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Abstract

A linear modelling of aeroacoustic waves propagation is discussed. The first point is an

existence and uniqueness theorem. But restrictive assumptions are required on the velocity of
the flow. Then a counter example proves that they are necessary.
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§0. Introduction

A new challenge is arising in the mechanical engineering community. It concerns the
modelling of aeroacoustic waves when fluid-structure interactions occur. As a matter of fact
the main difficulty is due to a localization of the energy at the interface between the structure
and the fluid. This phenomenon is well know in geophysics and is usually attributed to the
so-called Stonley waves. But it can only appear if the sound celerity in the structure is
smaller than the one in the fluid. Concerning the existence of solutions, some analogous
conditions have to be discussed but the velocity of the steady flow has also to be taken
into account. Our goal is to formulate a mathematical model in order to separate the wave
propagation from the diffusion phenomenon which is induced by the viscosity of the fluid.
It could be objected that the physical system that we analyze is only an approximation of
the reality. But it has the huge advantage of allowing precise mathematical results.

The steady flow in which we consider the acoustic wave propagation is obtained from
inviscid and incompressible flow hypothesis. Here again this is a simplification which enables
us to derive nice mathematical properties. It is not obvious that similar results could be
obtained with compressible or/and viscous flow.

§1. Modelling of Pressure Wave in an Air Flow

Let us consider a three dimensional open set denoted by Ω. Its boundary contains three
parts. One—say Γ0—corresponds to a vanishing acoustic pressure. The complementary of
Γ0 is Γ1 and it corresponds to a structure. A part of it is rigid—say ΓR—and the rest is

Manuscript received June 11, 2001.
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assumed to be flexible. It can be a plate, a membrane or a shell. It is denoted by Γs. But
for the evaluation of the steady flow, all the boundary Γ1 is assumed to be rigid.

Let us introduce the potential function φ0 which is solution of the Neumann problem:
−△φ0 = 0, in Ω,

∫
Ω
φ0 = 0,

∂φ0

∂ν
= 0, on Γ1 = (Γs ∪ ΓR),

∂φ0

∂ν
= g, on Γ0, (

∫
Γ0
g = 0).

(1.1)

Then the steady velocity field is given by the gradient of φ0. A very particular case, which
will be helpful in the following, corresponds to a uniform flow (Γ1 is a flat boundary).

If the magnitude of the velocity is U and the direction is e (parallel to Γ1), then one has

φ0 = (x− xg) • eU,
where x = (x1, x2, x3) are the coordinates of a point of Ω and xg its center of inertia. Finally
the dot stands for the scalar product in R3. One important question for our study is the
regularity of φ0. As a matter of fact it is very classical to prove the C∞(Ω) regularity of φ0.
But it is not true up to the boundary of Ω.

When ∂Ω has corners, there exist singularities which restrict the smoothness of φ0. Never-
theless we shall assume that φ0 is sufficiently regular in order to justify the following calculus.
But the case mentioned on Fig.1.1 is also very important and some physical phenomena can
appear near the corner on Γs.

Case 1. φ0 ∈ C1(Ω) Case 2. φ0 /∈ C1(Ω)
Fig. 1.1 Singular Geometries

We discuss in the text the difficulty which arises when φ0 is not in the space C2(Ω̄).

Let us set, assuming φ0 ∈ C2(Ω̄),

Us = sup
x∈Γ̄s

|∇sφ
0|(x),

U = sup
x∈Ω̄

|∇φ0|(x),

H = sup
x∈Ω̄

i,j∈{1,2,3}

∣∣∣ ∂2φ0

∂xi∂xj

∣∣∣(x).
(1.2)

It is worth to notice that Us ≤ U and that H = 0 for a uniform flow. Furthermore only
one component of the second order derivatives will be used in the following. Therefore the
condition φ0 ∈ C2(Ω̄) can certainly be weakened.
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Let us now assume that the unsteady waves in the fluid can also be represented by a
potential function denoted by ϕ. It is dependent on both x and t. Furthermore, we assume
that the fluid is barotropic (i.e. the pressure only depends on the mass density). Then
setting (ρf is the mass density in the fluid)

F (ρf ) =

∫ ρf

ρ0
f

1

ρ

∂p

∂ρ
(ρ)dρ,

where p is the pressure, one formulates Bernoulli theorem as follows:

∂ϕ

∂t
+

1

2
|∇ϕ|2 + F (ρ) = 0 in Ω×]O, T [. (1.3)

Furthermore the mass conservation principle is

∂ρ

∂t
+ div (ρ∇ϕ) = 0 in Ω×]O, T [. (1.4)

These two equations are the general nonlinear aeroacoustic models. But it is necessary
to specify the constitutive relationship between the mass density and the pressure. As a
matter of fact this is a tough question which has been widely discussed by many authors (see
for instance [9]). Actually the adiabatic hypothesis is commonly accepted, at least for the
acoustic pressure. Obviously it is necessary to add boundary conditions and initial values
for ϕ and ρ.

