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ON THE GENERALIZED
GLAISHER-HONG’S CONGRUENCES

I. SLAVUTSKII*

Abstract

Recently Hong Shaofang[6] has investigated the sums
p−1∑
j=1

(np + j)−r ( with an odd prime

number p ≥ 5 and n, r ∈ N) by Washington’s p-adic expansion of these sums as a power series

in n where the coefficients are values of p-adic L-fuctions[12]. Herethe author shows how a more

general sums
pl−1∑
j=1

(npl + j)
−r

, l ∈ N, may be studied by elementary methods.
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§1. Notations and Introduction

Listed below are some general notations which will be used throughout this note:
p—a prime number greater than 3,
c, l,m, r, s ∈ N,(
n
k

)
= n!/(k!(n− k)!)—the binomial coefficient,

Bk—the kth Bernoulli number in the “even suffix” notation, e.g., B0 = 1, B1 =
−1/2, B2 = 1/6, B3 = 0, · · · ,

Bn(x) =
n∑

k=0

(
n
k

)
Bkx

n−k—the Bernoulli polynomial.

As is known , the Bernoulli numbers are defined by the symbolic recurrence relation
Bn+1 = (B + 1)n+1, n = 1, 2, · · · , B0 = 1, which in the expanded form becomes

Bn = (n+ 1)−1
n−1∑
k=0

(
n+ 1

k

)
Bk.

Further, it is easily proved that B2k+1 = 0 for k > 0. And at last, we shall use the well-
known Staudt-Clausen theorem for denominators and the Staudt theorem for numerators of
Bk (see, [11, 7, 8]).

We shall also consider the sums

P (n,m, r) =
nm∑

j=1, (j,m)=1

j−r and G(n,m, r) =
m−1∑

j=1, (j,m)=1

(nm+ j)−r.
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First of all we note that the sum G(0,m, r) = W (m, r) is so named Wolstenholme-
Leudesdorf’s sums (see [2, 5], also [1, 12, 9]). Note that the last sums are connected by the
relation G(n, p, r) = P (n + 1, p, r) − P (n, p, r). Using the relation and the Wasington’s p -
adic expantion of P (n, p, r) as a power series in n with the coefficients which are values of
p-adic L-functions (see [12]), S. F. Hong has generalized the Glaisher’s results[3,4].

Theorem 1.1.[6] Let p be an odd prime and let n ≥ 0, r ≥ 1 be integers.
(i) If r ≥ 1 is odd and suppose p ≥ r + 4, then

G(n, p, r) ≡ − (2n+ 1)r(r + 1)

2(r + 2)
Bp−r−2p

2(mod p3).

(ii) G(n, p, p− 2) ≡ −(2n+ 1)p(mod p2).
(iii) If r ≥ 2 is even and suppose p ≥ r + 3, then

G(n, p, r) ≡ r

r + 1
Bp−r−1(mod p2).

Remark 1.1. The case n = 0 corresponds to the cited Glaisher’s results[3,4].
As we shall show the developed elementary methods using division properties of Bernoulli

numbers allow us to generalize the Glaisher-Hong’s theorem without the help of p-adic L-
functions.

Theorem 1.2. (i) For (2, r) = 1 and r + 4 ≤ p we have

G(n, pl, r) ≡ −p2l
r(r + 1)(2r + 1)

2(pl−1 + r + 1)
Bφ(pl)−r−1(mod p3l). (1.1)

(ii) G(n, pl, p− 2) ≡ −p−2
2 p2l(2n+ 1)B(p−1)(p3l−1−1)(mod p3l), or

G(n, pl, p− 2) ≡ −p2l−1(2n+ 1)(mod p2l). (1.2)

(iii) For 2 | r and r + 3 ≤ p we obtain

G(n, pl, r) ≡ rpl

p2l−2 + r
Bφ(p2l−1)−r(mod p3l−1). (1.3)

It is obvious that in the case l = 1 Theorem 1.2 becomes Theorem 1.1.
Remark 1.2. (1) The proof of Theorem 1.2 (see §2) is true for n = 0 too, if we put that

the empty sum P (0,m, r) is equal to zero.
(2) The congruences (1.1)–(1.3) generalize both the classical results and the cited papers

of D. Boyd, L. C. Washington, S. F. Hong and the author. Some corollaries of our main
result concern partial sums of the harmonic and allied series.

