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Abstract

Let Pt denote the tubular hypersurface of radius t around a given compatible submanifold

in a symmetric space of arbitrary rank. The authors will obtain some relations between the
integrated mean curvatures of Pt and their derivatives with respect to t. Moreover, the authors
will emphasize the differences between the results obtained for rank one and arbitrary rank
symmetric spaces.
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§1. Introduction

Let P be a submanifold of an n-dimensional riemannian manifold M . Expressions for
the kth integrated mean curvatures, MP

k (t), (i. e. the integral of the kth mean curvature,
k = 0, 1, · · · , n − 1), of a tubular hypersurface Pt of radius t about P , in terms of the
Riemann curvature tensor of P , are calculated when M is Euclidean or a rank one symmetric
space[5,13,7]. Moreover, when P is a closed convex hypersurface of the n-dimensional space
of constant curvature λ2, Santaló has obtained in [12] the following interesting relations
between MP

k (t) and their derivatives with respect to t :

d

dt
MP

k (t) = −(n− (k + 1))MP
k+1(t) + λ2 kMP

k−1(t). (1.1)

In this paper we study the k-th integrated mean curvatures of tubular hypersurfaces
about some compatible submanifolds in symmetric spaces M = G/K of arbitrary rank. In
particular we will extend (1.1) for geodesic balls and tubes around these submanifolds.

As it was noted in [6] and [9], where the authors obtained expressions for MP
0 (t) (that is,

the area of the tubular hypersurface Pt) by using the restricted roots of M , the theory of
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tubes in rank one symmetric spaces is simpler than this general theory in symmetric spaces
because of the transitive action of the isotropy group of rank one symmetric spaces. Along
this paper we will emphasize the differences between the relations of MP

k (t) obtained in rank
one and arbitrary rank symmetric spaces.

The paper is structured as follows. In Section 2 we consider integrated mean curvatures
of geodesic balls in symmetric spaces. In Sections 3 and 4 we extend the results in Section
2 for tubes around some compatible submanifolds in a symmetric space. Finally, in Section
5, we relate the theorems obtained in the preceding sections, for rank one symmetric spaces,
with known comparison theorems for the mean curvature of tubular hypersurfaces (see,
for instance, [4]), and with variational problems of functions of the mean curvatures for
hypersurfaces and submanifolds in space forms[8,10]..

§2. Geodesic Balls in Symmetric Spaces

Let M be a compact symmetric space of dimension n and rank q. Later on we will extend
the results to noncompact symmetric spaces, having taken into account the duality between
compact and noncompact symmetric spaces.

Let 0 = α1(u) = · · · = αq(u) < αq+1(u) ≤ · · · ≤ αn(u), where u ∈ h, maximal abelian
subspace of m, an arrangement of the set of positive restricted roots of M . The tangent
space at any point of M is canonically identified with m.

Let Pt be a geodesic sphere of radius t around a point p of M . Then, the eigenvalues of
the shape operator S(t) of Pt (principal curvatures of Pt) with respect to the vector u are
given by[9]

ki(t) = −1

t
, i = 2, · · · , q, (2.1)

kj(t) = − αj(u)

tan(tαj(u))
, j = q + 1, · · · , n− 1. (2.2)

Definition 2.1. The kth integrated mean curvature, Mp
k (t), of Pt (k = 0, 1, · · ·n− 1), is

defined by

Mp
k (t) =

(
n− 1

k

)−1 ∫
Pt

{kj1, kj2, · · · , kjk}dσ, (2.3)

where {kj1, kj2, · · · , kjk} denotes the kth elementary symmetric function of the principal
curvatures, and dσ the area element of Pt.

The (n− 1)-dimensional volume of Pt is
[9]

Mp
0 (t) = Ap(t) = ctq−1

∫
C

n∏
j=q+1

sin(tαj(u))du, (2.4)

where c is a known constant and C = Sq−1(1)∩D, where D is a Weyl chamber and Sq−1(1)
the unit sphere in h.

Proposition 2.1. The kth integrated mean curvature of Pt can be expressed as :

Mp
k (t) =

∫
C

fk(t, u)du, k = 0, 1, · · · , n− 1,
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where

f0(t, u) = ctq−1
n∏

j=q+1

sin(tαj(u)),

fk(t, u) =

(
n− 1

k

)−1

(−1)kctq−1
[ k∑

l=0

Bl(t, u)
] n∏
j=q+1

sin(tαj(u)), (2.5)

Bl(t, u) =

(
q − 1

k − l

)
1

tk−l

∑ αj1(u) · · ·αjl(u)

tan(tαj1(u)) · · · tan(tαjl)
, l = 0, · · · , k,

where the sum is extended to q + 1 ≤ j1 < · · · < jl ≤ n.

Note that

B0(t, u) =

(
q − 1

k

)
1

tk
.

Proof. Immediate from (2.1), (2.2), (2.3) and (2.4).

Theorem 2.1. Let Vp(t) denote the n-dimensional volume of the geodesic ball Pt; then

(i) d
dtVp(t) = Ap(t), (2.6)

(ii) d
dtAp(t) = −(n− 1)Mp

1 (t), (2.7)

(iii) d
dtfk(t, u) = −(n− (k+1))fk+1(t, u)+

k−1∑
m=0

(n−1
m )

(n−1
k )

fm(t, u)
n∑

j=q+1

αk−m+1
j (u)

tank−m−1(tαj(u))
. (2.8)

Proof. (i) is proved in [4] and (ii) is immediate comparing the derivative of (2.4), with
respect to t, and (2.5) for k = 1. In order to prove (iii) we will consider for simplicity the
following notation

αj = αj(u), tanj = tan(tαj(u)), S =

n∏
j=q+1

sin(tαj(u)).

Since

d

dt
S =

( n∑
j=q+1

αj

tanj

)
S,

from (2.5) we obtain (
n− 1

k

)
(−1)k

c

d

dt
fk(t, u) = Stq−1G(t, u), (2.9)

where

G(t, u) =
q − 1

t

k∑
l=0

Bl(t, u) +
k∑

l=0

d

dt
Bl(t, u) +

( k∑
l=0

Bl(t, u)
)( n∑

j=q+1

αj

tanj

)
.

In order to rewrite G(t, u) we have that, for 0 ≤ l ≤ k,

d

dt
Bl(t, u) = −

(
q − 1

k − l

)
k − l

tk−l+1

∑ αj1 · · ·αjl

tanj1 · · · tanj1
(2.10)

−
(
q − 1

k − l

)
1

tk−l

∑ αj1 · · ·αjl

tanj1 · · · tanj1

(
αj1

tanj1
+ · · ·+ αjl

tanjl

)
(2.11)

−
(
q − 1

k − l

)
1

tk−l

∑ αj1 · · ·αjl

tanj1 · · · tanjl
(αj1 tanj1 + · · ·+ αjl tanjl) .

(2.12)
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Note that, for k = 0, we have

d

dt
B0(t, u) = −

(
q − 1

k

)
k

tk+1
.

Now, given l such that 0 ≤ l ≤ k, the expression Bl(t, u)

(
n∑

j=q+1

αj

tanj

)
+ (2.11) is

(
q − 1

k − l

)
1

tk−l

[(∑ αj1 · · ·αjl

tanj1 · · · tanjl

)( n∑
j=q+1

αj

tanj

)
−
∑ αj1 · · ·αjl

tanj1 · · · tanjl

( αj1

tanj1
+ · · ·+ αjl

tanjl

)]
=

(
q − 1

k − l

)
l + 1

tk−l

∑
j1<···<jl+1

αj1 · · ·αjl+1

tanj1 · · · tanjl+1

. (2.13)

Moreover, the sum

q − 1

t
Bl(t, u) + (2.10) + (2.13),

when, in (2.13), the corresponding term to l − 1 is considered, can be expressed as( 1

tk−l+1

∑ αj1 · · ·αjl

tanj1 · · · tanjl

)[(q − 1

k − l

)
((q − 1)− (k − l)) +

(
q − 1

k − l + 1

)
l
]

=
( 1

tk−l+1

∑ αj1 · · ·αjl

tanj1 · · · tanjl

)( q − 1

k − l + 1

)
(k + 1). (2.14)

On the other hand, (2.12) can be written as

−
(
q − 1

k − l

)
1

tk−l

∑ αj1 · · ·αjl

tanj1 · · · tanjl
(αj1 tanj1 + · · ·+ αjl tanjl)

= −
(
q − 1

k − l

)
1

tk−l

[(∑ αj1 · · ·αjl−1

tanj1 · · · tanjl−1

)( n∑
j=q+1

α2
j

)
−
(∑ αj1 · · ·αjl−2

tanj1 · · · tanjl−2

)( n∑
j=q+1

α3
j

tanj

)
+ · · ·

+ (−1)l
( n∑

j=q+1

αj

tanj

)( n∑
j=q+1

αl
j

tanl−2
j

)
+ (−1)l+1

( n∑
j=q+1

αl+1
j

tanl−1
j

)]
.

(2.15)

Now, having (2.14) and (2.15) in mind, G(t, u) can be written as

G(t, u) = (k + 1)
k+1∑
l=0

(
q − 1

k − l + 1

)
1

tk−l+1

∑ αj1 · · ·αjl

tanj1 · · · tanjl

−
k∑

l=1

(
q − 1

k − l

)
1

tk−l

[(∑ αj1 · · ·αjl−1

tanj1 · · · tanjl−1

)( n∑
j=q+1

α2
j

)
−
(∑ αj1 · · ·αjl−2

tanj1 · · · tanjl−2

)( n∑
j=q+1

α3
j

tanj

)
+ · · ·

+ (−1)l
( n∑

j=q+1

αj

tanj

)( n∑
j=q+1

αl
j

tanl−2
j

)
+ (−1)l+1

( n∑
j=q+1

αl+1
j

tanl−1
j

)]
.

(2.16)
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Finally, comparing (2.9) (with the above expression for G(t, u)) and the definitions of
fk(t, u), k = 0, 1, · · · , n− 1, in (2.5), we obtain the desired result.

Remark 2.1. If M is a noncompact symmetric space, Proposition 2.1 and Theorem 2.1
are still valid changing trigonometric functions to hyperbolic functions (see [9] for details).

For rank one symmetric spaces (space forms), the set of positive restricted roots of M
are independent of the choice of the vector u; therefore, we can substitute functions fk(t, u)
for MP

k (t), in (2.8). Moreover, if M is a space of constant curvature λ2, equation (2.8) has
the form (1.1).

§3. Tubes About Totally Geodesic
Submanifolds in Symmetric Spaces

Let P = U/L be a totally geodesic submanifold in M , of dimension p, and u = p+ l the
canonical decomposition of u. We assume that the orthogonal complement p⊥ of p in m
is a Lie triple system; then, P⊥ = Exp(p⊥) is a totally geodesic submanifold of M and a
Riemannian global symmetric space P⊥ = U ′/L′. We suppose that rank(P⊥) = r ≤ q and
a ⊂ h is a maximal Abelian subspace of p⊥. Then, if αj , 1 ≤ j ≤ n− p, denote the positive
restricted root system of p⊥, and βi, 1 ≤ i ≤ p, that of p, the principal curvature functions
of the tube Pt of radius t around P are[9]

ka(t) = −1

t
, a = 2, · · · , r,

kj(t) = − αj

tanj
, j = r + 1, · · · , n− p, (3.1)

kb(t) = 0, b = 1, · · · , q − r,

ki(t) = βi tani, i = q − r + 1, · · · , p.
Note that we have used for simplicity the notation in the preceding section and tani =
tan(βi).

Proposition 3.1. The kth integrated mean curvature of Pt can be expressed as :

MP
k (t) =

∫
C

fk(t, u)du, k = 0, 1, · · · , n− 1,

C = Sr−1 ∩D (D is a Weyl chamber of the linear action Ad : L′ × p⊥ −→ p⊥ and Sr−1 is
the unit sphere in a), and

f0(t, u) = cVol(P )tr−1

n−p∏
j=r+1

sin(tαj(u))

p∏
i=q−r+1

cos(tβi(u)),

fk(t, u) =
c(−1)kVol(P )(

n−1
k

) [ k∑
l=0

Al(t, u)
]
tr−1

·
n−p∏

j=r+1

sin(tαj(u))

p∏
i=q−r+1

cos(tβi(u)) (3.2)

for k = 1, · · · , n− 1; where c is a known constant and

Al(t, u) =

(
r − 1

k − l

)
1

tk−l

l∑
s=0

(−1)l−sAs,l(t, u), 0 ≤ l ≤ k,

where

As,l(t, u) =
∑ αj1 · · ·αjs

tanj1 · · · tanjs
βis+1 · · ·βil tanis+1 · · · tanil , (3.3)
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and the sum is extended to

r + 1 ≤ j1 < · · · < js ≤ n− p and q − r + 1 ≤ is+1 < · · · < il ≤ p.

Note that

A0(t, u) =

(
r − 1

k

)
1

tk
.

Proof. Immediate from (2.3), (2.17) and the expression of AP (t) = MP
0 (t) given in

Theorem 3.2 of [9].
Remark 3.1. From (3.1) we have that fk(t, u) defined in (3.2) is zero when k > n−q+r.
Theorem 3.1. Let VP (t) denote the n-dimensional volume of the tube Pt; then
(i) d

dtVP (t) = AP (t), (3.4)

(ii) d
dtAP (t) = −(n− 1)MP

1 (t), (3.5)
(iii)

d

dt
fk(t, u) = −(n− (k + 1))fk+1(t, u) +

k−1∑
m=0

(
n−1
m

)(
n−1
k

)fm(t, u)

·
( n−p∑

j=r+1

αk−m+1
j

tank−m−1
j

+ (−1)k−m+1

p∑
i=q−r+1

(βk−m+1
i )(tank−m−1

i )
)
.

(3.6)

Proof. (i) is proved in [4] and (ii) is immediate. In order to prove (iii) we will consider
the following notation

S =

n−p∏
j=r+1

sin(tαj(u)) and T =

p∏
i=q−r+1

cos(tβi(u)).

Then we have

d

dt
S =

( n−p∑
j=r+1

αj

tanj

)
S,

d

dt
T = −

( p∑
i=q−r−1

βi tani

)
T,

and

d

dt
Al(t, u) = −

(
r − 1

k − l

)
k − l

tk−l+1

l∑
s=0

(−1)l−sAs,l(t, u) (3.7)

+

(
r − 1

k − l

)
1

tk−l

l∑
s=0

(−1)l−sAs,l(t, u) (3.8)

·
[(

βis+1 tanis+1 + · · ·βil tanil −
αj1

tanj1
− · · · − αjs

tanjs

)
(3.9)

+
( βis+1

tanis+1

+ · · · βil

tanil
− αj1 tanj1 − · · · − αjs tanjs

)]
. (3.10)

From (3.2) we have

(−1)k

cVol(P )

(
n− 1

k

)
d

dt
fk(t, u) = STtr−1G(t, u), (3.11)

where

G(t, u) =
k∑

l=0

d

dt
Al(t, u) +

( k∑
l=0

Al(t, u)
)[r − 1

t
+

n−p∑
j=r+1

αj

tanj
−

p∑
i=q−r+1

βi tani

]
. (3.12)
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Now, similarly to (2.13), for a given l (and assuming in (3.9) its product with (3.8)), we
obtain

Al(t, u)
[ n−p∑
j=r+1

αj

tanj
−

p∑
i=q−r+1

βi tani

]
+ (3.9)

=

(
r − 1

k − l

)
l + 1

tk−l

l+1∑
s=0

(−1)l−s+1As,l+1. (3.13)

Therefore, considering in the above expression the corresponding term to l − 1, in order
to get the corresponding factor to 1

tk−l+1 , we have

r − 1

t
Al(t, u) + (3.7) + (3.13) =

(
r − 1

k − l + 1

)
k + 1

tk−l+1

l∑
s=0

(−1)l−sAs,l. (3.14)

On the other hand, (3.10) (considered with its product by (3.8)) can be written as

−
(
r − 1

k − l

)
1

tk−l

[( n−p∑
j=r+1

α2
j +

p∑
i=q−r+1

β2
i

) l−1∑
s=0

(−1)l−s−1As,l−1

−
( n−p∑

j=r+1

α3
j

tanj
−

p∑
i=q−r+1

β3
i tani

) l−2∑
s=0

(−1)l−s−2As,l−2 + · · ·

+ (−1)l+1
( n−p∑

j=r+1

αl+1
j

tanl−1
+ (−1)l−1

p∑
i=q−r+1

βl+1
i tanl−1

i

)]
. (3.15)

Finally, comparing (3.2) with (3.11), having (3.14) and (3.15) in mind to develop G(t, u),
and, in particular, comparing fk+1 with (3.14) (note that, because of (3.13), l varies in (3.14)
from 0 to k + 1), we obtain the desired result.

Remark 3.2. When rank(P⊥) = 1, we can substitute in (3.6) functions fk(t, u) for
MP

k (t) and we obtain a relation between the integrated mean curvatures of Pt. Example:

P =
SO(n)

SO(p)× SO(n− p)
⊂ SO(n+ 1)

SO(p)× SO(n− p+ 1)
= M.

For rank one symmetric spaces M (space forms) we can also substitute in (3.6) functions
fk(t, u) for MP

k (t). Moreover, in order to get compatible submanifolds P of M , P is not
necessary to be totally geodesic or a principal orbit; for instance, a complex submanifold
of the complex projective space ICPn is compatible with ICPn and any submanifold in the
sphere Sn is compatible with Sn (see [4]). On the other hand, if P is a submanifold of a
space of constant curvature λ2, equation (3.6) has the form (1.1).

§4. Tubes About Principal Orbits in Symmetric Spaces

Now, let P denote a principal orbit of the canonical isometric action ρ : K ×M −→ M
of the Lie group K on the symmetric space M = G/K. If we consider the canonical
decomposition of m,

m = h⊕
∑
α∈∆

mα, (4.1)

where ∆ denotes the set of positive restricted roots of M and mα the root subspace of α,
it is known that the subspace p which is identified with TpP is given by p =

∑
α∈∆

mα (see
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[14]). Then, in a similar way to (3.1) (see [9]),

ka(t) = −1

t
, a = 2, · · · , q,

ki(t) =
α2
i tani +kiαi

αi − ki tani
, i = q + 1, · · · , n, (4.2)

where ki are finite (in Section 3, ki = 0 because P was considered totally geodesic).
Therefore, proceeding as in [4] or [9], we have that

AP (t) =

∫
P

∫
Sq−1(1)

tq−1 θu(t)du dP, (4.3)

where

θu(t) =
n∏

i=q+1

(
cos(tαi(u))−

ki
αi

sin(tαi(u))
)
. (4.4)

Proposition 4.1. The k-th integrated mean curvature of Pt can be expressed as

Mp
k (t) =

∫
P

∫
Sq−1(1)

fk(t, u)du dP, k = 0, 1, · · · , n− 1,

where

fk(t, u) =

(
n− 1

k

)−1

tq−1
[ k∑

l=0

Al(t, u)
] n∏
j=q+1

(
cos(tαj)−

kj
αj

sin(tαj)
)
, (4.5)

Al(t, u) =

(
q − 1

k − l

)
(−1)k−l

tk−l

∑(α2
j1
tanj1 +kj1αj1

αj1 − kj1 tanj1

)
· · ·
(α2

jl
tanjl +kjlαj1

αjl − kjl tanjl

)
,

where the sum is extended to q + 1 ≤ j1 < · · · < jl ≤ n.
Proof. Immediate from (4.2), (4.3) and (4.4).
Theorem 4.1. Let Vp(t) denote the n-dimensional volume of the tube Pt; then

(i) d
dtVp(t) = Ap(t), (4.6)

(ii) d
dtAp(t) = −(n− 1)Mp

1 (t), (4.7)
(iii)

d

dt
fk(t, u) = −(n− (k + 1))fk+1(t, u)

+

k−1∑
m=0

(
n−1
m

)(
n−1
k

)fm(t, u)(−1)k−m−1
n∑

j=q+1

α2
j

(α2
j tanj +kjαj

αj − kj tanj

)k−m−1

.
(4.8)

Proof. (i) is proved in [4] and (ii) is immediate from (4.2)–(4.4). To prove (iii) we
consider the notation

S =
n∏

j=q+1

(
cos(tαj)−

kj
αj

sin(tαj)
)
.