But, first of all we linearize (1.3) and (1.4). Therefore we set{
ϕ(x, t) = φ0(x) + φ(x, t),

ρ(x, t) = ρ0 + δρ(x, t),
(1.5)

which leads to 
∂δρ

∂t
+ ρ0△φ+∇φ0 • ∇δρ = 0, in Ω×]O, T [,

∂φ

∂t
+∇φ0 • ∇φ+

1

ρ0
∂p

∂ρ
(ρ0)δρ = 0, in Ω×]O, T [.

(1.6)

Setting (sound celerity)

cf =

√
∂p

∂ρ
(ρ0), (1.7)

we deduce that 
∂φ

∂t
+∇φ0 • ∇φ+

c2f
ρ0
δρ = 0, in Ω×]O, T [.

∂δρ

∂t
+ ρ0△φ+∇φ0 • ∇δρ = 0, in Ω×]O, T [,

(1.8)

Finally by applying the operator
∂

∂t
(•) + ∇φ0 • ∇(•) to the first equation and using the

second one, we obtain the classical wave equation

∂2φ

∂t2
+ 2∇φ0 • ∇∂φ

∂t
+∇φ0 • ∇(∇φ0 • ∇φ)− c2f△φ = 0. (1.9)

Once φ is known, δρ can be computed by solving the second equation (1.8), which is a linear
advection model. The streamlines are those of the steady flow described by the potential
function φ0. Let us now discuss the boundary conditions which should be satisfied by φ.
Because there are three different boundaries, there are three different conditions.

(a) The rigid wall boundaries condition (on ΓR)
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The normal component of the velocity is zero because the air particles cannot enter the
wall. Hence the boundary condition is

∂φ

∂t
= 0 on ΓR×]O, T [. (1.10)

(ν is the unit normal to ΓR).
(b) The flexible structure boundary condition (on Γs)
This is certainly the most difficult condition to write correctly. This is due to the rotation

of the normal to the structure. Let us denote by z the normal displacement of the structure
along the unit normal. Then a simple calculus using differential geometry enables one to
derive the following relation

∂φ

∂ν
= ∇φ • ν =

∂z

∂t
+∇sφ

0 • ∇sz, (1.11)

where ∇s is the gradient operator along the surface Γs.
Remark 1.1. The convection term ∇sφ

0 • ∇sz is omitted in most papers. Then there
is no energy conservation and the existence theorem seems to be false.

(c) Boundary condition on the inner boundary (Γ0).
Let us consider a point m on Γ0 . There are several ways to prescribe a boundary

condition at m. One of them consists in assuming that the movements of the particles are
normal to Γ0. Hence we set φ = 0 on Γ0. This condition is very convenient for our analysis.
But sometimes people prefer to formulate a transparency condition. It traduces that the
coming in or out waves are not modified by the boundary Γ0:

∂φ

∂t
+
∂φ0

∂ν
• ∂φ
∂ν

= 0 on Γ0×]O, T [. (1.12)

When the steady flow is uniform and for instance parallel to the axis x1, one has

∂φ

∂t
+ U

∂φ

∂x1
,

on each boundary orthogonal to x1. As a matter of fact the condition (1.12) is really
meaningful if Γ0 is a potential line for φ0. Then (1.12) is equivalent to

∂φ

∂t
+∇φ0 • ∇φ = 0,

which simply traduces that the acoustics pressure is vanishing on Γ0.
But another possibility, which maybe is more realistic, consists in prescribing that, on

Γ0, one has

φ(x, t) = 0 ∀ (x, t) ∈ Γ0×]O, T [, (1.13)

which corresponds to the hypothesis that the acoustic waves which are reaching Γ0 are
radial (no tangential velocity). We use that one in the following. But similar results could
be obtained with other boundary conditions if the boundary Γ0 is correctly chosen. This
will be discussed in a forthcoming paper.

The last point concerns the initial conditions satisfied by φ. We set

φ(x, 0) = φ0(x),
∂φ

∂t
(x, 0) = φ1(x) ∀x ∈ Ω, (1.14)

and the regularity of φ0 and φ1 will be discussed in the following.

§2. The Structural Model

The flexible structure occupies the portion Γs of the boundary of Ω. It can be a plate or
a shell. But just in order to simplify the writings, we consider that it is a flat membrane.
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Therefore the deflection z is solution of the following model:
∂2z

∂t2
− c2s△sz = −ρf

ρs

(∂φ
∂t

+∇sφ
0 • ∇sφ

)
+ q, on Γs×]O, T [,

z = 0, on ∂Γs×]O, T [,

z(x, t) = z0(x),
∂z

∂t
(x, 0) = z1(x), ∀x ∈ Γs,

(2.1)

where z0, z1 and q are given functions. The first term in the right hand side of the previous
equation is the acoustic pressure due to the fluid and applied to the flexible structure. As

a matter of fact, the term
∂φ0

∂ν

∂φ

∂ν
is vanishing because

∂φ0

∂ν
= 0 on Γs. The coefficients ρf

and ρs are respectively the mass density of the fluid and of the structure. Finally cs is the
sound celerity in the structure.

The coupling between the two mechanical models appears in the terms at the right hand
side of (2.1) and on the one of (1.11).

The function q which is at the right hand side of (2.1) represents an external force applied
directly to the structure. It can be a control for instance as we have studied it in [6] or [7].

§3. An a Priori Estimate for the Coupled Model

Let us start with few notions. First of all we recall that it is assumed that φ0 ∈ C2(Ω̄)
(even if it is possible to slightly weaken this hypothesis). Then we introduce the Steklov

problem which consists in finding (y, η) ∈ V ×R+,
(
V =

{
v ∈ H1(Ω), v = 0 on Γ0

})
, such

that 
−c2f△y +∇φ0 • ∇(∇φ0 • ∇y) = 0 in Ω,

∂y

∂ν
= 0 on ΓR, c2f

∂y

∂ν
= ηy on Γs.

(3.1)

This is a very classical spectral problem as far as cf > U
(
= max

x∈Ω̄
|∇φ0|

)
. From the min-max

theorem, we know that the smallest eigenvalue—say η0—satisfies the following inequality

∀v ∈ V, η0

∫
Γs

v2 ≤ c2f

∫
Ω

|∇v|2 −
∫
Ω

(∇φ0 • ∇v)2 def
= af (v, v). (3.2)

Let us now assume just for a while that (φ, z) is a smooth enough solution of the coupled

aeroacoustic system. Then multiplying (1.9) by
∂φ

∂t
and (2.1) by

∂z

∂t
and by integrating

them over Ω and along Γs, we obtain the following identity:

∂

∂t

{1

2

∫
Ω

(∂φ
∂t

)2

+
c2f
2

∫
Ω

|∇φ|2 − 1

2

∫
Ω

(∇φ0 • ∇φ)2 + c2f
ρs
ρf

(1
2

∫
Γs

(∂z
∂t

)2

+
c2s
2

∫
Γs

|∇sz|2
)}

= c2f

{∫
Γs

∇sφ
0 •

(
∇sz

∂φ

∂t
−∇sφ

∂z

∂t

)
+
ρs
ρf

∫
Γs

q
∂z

∂t

}
.

Let us set

A =

∫ T

0

∫
Γs

∇sφ
0 •

(
∇sz

∂φ

∂t
−∇sφ

∂z

∂t

)
=

∫ T

0

∫
Γs

△sφ
0φ
∂z

∂t
+

[∫
Γs

(∇sφ
0 • ∇sz)φ

]T
0
;
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therefore, for any number α > 0 and β > 0 (H is defined in (1.2)),

|A| ≤ρf2H
√
α

c2fρs

[1
2
c2f
ρs
ρf

∫ T

0

∫
Γs

(
∂z

∂t
)2 +

c2fρs

2ρfα

∫ T

0

∫
Γs

φ2
]

+
Us

√
βρf

c2sc
2
fρs

[1
2

c2sc
2
fρs

ρf

∫
Γs

|∇sz|2 +
ρsc

2
sc

2
f

2βρf

∫
Γs

φ2
]
(0)

+
Us

√
βρf

c2sc
2
fρs

[1
2

c2sc
2
fρs

ρf

∫
Γs

|∇sz|2 +
ρsc

2
sc

2
f

2βρf

∫
Γs

φ2
]
(T ).

Then because of (3.2),

|A| ≤ρf2H
√
α

c2fρs

[1
2
c2f
ρs
ρf

∫ T

0

∫
Γs

(
∂z

∂t
)2 +

c2fρs

2η0ρfα

∫ T

0

af (φ,φ)
]

+
Us

√
βρf

c2sc
2
fρs

[1
2

c2sc
2
fρs

ρf

∫
Γs

|∇sz|2 +
ρsc

2
sc

2
f

2βρfη0
af (φ,φ)

]
(0)

+
Us

√
βρf

c2sc
2
fρs

[1
2

c2sc
2
fρs

ρf

∫
Γs

|∇sz|2 +
ρsc

2
sc

2
f

2βρfη0
af (φ,φ)

]
(T ).

Let us set

α =
ρsc

2
f

η0ρf
, β =

c2sc
2
fρs

η0ρf
,

and we introduce the energy of the coupled system:

ε(t) =
1

2

∫
Ω

(
∂φ

∂t
)2 +

1

2
af (φ,φ) +

c2fρs

ρf

[1
2

∫
Γs

(
∂z

∂t
)2 +

c2s
2

∫
Γs

|∇z|2
]
; (3.3)

we obtain

|A| ≤ 2H

cf
√
η0

√
ρf
ρs

∫ T

0

ε(t)dt+
Us

cfcs
√
η0

√
ρf
ρs

[ε(T ) + ε(0)]. (3.4)

Then from (3.3) and (3.4) we derive the following inequality:

|ε(t)− ε(0)| ≤ C1

∫ t

0

ε(s)ds+ C2(ε(t) + ε(0)) + C3, (3.5)

C1 =

√
ρf
ρs

cf2H√
η0

+
C2

f

2

ρs
ρf
, C2 =

cfUs

cs
√
η0

√
ρf
ρs
, C3 = c2f

ρs
ρf

∥q∥L2(]O,T [×Γs). (3.6)

From (3.5), we deduce that

(i) (1− C2)ε(t) ≤ (1 + C2)ε(0) + C1

∫ t

0
ε(s)ds+ C3,

(ii) (1 + C2)ε(t) ≥ (1− C2)ε(0)− C1

∫ t

0
ε(s)ds− C3.

Therefore (let us assume that C2 < 1 which is discussed in the following)

C1ε(t)

(1 + C2)ε(0) + C3 + C1

∫ t

0
ε(s)ds

≤ C1

1− C2
.

Then

(1 + C2)ε(0) + C3 + C1

∫ t

0
ε(s)ds

(1 + C2)ε(0) + C3
≤ e

C1t
1−C2 ,

which enables one to write

C1

∫ t

0

ε(s)ds ≤ [C3 + (1 + C2)ε(0)]
[
e

C1t
1−C2 − 1

]
.
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Finally

ε(t) ≤
(1 + C2

1− C2

)
ε(0) +

C3

1− C2
+
(C3 + (1 + C2)ε(0)

1− C2

)[
e(

C1t
1−C2

) − 1
]
. (3.7)

In a similar way one has also the following lower bound which is meaningful if C3 = 0!
(q ≡ 0):

ε(t) ≥
(1− C2

1 + C2

)
ε(0)− C3

1− C2
−
(C3 + (1 + C2)ε(0)

1 + C2

)[
e(

C1t
1−C2

) − 1
]
. (3.8)

Lemma 3.1. Let us summarize the previous results :

Assume that U < cf , Us <

√
ρs
ρf
η0(

cs
cf

), φ0 ∈ C2(Ω̄). Then the energy ε(t) defined in

(3.3) is such that(1− C2

1 + C2

)
ε(0)− C3

1− C2
−
(C3 + (1 + C2)ε(0)

1 + C2

)[
e(

C1t
1−C2

) − 1
]

≤ ε(t) ≤
(1 + C2

1− C2

)
ε(0) +

C3

1− C2
+
(C3 + (1 + C2)ε(0)

1− C2

)[
e(

C1t
1−C2

) − 1
]
,

where C1, C2 and C3 are defined in (3.6).

Remark 3.1. The condition on Us can be differently traduced. Let us denote by η01 the
smallest eigenvalue of the Steklov problem for U = 0 (φ0 ≡ 0!). Then, Schwarz inequality,
applied to (3.2), enables one to derive the following inequality:

∀v ∈ V, η01

∫
Γs

v2 ≤ c2f

∫
Ω

|∇v|2,

and therefore from the fact that v0 is the eigenvector associated to η0,we have

η0 = c2f

∫
Ω

|∇v0|2 −
∫
Ω

(∇φ0 • ∇v0)2 ≥ (c2f − U2)

∫
Ω

|∇v0|2 ≥ η01

(c2f − U2

c2f

)
.

(We used the normalization
∫
Γs
v20 = 1 .) Hence the restriction on Us can be ensured by a

more restrictive one:

Us <
√

1−M2
cs
cf

√
η01ρs
ρf

, (3.9)

where M =
U

cf
is the Mach number. Furthermore η01 can be estimated by a simple calculus

as one does for the Poincaré constant.

Thus one obtains (D is the diameter of Ω)

η01 ≃
c2f
d
,

and finally the inequality (3.9) is approximately equivalent to

Us <
√
1−M2cs

√
ρs
Dρf

. (3.10)

Remark 3.2. One could object that the restrictive condition on Us is sufficient but not
necessary. As a matter of fact, it is certainly not optimal but one can prove that there is a
restriction on the tangential velocity of the steady flow near the flexible structure. Let us
discuss this point with a two dimensional example. The geometry is the one represented in
Fig. 3.1.
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Fig. 3.1 The Two Dimensional Geometry for the Example
Concerning the Restriction on the Us

Let us set for arbitrary elements X = (φ, z) ∈ V ×H1
0 (Γs),

a0(X,X) = c2f

∫
Ω

|∇φ|2 −
∫
Ω

(∇φ0 • ∇φ)2 + c2f
ρs
ρf
c2s

∫
Γs

|∇sz|2 − 2c2f

∫
Γs

(∇sφ
0 • ∇sz)φ.

Setting φ0 = x1U (uniform steady flow), one has

a0(X,X) = c2f

∫
Ω

|∇φ|2 − U2

∫
Ω

( ∂φ
∂x1

)2

+ c2f
ρs
ρf
c2s

∫ L

0

|∇sz|2 − 2c2fU

∫ L

0

∂z

∂x1
φ.