§2. Proof of Theorem 1.2

In order to prove Theorem 1.2 we shall use the following short remark.
Lemma 2.1. Let t = φ(pcl)− r with cl ≤ φ(pcl)− r and c, l, r ∈ N. Then

G(n, pl, r) ≡ {Bt+1((n+ 1)pl)−Bt+1(np
l)}/(t+ 1)(mod pcl). (2.1)

Indeed, it ≡ i−r(mod pcl) for (i, p) = 1. Noting that it ≡ 0(mod pcl) with p|i, from
Bernoulli formula

x−1∑
i=0

is = {Bs+1(x)−Bs+1}/(s+ 1), s, x ∈ N,

we conclude

P (n, pl, r) ≡
npl−1∑
i=1

it ≡ {Bt+1(np
l)−Bt+1}/(t+ 1)(mod pcl). (2.2)
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To obtain the congruence (2.1) it remains to observe that

G(n, pl, r) = P (n+ 1, pl, r)− P (n, pl, r).

Remark 2.1. It seems that the proposed lemma has an independent interest. If we fix
the number l in the congruence (2.2) and note that the left part of the congruence (2.1) is
independent of c, then we obtain p-adic approximation of P (n, pl, r) provided that c → ∞.
Some applications of the congruence (2.2) and its variants (e.g., analogs of Bernoulli formula
for negative values of degrees of naturals) are contained in the notes [9, 10].

Proof of Theorem 1.2. It is obvious that the congruence (2.1) implies

G(n, pl, r) ≡
t+1∑
k=1

1

k

(
t

k − 1

)
plkBt+1−k{(n+ 1)k − nk}(mod pcl)

or

G(n, pl, r) ≡ plBt+
t

2
p2lBt−1(2n+1)+

t(t− 1)

6
p3lBt−2{3n2+3n+1}+ · · · (mod pcl). (2.3)

To obtain the generalization of Washington-Hong’s results I restrict myself to the case
c = 3. Since ordp{plBt+1−kp

l(k−4)p3l/k} ≥ 3l for l ≥ 1 and k ≥ 4, in the considered case we
have

G(n, pl, r) ≡ plBt +
t

2
p2lBt−1(2n+ 1) +

t(t− 1)

6
p3lBt−2{3n2 + 3n+ 1}(mod pcl). (2.4)

To finish the proof we consider the following cases:
(i) Let (2, r) = 1. Then (2, t) = 1 and we find that

G(n, pl, r) ≡ t

2
p2lBt−1(2n+ 1)(mod p3l) (2.5)

with t = φ(p3l)− r and 3l ≤ φ(p3l)− r. So, by the binary Kummer-Staudt’s congruence for
Bernoulli numbers we conclude that

Bt−1 ≡ φ(p3l)− r − 1

φpl)− r − 1
Bφ(pl)−r−1(mod pl), r + 2 ≤ p− 2.

Therefore, the congruence (2.5) implies (1.1).
(ii) Let r = p− 2. In this case Bt = Bt−2 = 0 and the congruence (2.4) implies

G(n, pl, p− 2) ≡ −p− 2

2
p2l(2n+ 1)B(p−1)(p3l−1−1)(mod p3l).

Therefore, with pBk(p−1) ≡ −1(mod p), k ∈ N, we obtain

G(n, pl, p− 2) ≡ p− 2

2
p2l−1(2n+ 1)(mod p2l) or

G(n, pl, p− 2) ≡ −p2l−1(2n+ 1)(mod p2l).

(iii) At last, let 2 | r, so that 2 | t. The congruence (2.4) implies

G(n, pl, r) ≡ plBt +
t(t− 1)

6
p3lBt−2{3n2 + 3n+ 1}(mod p3l).

If r + 2 ≤ p− 1, then ordpBt−2 ≥ −1 and

G(n, pl, r) ≡ plBt(mod p3l−1), r + 3 ≤ p. (2.6)

Further, because t = φ(p3)− r, r ≤ p− 3, by the congruence

Bφ(p3l)−r ≡ p3l−1(p− 1)− p2l−2(p− 1) + p2l−2(p− 1)− r

p2l−2(p− 1)− r
Bφ(p2l)−r(mod p2l−1) or

Bφ(p3l)−r ≡ r

p2l−2 + r
Bφ(p2l−1)−r(mod p2l−1),
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we see that the congruence (2.6) implies G(n, pl, r) ≡ pl r
p2l−2+r

Bφ(p2l−1)−r(mod p3l−1), r +

3 ≤ p. The proof is complete.

§3. Corollaries

In the present section we shall give some simple consequences of Theorem 1.2. First,
remark that the case G(0, pl, r) = W (pl, r) was studied by the author ([9, