of d, then at a point of a stratum indexed by d = d1+· · ·+dl,

one expects br to be generally not better than Cα with α = 2/max{d1, · · · , dl}. The

exception is if b is indeed holomorphic in w, or for d = 2.

Theorem 0.2. Let an almost complex structure J on ∆× C be given of the form (0.2).

Let C ⊂ ∆ × C be a J-holomorphic curve mapping properly to ∆. Put d = deg(C → ∆).

Assume that

(a) either d ≤ 2,

(b) or ∂̄wb ≡ 0.

Then for sufficiently small ε > 0 the space

Mε = {C ′ ⊂ Bε(0)× C J-holomorphic curve}
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is a Banach manifold at C ∩ (Bε(0)× C). It is modelled on the Banach space

O1,p(∆;Cd) := W 1,p(∆;Cd) ∩ O(∆;Cd)

endowed with the W 1,p-norm, where d is the degree of the projection C → ∆.

While this is only a partial result we would like to point out that it includes singularities

of arbitrarily high Milnor number. Moreover, by computing the Nijenhuis tensor one can

check that the assumption ∂wb ≡ 0 is equivalent to integrability of the almost complex

structure. As we remarked before the parametrization by a Banach manifold is no surprise

in this case. However, this description is useful for the global parametrization problem for

pseudo-holomorphic curves on S2-bundles (see [7]).

To describe our result in the general case, that is without the restrictive assumptions (a)

or (b), we remind the reader of the decomposition W 1,p(∆,Cd) = O1,p(∆,Cd)⊕ Lp(∆,Cd)

provided by a right-inverse T (see (2.1) and the discussion following it below). A pair (h, ξ)

on the right yields the function h+Tξ of Sobolev class (1, p). Using a Leray-Schauder fixed

point theorem we obtain the following result.

Theorem 0.3. Let an almost complex structure J on ∆ × C be given of the form (0.2)

and let d > 0. For every h ∈ O1,p(∆,Cd) there exists an ξ ∈ Lp(∆,Cd) with a = h + Tξ

corresponding to a (possibly non-reduced) J-holomorphic curve in the Weierstrass picture.

In other words, the projection map

Id − T ◦ ∂z̄ : {a ∈ W 1,p(∆,Cd) | ∂z̄ar = br(z,a)} −→ O1,p(∆,Cd)

is surjective.

Note that there is no assumption on the smallness of b, so this last theorem is in fact a

global result.

The simplicity of the describing PDE also clearly exhibits the analytical difficulty that

parametrizing deformations of C poses. The Weierstrass picture provides a uniform formu-

lation for all deformations of C with only the nonlinear, zero order term being sensitive to

the change of topology.

One note on conventions: Throughout the text, a J-holomorphic curve in an almost

complex manifold (M,J) is always understood as a closed subset of M . Viewed as a 2-cycle

we therefore assume all components to have multiplicity one.

§1. Proof of Theorem 0.1

In this section we derive the PDE and prove Theorem 0.1. For the equation we observe

first that in view of (0.2) the graph of a function λ : ∆ → C is a pseudo-holomorphic curve

with respect to J = J(b) iff

∂z̄λ = b(z, λ(z)) . (1.1)

Now if C ⊂ ∆ × C is a J-holomorphic curve that maps properly to ∆, the special form

of J implies that the projection C → ∆ is a finite holomorphic map, hence a branched

covering, of covering degree d say. Away from the discrete critical set DC ⊂ ∆, locally C

is the union of the graphs of d functions λ1, · · ·λd. As noted in the introduction C is then

given in Weierstrass form

wd − a1(z)w
d−1 + · · ·+ (−1)dad(z) = 0
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with

ar = σr(λ1, · · · , λd) .

Taking ∂z̄ of ar yields

∂z̄ar = ∂z̄
∑

{i1,··· ,ir}⊂{1,··· ,d}

λi1 · · ·λir =
d∑

ν=1

σr−1(λ1, · · · , λ̂ν , · · · , λd) · b(z, λν) ,

where the entry with a hat is to be omitted. The right-hand side of this equation is a

function that is invariant under the action of the symmetric group on the branches, and

hence can be expressed as function br(z; a1, · · · , ad) in z and the ar. Conversely, the union

of the graphs of λ1, · · · , λd with λi(z) ̸= λj(z) for i ̸= j and all z is J-holomorphic iff the

functions ar := σr(λ1, · · · , λd) fulfill

∂z̄ar = br(z; a1, · · · , ad) , r = 1, · · · , d . (1.2)

This follows by applying the linear map

A : (vr)r=1,··· ,d 7−→
( d∑

ν=1

σr−1(λ1, · · · , λ̂ν , · · · , λd) · vν
)
r=1,··· ,d

to vr = ∂z̄λr − b(z, λr) and noting the following elementary fact.

Lemma 1.1. If λi ̸= λj for all i ̸= j, then A is invertible.

Proof. An explicit inverse can be seen by writing

(λr − λ1) · · · ̂(λr − λr) · · · (λr − λd) · vr

=
(∑

ν

(w − λ1) · · · ̂(w − λν) · · · (w − λd)vν

)∣∣∣
w=λr

=
∑
ν,µ

(−1)µσµ(λ1, · · · , λ̂ν , · · · , λd) · vν · λd−1−µ
r

=
∑
µ

(−1)µλd−1−µ
r (A · v)µ .

To extend over the critical set DC ⊂ ∆ we interpret br as functions on ∆×SdC ≃ ∆×Cd.

Recall that the isomorphism SdC ≃ Cd is given by the elementary symmetric functions

σ1, · · · , σd, which in fact provide global holomorphic coordinates on SdC. We henceforth

endow SdC with the differentiable structure thus inherited.

Lemma 1.2. The functions on ∆× SdC induced by

br : ∆× Cd −→ C , (z, λ1, .., λd) 7−→
∑
ν

σr(λ1, · · · , λ̂ν , · · · , λd) · b(z, λν)

are of Hölder class Cα for some α = α(d) > 0. They are smooth away from ∆ times the

discriminant locus D ⊂ SdC. Moreover, if b depends holomorphically on w, or if d = 2,

then the br are Lipschitz. The Lipschitz constant tends to zero with ||∇b||∞.

Proof. It is clear by the definition of the topology on SdC = Cd/Sd that br and all partial

derivatives in z are continuous. For the Hölder property we consider
d∑

ν=1
σr−1(λ1, · · · , λ̂ν ,

· · · , λd) · b(z, λν) as smooth function in (z;λ1, · · · , λd) ∈ ∆×Cd. Now br equals 1/d! times

the trace of this function under the branched cover ∆ × Cd → ∆ × SdC. Functions of this
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type have been studied by Barlet. Among other things he proved that after blowing up the

base ∆×SdC to make the branch divisor simple normal crossing, traces of smooth functions

are locally of class Cα̃ with α̃ = 2/β with β the maximal ramification index (see [3, Theorem

3 together with Lemma 4] and [4]). Now quite generally, if f is a function on some U ⊂ Cd

and the pull-back σ∗f under some blowing-up σ is Hölder, then f is also Hölder, but possibly

of smaller exponent.

The smoothness statement follows since D is the branch locus of the covering Cd → SdC.
If b is holomorphic in w then also the br are holomorphic in w by the Riemann Extension

Theorem. Hence in this case the br are even smooth. Finally, for d = 2 the discriminant

locus is smooth and the Lipschitz property follows from Barlet’s results. Alternatively, one

can do a simple explicit computation.

We are now ready to prove Theorem 0.1.

Proof of Theorem 0.1. Given a tuple of functions a = (a1, · · · , ad) with ∂z̄ar = br(a)

and discriminant δ(a) ̸≡ 0, let C ⊂ ∆×C be the associated curve. We first discuss regularity.

The Sobolev embedding W 1,p(∆) ⊂ C1− 2
p (∆) shows local boundedness of the ar. Then

under our hypothesis on b, by the preceding lemma br(a) is Hölder of some exponent α > 0

too. Now for any smooth function ρ on ∆ with compact support we can reconstruct ρar
from

∂z̄(ρar) = ∂z̄ρ · ar + ρ · br(a) ∈ Cα(∆)

by application of the Cauchy integral operator. From the standard estimates for the latter

(cf. [11]), we obtain ρar ∈ C1,α(∆) and hence ar ∈ C1,α
loc (∆).