Let us denote by (y1, η1) the second eigenmode of the Steklov model (3.1). One has the
identity :

c2f

∫
Ω

|∇y1|2 − U2

∫ L

0

∣∣∣ ∂y1
∂x1

∣∣∣2 = η1

∫ L

0

|y1|2,

and therefore, setting X = (y1, z), one obtains

a0(X,X) = c2f
ρs
ρf
c2s

∫ L

0

∣∣∣ ∂z
∂x1

∣∣∣2 + η1

∫ L

0

|y1|2 − 2c2fU

∫ L

0

( ∂z

∂x1

)
y1.

But, because of the simplified geometry (rectangle), it is possible to compute analytically
y1 and η1. One obtains the following expressions:

y1(x1, x2) = A1 sin
(2Πx1

L

)
sh
(2Π
L

(x2 + ℓ)
√
1−M2

)
,

η1 =
2Π

L
c2f
√
1−M2 coth

(2Πℓ
L

√
1−M2

)
,

where A1 is a constant (it is arbitrary unless we choose a normalization condition). Let us
now set for any arbitrary constant B:

z1(x1) = B

∫ x1

0

y1(s, 0)ds.

One has the boundary conditions: z1(0) = z1(L) =0. Then for X1 = (y1, z1), we deduce the
following relation

a0(X1, X1) = c2f

[
c2s
ρs
ρf
B2 − 2BU +

η1
c2f

] ∫ L

0

|y1(s, 0)|2ds.
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Let us assume that (U = Us in this example)

U >
cs
cf

√
ρsη1
ρf

.

Then, there exist values of B such that

a0(X1, X1) < 0.

In other words the bilinear form a0 can be negative and no stability result can be obtained
for the coupled fluid-structure model that we are considering. When

U = U0 =
cs
cf

√
ρsη1
ρf

, (3.11)

the bilinear form a0 has a kernel which is different from zero, but remains non-negative. It
is also worth noting that for M → 1, one has

U0 → cs

√
ρs
ℓρf

.

But because we assumed that U < cf , it is necessary that

cs

√
ρs
ℓρf

≃ cf , (because M ≃ 1).

This relation is also the upper limit for cs such that there exist Stoneley stationary waves
near the flexible structure. One can find further details in [6].

§4. Approximation of the Aeroacoustic Model

Let us first introduce two bases of functions for the fluid and the structure separately.

(a) Basis for the fluid. It is solution of
find (w, λf ) ∈ V × R such that

−c2f△w +∇φ0 • ∇(∇φ0 • ∇w) = λfw, in Ω,

w = 0 on Γ0,
∂w

∂ν
= 0 on Γ1 = (ΓR ∪ Γs).

(4.1)

(b) Basis for the structure. It is solution of{
find (z, λs) ∈ H1

0 (Γs)× R such that

−c2s△sz = λsz, on Γs.
(4.2)

The existence of solutions to the system (4.1) and (4.2) is classical from the general spectral
theory. But the hypothesis that U < cf is really necessary in order to prove the coerciveness
of the bilinear form representing the fluid energy. Let us denote by {wn} (respectively {zn})
the eigenvectors of the fluid (respectively the structure). Then we introduce the following
finite dimensional spaces: 

V N =
{
y =

∑
n=1,N

αnwn, αn ∈ R
}
,

ZN =
{
z =

∑
n=1,N

βnzn, βn ∈ R
}
.

(4.3)

The approximate model is formulated from a weak formulation of the coupled system. It is
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defined by

find (φN , zN ) ∈ C1
(
[O, T ]; V N

)
× C1

(
[O, T ]; ZN

)
, such that

∀Ψ ∈ V N ,

∫
Ω

∂2φN

∂t2
Ψ+ 2

∫
Ω

∇φ0 • ∇∂φN

∂t
Ψ+ c2f

∫
Ω

∇φN • ∇Ψ

−
∫
Ω

(∇φ0 • ∇φN )(∇φ0 • ∇Ψ) = c2f

∫
Γs

(∂zN
∂t

+∇sz
n • ∇φ0

)
Ψ,

∀v ∈ ZN ,
∫
Γs

∂2zN

∂t2 v + c2s
∫
Γs

∇sz
N • ∇av = −ρf

ρs

∫
Γs

(
∂φN

∂t +∇sφ
0 • ∇sφ

N
)
v

+
∫
Γs
φv.

(4.4)

Because (4.4) is a finite dimensional linear differential system, it has a unique solution as
soon as initial conditions on (φN , zN )(0) and (φ̇N , żN )(0) are prescribed. For the sake of
brevity let us choose the following conditions :

zN (0) = PN
s z0,

∂zn

∂t
(0) = PN

s z1,

φN (0) = PN
f φ0,

∂φN

∂t
(0) = PN

f φ1.

Here PN
s (respectively PN

f ) is the projection from V (respectively H1
0 (Γs)), onto V

N (re-

spectively onto ZN ). The next result gives an a priori estimate on (φN , zN ) independent of
N .

Lemma 4.1. Let us assume that U < cf and Us <
cs
cf

√
ρsη0
ρf

where η0 is the smallest

eigenvalue of the Steklov problem defined in (3.1). Furthermore we consider that

q ∈ L2(]O, T [×Γs), φ0 ∈ V, φ1 ∈ L2(Ω), z0 ∈ H1
0 (Γs), z1 ∈ L2(Γs).

Then there exists a constant c which is independent of N and such that[∥∥∥∂φN

∂t

∥∥∥2
O,Ω

+ ∥φN∥21,Ω +
∥∥∥∂zN
∂t

∥∥∥2
0,Γs

+ ∥zN∥21,Γs

]
(t) ≤ c, ∀ ∈ [O, T ].

Proof. Let us set Ψ = φ̇N and v = żN in (4.4). We obtain the following equality:

∂

∂t

{1

2

∫
Ω

(∂φN

∂t

)2

+
c2f
2

ρs
ρf

∫
Γs

(∂zN
∂t

)2

+
c2f
2

∫
Ω

|∇φN |2

− 1

2

∫
Ω

(∇φ0 • ∇φN )2 +
c2fc

2
sρs

2ρf

∫
Γs

|∇sz
N |2

}
= c2f

[∫
Γs

(∇sφ
0 • ∇sz

N )
∂φN

∂t
−
∫
Γs

(
∇sφ

0 • ∇sφ
N − ρs

ρf
q
)∂zN
∂t

]
.

Following the same method as we did in Section 3 and using Lemma 3.1, we derive the next
estimate (φN and zN are smooth functions):

1

2

∫
Ω

(∂φN

∂t

)2

+
c2f
2

ρs
ρf

∫
Γs

(∂zN
∂t

)2

+
c2f
2

∫
Ω

|∇φN |2

− 1

2

∫
Ω

(
∇φ0 • ∇φN

)2

+ c2f
c2sρs
2ρf

∫
Γs

|∇sz
N |2 ≤ c2,

where c2 is a constant which is independent of N .
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§5. Existence and Uniqueness of a Solution

From Lemma 4.1, we deduce that there exists subsequence, say (φN ′
, zN

′
), such that

φN ′ → φ∗ in L2(]O, T [; V )− weak,

zN
′ → z∗ in L2

(
(]O, T [; H1

0 (Γs)
)
)− weak,

∂φN ′

∂t
→ χ∗ in L2

(
(]O, T [; L2(Ω)

)
− weak,

∂zN
′

∂t
→ h∗ in L2

(
(]O, T [; L2(Γs)

)
− weak.

(5.1)

It is classical to prove that

χ∗ =
∂φ∗

∂t
, h∗ =

∂z∗

∂t
.

Then one can use a weak formulation satisfied by the approximate solution (φN , zN ) in
order to characterize (φ∗, z∗). One has (∀N ≥ N0 )

−
∫ T

0

∫
Ω

(∂φN

∂t
+∇φ0 • ∇φN

)(∂Ψ
∂t

+∇φ0 • ∇Ψ
)
−

[∫
Ω

(∂φN

∂t
+∇φ0 • ∇φN

)
Ψ
]
(0)

+c2f

∫ T

0

∫
Ω

∇φN • ∇Ψ = c2f

∫ T

0

∫
Γs

(∂φN

∂t
+∇sφ

0 • zN
)
Ψ, ∀Ψ ∈ D([O, T [; V N0),

−
∫ T

0

∫
Γs

∂zN

∂t

∂v

∂t
+ c2s

∫ T

0

∫
Γs

∇sz
N • ∇sv

= −ρf
ρs

∫ T

0

∫
Γs

(∂φN

∂t
+∇sφ

0 • ∇sφ
N
)
v +

∫ T

0

∫
Γs

qv, ∀v ∈ D([O, T [; ZN0).

(5.2)
Then the weak limit (5.1) set into (5.2) proves that (φ∗, z∗) is a solution of the weak
formulation for any (Ψ, v) ∈ D ([O, T [; V N0 × ZN0) for all N0.

But because (V N0 ×ZN0) is dense in the space V ×H1
0 (Γs), one can choose any function

in the space D
(
([O, T [; V ×H1

0 (Γs)
)
in the equalities (5.2). The interpretation of the weak

formulation proves that (φ∗, z∗) is a solution of the coupled model but in a distribution
space.