Then

d

dt
S = −

( n∑
j=q+1

α2
j tanj +kjαj

αj − kj tanj

)
S.

Now, from (4.5) we have (
n− 1

k

)
d

dt
fk(t, u) = Stq−1G(t, u),
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where

G(t, u) =

k∑
l=0

d

dt
Al(t, u) +

k∑
l=0

Al(t, u)
[q − 1

t
−

n∑
j=q+1

α2
j tanj +kjαj

αj − kj tanj

]
. (4.9)

Finally, having in mind that

d

dt

(α2
j tanj +kjαj

αj − kj tanj

)
= α2

j (u) +
(α2

j tanj +kjαj

αj − kj tanj

)2
,

and proceeding as in Theorems 2.1 and 3.1, we obtain the result.
Remark 4.1. For noncompact symmetric spaces the results in Sections 3 and 4 are still

valid considering hyperbolic functions instead of trigonometric functions. However, since P
will be a noncompact submanifold, it is not possible to obtain a finite value of P or a finite
integration over P (see [6]).

Moreover, as it was expected, (4.8) coincides with (3.6) when P is a totally geodesic
principal orbit of M (for instance, P = Sm−1 × Sn−1 ⊂ Sm × Sn = M).

§5. Related Topics: Comparison
Theorems and Variational Problems

From comparison results for tr(S(t)) it is possible to obtain comparison theorems for
different geometric invariants as the volume, the mean exit time or the first Dirichlet eigen-
value in rank one symmetric spaces (see, for instance, [4]). In this section we only want to
note that formulas (2.7), (3.5) and (4.7), for rank one symmetric spaces, allow to obtain
comparison results for the quotient MP

1 (t)/AP (t), if the corresponding comparison results
for tr(S(t)) are known.

Indeed, from (1.7), (3.5) and (4.7) we have

d

dt
log(A(t)) = −(n− 1)

MP
1 (t)

AP (t)
.

Moreover, from (4.3), when M is a rank one symmetric space, we obtain

log(A(t)) = logC1 + (n− 1) log t+ log θu(t),

where C1 is a constant; so, from [4],

d

dt
log(A(t)) =

n− 1

t
+

θ′u(t)

θu(t)
= −tr(S(t)).

Therefore, comparison results for tr(S(t)) give comparison results for MP
1 (t)/AP (t).

On the other hand, when a one-parameter family Xt : P −→ M of immersions of P
into M is considered, related results to our theorems can be found in [10], when P is a
hypersurface and M a space form, and in [8], when P is any submanifold of the space form
M or P is a hypersurface of any riemannian manifold M .
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[ 4 ] Gray, A., Tubes [M], Addison-Wesley, 1990.
[ 5 ] Gray, A. & Vanhecke, L., The volumes of tubes in a Riemannian manifold [J], Rend. Sem. Mat. Univ.

Politec. Torino., 39(1983), 1–50.
[ 6 ] Gual-Arnau, X. & Naveira, A. M., Volume of tubes in noncompact symmetric spaces [J], Publ. Math.

Debrecen., 54(1999), 313–320.
[ 7 ] Li Anmin,, The integral of the mean curvature of a tube hypersurface [J], Sichuan Daxue Xuebao,

1(1985), 10–14 (in Chinese).
[ 8 ] Li Anmin, A class of variational problems on Riemannian manifolds, and integral formulas [J], Acta

Math. Sinica, 28(1985), 145–153 (in Chinese).
[ 9 ] Naveira, A. M. & Gual, X., The volume of geodesic balls and tubes about totally geodesic submanifolds

in compact symmetric spaces [J], Differential Geom. Appl., 7(1997), 101–113.
[10] Reilly, R. C., Variational properties of functions of the mean curvatures for hypersurfaces in space forms

[J], J. Differential Geom., 8(1973), 465–477.
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