Now let us assume we are given a fulfilling (1.2). Near any P ∈ ∆ \ DC there exist

λ1, · · · , λd with ar = σr(λ1, · · · , λd). From our discussion following Equation (1.2) it follows

that C is indeed J-holomorphic over a neighbourhood of P . To investigate J-holomorphicity

near DC we need a lemma.

Lemma 1.3. The zero set of the discrimant δ(a) is discrete.

Proof. In a neighbourhood of some P ∈ ∆ \ DC we may write ar = σr(λ1, · · · , λd).

Using the equation ∂z̄λi = b(z, λi) we compute

∂z̄δ(a) = ∂z̄
∏
i<j

(λi − λj)
2 = 2

∑
i<j

(λi − λj)(∂z̄λi − ∂z̄λj)
∏
k<l

(k,l) ̸=(i,j)

(λk − λl)
2

= 2
∑
i<j

(λi − λj)(b(z, λi)− b(z, λj))
∏
k<l

(k,l) ̸=(i,j)

(λk − λl)
2 .

Therefore, the discriminant fulfills the linear ∂̄-equation ∂z̄δ(a) = f · δ(a) with coefficient

f = 2
∑
i<j

b(z, λi)− b(z, λj)

λi − λj
.

Because ∇wb is uniformly bounded, f ∈ L∞. A standard trick now reduces to the case of

holomorphic functions[11]: Let g ∈ W 1,p(∆) solve ∂z̄g = −f ; then eg · δ(a) is holomorphic.

Hence the claim.

For any P ∈ ∆ we may thus choose a domain U ⊂ ∆ with U ∩ DC = {P}. By J-

holomorphicity of the projection p : ∆× C → ∆, the map p : C ∩ p−1(U \ {P}) → U \ {P}
is a holomorphic, finite, unbranched cover. The curve C thus decomposes over U \ {P}
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into a finite disjoint union of pointed disks ∆∗ such that in appropriate local holomorphic

coordinates

p|∆∗⊂C : t 7→ z = tm.

On this branch C is thus the image of a map of the form

∆∗ −→ C , t 7−→ (tm, λ(t))

for some smooth function λ. Pseudo-holomorphicity is expressed in terms of λ by

∂t̄λ(t) = ∂z̄λ · ∂t̄z̄ = mt̄m−1b(tm, λ(t)) . (1.3)

This shows that |∂t̄λ| is uniformly bounded. Moreover, properness of the map Cd → SdC
plus continuity of the ar show that λ has a continuous extension to ∆. It is a well-known

fact that this implies λ ∈ W 1,2(∆) (cf. e.g. [8, Lemma 2.4.2]). By elliptic bootstrapping λ

is smooth and hence t 7→ (tk, λ(t)) is indeed J-holomorphic.

Conversely, starting from a J-holomorphic curve C we checked at the beginning of this

section that on ∆ \ DC there are uniquely defined smooth functions ar fulfilling equation

(1.2). To extend over the branch points let φ : Σ → ∆×C be the J-holomorphic map with

image C. So Σ is a union of Riemann surfaces with boundary, and the composition of φ

with the projection ∆×C → ∆ exhibits Σ as a branched cover of the unit disk. Properness

of the projection C → ∆ implies boundedness of the ar. In particular, ∂z̄ar = br(z,a) is

bounded in Lp. Now elliptic regularity as above shows ar ∈ W 1,p
loc (∆) for every 2 < p < ∞.

Remark 1.1. While this was not a stimulus for this paper, we would like to point

out that the use of symmetric polynomials in the study of pseudo-holomorphic curves is

not entirely new. It has been used by Taubes in a static picture (for just one curve) to

investigate the singularities of an almost everywhere pseudo-holomorphic current ([9, proof

of Lemma 6.13]).

§2. Proof of Theorems 0.2 and 0.3

In this section we give sufficient conditions under which the solution space to Equation

(1.2) is a Banach manifold. As this PDE becomes singular near multiple points, we certainly

want to restrict to tuples a with discriminant δ(a) not vanishing identically. Note that

rescaling z → ε−1z leads merely to a change b → εb in the describing Equation (1.1). Since

we are only interested in the local behaviour, we may thus work over the unit disk and

assume that the C1-norm of b is as small as we want. Notice also that rescaling w does

not have any effect in that regard. The cases we can treat are singularities of multiplicity 2

(d = 2) and the more artificial case that b is holomorphic fiberwise (in the w-direction).