The uniqueness would be easily derived from the energy estimate as soon as a sufficient
regularity is assumed on the time derivative of the solutions. It could be obtained by deriving
the equations with respect to time. Then the regularity is a consequence of the one of the
initial data and of the right hand side. But it can more generally be proved directly with
the variational formulation even for non smooth solutions (in the space where the existence
has been proved). Let us set (see [10])

Ψ(t) =

{ −
∫ s

t
φ∗(σ)dσ, t < s < T,

0, elsewhere,

v(t) =

{ −
∫ s

t
z∗(σ)dσ, t < s < T,

0, elsewhere,

(5.3)

where (φ∗, z∗) is a weak solution of the coupled model with both homogeneous right hand
side and initial conditions. Then introducing these test functions in the weak formulation,
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one deduces the following relations :

−
∫ s

0

∫
Ω

∂φ∗

∂t

∂Ψ

∂t
+ c2f

∫ s

0

∫
Ω

∇φ∗ • ∇Ψ−
∫ s

0

∫
Ω

(∇φ∗∇φ0)(∇φ0 • ∇Ψ)

− c2f
ρs
ρf

∫ s

0

∫
Γs

∂z∗

∂t

∂v

∂t
+ c2fc

2
s

ρs
ρf

∫ s

0

∫
Γs

∇sz
∗ • ∇sv

− c2f

∫ s

0

∫
Γs

[(∂z∗
∂t

+∇sφ
0 • ∇sz

∗
)
Ψ−

(∂φ∗

∂t
+∇sφ

0 • ∇sφ
∗
)
v
]
= 0,

or else

−
∫ s

0

∫
Ω

∂φ∗

∂t
φ∗ − c2f

ρs
ρf

∫ s

0

∫
Γs

∂z∗

∂t
z∗ + c2f

∫ s

0

∫
Ω

∇∂Ψ

∂t
• ∇Ψ

−
∫ s

0

∫
Ω

(
∇φ0 • ∇∂Ψ

∂t

)
(∇φ0 • ∇Ψ) + c2fc

2
s

ρs
ρf

∫ s

0

∫
Ω

∇s
∂v

∂t
• ∇sv

− c2f

∫ s

0

∫
Γs

(∂z∗
∂t

Ψ− ∂φ∗

∂t
v
)
− c2f

∫ s

0

∫
Γs

[
∇sφ

0 • ∇sz
∗)Ψ−

(
∇sφ

0 • ∇sφ
∗
)
v
]
= 0,

and therefore

A = −1

2

∫
Ω

|φ∗|2(s)−
c2f
2

ρs
ρf

∫
Γs

|z∗|2(s)

−
[c2f
2

∫
Ω

|∇Ψ|2(0)− 1

2

∫
Ω

(∇φ0 • ∇Ψ)2(0)
]
−
c2sc

2
f

2

ρs
ρf

∫
Γs

|∇sv|2(0)

= c2f

∫ s

0

∫
Γs

(∂z∗
∂t

Ψ− ∂φ∗

∂t
v
)
+ c2f

∫ s

0

∫
Γs

[
∇sφ

0 • ∇sz
∗)Ψ− (∇sφ

0 • ∇sφ
∗
)
v
]
.

But from ∫ s

0

∫
Γs

∂z∗

∂t
Ψ = −

∫ s

0

∫
Γs

z∗φ∗ =

∫ s

0

∫
Γs

∂φ∗

∂t
v

and because

c2f

∫ s

0

∫
Γs

[
(∇sφ

0 • ∇sz
∗)Ψ− (∇sφ

0 • ∇sφ
∗)v

]
= −c2f

[ ∫
Γs

(∇sφ
0 • ∇sv)Ψ

]
(0)− c2f

∫ s

0

∫
Γs

∆sφ
0z∗Ψ

(we used the property that the function v is zero on the boundary ∂Γs and the fact that
v(s) = 0, Ψ(s) = 0, z∗(0) = φ∗(0) = 0), the quantity A defined previously is thus such that

A = c2f

[∫
Γs

(∇sφ
0 • ∇sv)Ψ

]
(0)− c2f

∫ s

0

∫
Γs

∆sφ
0z∗ψ∗.

Let us recall that we assumed that φ0 is C2(Ω̄) (see (1.2)). Thus

|A| ≤ c2f

{
Us

∫
Γs

|∇sv| · |Ψ|(0) + 2H

∫ s

0

∫
Γs

|z∗| · |Ψ|(ξ)dξ
}
,

where Us and H have been defined in (1.2). From Cauchy-Schwarz inequality we deduce
that

|A| ≤ c2f

{α
2
Us

∫
Γs

|∇sv|2(0) +
Us

2α

∫
Γs

|Ψ|2(0)

+Hβ

∫ s

0

∫
Γs

|z∗|2(ξ)dξ + H

β

∫ s

0

∫
Γs

Ψ2(ξ)dξ
}
.

(5.4)



No.1 Ph. DESTUYNDER & E. GOUT D’HENIN EXISTENCE AND UNIQUENESS 23

Furthermore, this relation is true for any s ≥ 0 and s ≤ T . Let us now recall that η0 is the
smallest eigenvalue of the Steklov model that has been introduced in (3.1). Thus from (5.4),
one obtains

1

2

∫
Ω

|φ∗|2(s) +
c2f
2

ρs
ρf

∫
Γs

|z∗|2(s) + 1

2

(
1−

Usc
2
f

αη0

)[
c2f

∫
Ω

|∇Ψ|2(0)

−
∫
Ω

(∇φ0 • ∇Ψ)2(0)
]
+
c2f
2

(
c2s
ρs
ρf

− αUs

)∫
Γs

|∇sv|2(0)

≤ H

βη0

∫ s

0

[
c2f

∫
Ω

|∇Ψ|2 −
∫
Ω

(∇φ0 • ∇Ψ)2
]
(ξ)dξ +Hβ

∫ s

0

∫
Γs

|z∗|2(ξ)dξ.

From the assumption formulated on the boundary velocity Us in Lemma 3.1, it is always
possible to find α > 0 such that all the terms on the left hand side of the previous inequality
are positive.

Let us now make a basic remark in order to complete the proof of the uniqueness. The
functions v and Ψ are both dependent on s and t. Let us write for instance (just from the
definitions (5.3))

Ψ(t) = Ψ(s, t) = Ψ(s, 0)−Ψ(t, 0).

Thus (using the bilinear form af defined in (3.2) in order to shorten the expressions),

af (Ψ,Ψ)(ξ) = af (Ψ(s, 0),Ψ(s, 0)) + af (Ψ(ξ, 0),Ψ(ξ, 0))− 2af (Ψ(s, 0),Ψ(ξ, 0));

therefore, there exists a positive constant c such that

1

2

∫
Ω

|φ∗|2(s) +
c2f
2

ρs
ρf

∫
Γs

|z∗|2(s)−Hβ

∫ s

0

∫
Γs

|z∗|2(ξ)dξ + 1

2
(c− 4Hs

η0β
)afΨ(s, 0), Ψ(s, 0))

− H

η0β

∫ s

0

af (Ψ(ξ, 0), Ψ(ξ, 0))dξ +
c2f
2
c

∫
Γs

|∇sv|2(0) ≤ 0.

The coefficient β can always be chosen such that c− 2Hs/η0β > 0. We obtain

d

ds

[
e−c3

∫ s

0

∫
Γs

|z∗|2(ξ)dξ
]
+

d

ds

[
e−c3

∫ s

0

af (Ψ(ξ, 0), Ψ(ξ, 0))dξ
]
≤ 0,

where

c1 =
2Hβρf
c2fρf

, c2 =
2H

η0βc− 4Hs
, c3 = max(c1, c2)

and thus, integrating from 0 to s, we have

e−c3s

∫ s

0

∫
Γs

|z∗|2(ξ)dξ + e−c3s

∫ s

0

af (Ψ(ξ, 0), Ψ(ξ, 0))dξ ≤ 0.

Finally we obtain for any s ≤ T ,

z∗(s) = 0 ∀s ∈ [0, T ] and Ψ(ξ, 0) = 0 ∀ξ ∈ [0, T ],

and from (5.4),

φ∗(s) = 0 ∀s ∈ [0, T ],

which implies the uniqueness of a solution to the coupled system. The obtained results are
summarized in the following statement.

Theorem 5.1. Let us assume that φ0 is such that

U < cf , Us <
cs
cf

√
η0ρs
ρf
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and that q ∈ L2(]O, T [×Γs), φ0 ∈ V, φ1 ∈ L2(Ω), z0 ∈ H1
0 (Γs), z1 ∈ L2(Γs). Then, the

coupled model (1.9)-(2.1)-(1.10)-(1.13)-(1.14)-(1.11) has a unique solution (φ, z) in the space
C0([O, T ]; V ×H1

0 (Γs)) ∩ C1([O, T ]; L2(Ω)× L2(Γs)).
Remark 5.1. As a matter of fact the restriction that has been used on the maximum

of the boundary velocity Us can be overcome. It only proves that the solution is stable (i.e.
bounded). The previous theorem can be extended to a general subsonic case (Us < cf ) just
by replacing the initial unknowns by

(φ, z)(x, t) = eλt(φ̄, z̄)(x, t), where λ > 0 is chosen large enough.

The coefficient λ takes into account the exponential growth with respect to time. This
method can be applied because the terms which are at the origin of the instability are
“compact” compared to higher order terms. This point will be discussed in a forthcoming
paper in which a nonlinear interaction between the structure and the fluid is considered.
Furthermore, the critical value of Us at which flutter instability occurs can be computed
precisely from a standard eigenvalue problem.

§6. Conclusions

The propagation of waves in a steady flow can be modelled by a potential function. But,
when a part of the boundary of the open set containing the flow is flexible, the existence of
a stable solution is not obvious. Restrictions on the velocity of the flow are necessary. But
it is also useful that the remaining boundary conditions around the flow could enable one
to derive an a priori estimate on the potential function. This is necessary along the flexible
structure with respect to the unsteady velocity inside the flow (from a Steklov eigenvalue
problem). The results obtained in this paper seem to be new. They give a first answer to
the question of existence and uniqueness of a solution to a three dimensional aeroacoustic
model coupled with a flexible structure. But additional studies should be carried out for
flutter phenomenon.
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