Proof of Theorem 0.2. We view (1.2) as a nonlinear map

Φ : B −→ E , a = (a1, · · · , ad) 7−→ (∂z̄ar − br(z,a))r=1,··· ,d

between function spaces

B := {a ∈ W 1,p(∆,Cd) | δ(a) ̸≡ 0} , E := Lp(∆,Cd),

where we choose some 2 < p < ∞. Let a fulfill

Φ(a) = 0, δ(a) ̸≡ 0.
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We want to apply a fixed point method to find a bijection between small holomorphic

perturbations of a and solutions of Φ = 0. To this end we need an approximate right-

inverse to the linearization of Φ. The latter can easily been checked to exist and to be a

zero order perturbation of the ∂z̄-operator. We thus simply take the right-inverse T to

∂z̄ : W 1,p(∆;C)d → Lp(∆;C)d

provided by the Cauchy integral operator for our approximate right inverse:

T : Lp(∆;C)d −→ W 1,p(∆;C)d, (Tξ)(z) =
( 1

2πi

∫
∆

ξr(ζ)

ζ − z
d ζ ∧ d ζ̄

)
r
. (2.1)

From T we obtain the decomposition

W 1,p(∆)d = O1,p(∆)d ⊕ Lp(∆)d

with O1,p(∆) the space of holomorphic functions on the unit disk of Sobolev class (1, p).

The correspondence is

O1,p(∆)d ⊕ Lp(∆)d ∋ (h, ξ) 7→ h+ Tξ ∈ W 1,p(∆)d ,

with inverse f 7→ (f − T∂z̄f, ∂z̄f). We therefore want to find solutions of Equation (1.2) of

the form

Φ(a+ h+ Tξ(h)) = 0 .

For any h we claim that the map

Kh(ξ) = ξ − Φ(a+ h+ Tξ)

is contractive. Expanding and using Φ(a) = 0 we obtain

Kh(ξ) = b(z,a+ h+ Tξ)− b(z,a) .

We therefore have to estimate

||Kh(ξ)−Kh(ζ)||p = ||b(z,a+ h+ Tξ)− b(z,a+ h+ Tζ)||p
by the Lp-distance of ξ and ζ. Under our hypothesis b is Lipschitz, with arbitrarily small

Lipschitz constant q = q(||∇b||∞) (Lemma 1.2). We obtain

||Kh(ξ)−Kh(ζ)||p ≤ a||T || · ||ξ − ζ||p .

Assuming q < 1/||T ||−1 we thus see that K is indeed contractive. Therefore, for any h the

equation Kh(ξ) = ξ has a unique solution ξ(h). Moreover, the norm of ξ tends to zero with

h.

Proof of Theorem 0.3. Without bounds on the linearization of the equation we need

to use stronger functional analytic methods. For our existence problem the following version

of the Leray-Schauder fixed point theorem is custom made.

Theorem 2.1. [10,Theorem 14.B.5] Let B be a Banach space and let F : [0, 1] × B → B
be a continuous and compact map. Putting Fσ(ξ) = F (σ, ξ) for σ ∈ [0, 1], we assume that

F0 ≡ b0 for some b0 ∈ B, and that the fixed points of Fσ are uniformly bounded for all

σ ∈ [0, 1] :

Fσ(ξ) = ξ ⇒ ||ξ|| < M .

Then F1 has a fixed point.
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With the notations of the proof of Theorem 0.2 above, we apply this theorem with

B = Lp(∆)d to

Fσ(ξ) := σb(z,h+ Tξ) .

A point ξ ∈ B is a fixed point of F1 iff ξ = ∂z̄(h+ Tξ) equals b(z,h+ Tξ), so these are in

one-to-one correspondence with solutions of (1.1) of the form h + Tξ. Moreover, F0 ≡ 0,

and F is a compact map as composition of the compact operator

Id × T : [0, 1]× Lp(∆)d → [0, 1]× C0(∆)d

with the continuous map

[0, 1]× C0(∆)d −→ Lp(∆)d , (σ,v) 7−→ σb(z,h+ v) .

Finally, the uniform estimate for fixed points ξ = Fσ(ξ) is

||ξ||p = ||σb(z,h+ Tξ)||p ≤ π1/p||b||∞ =: M .
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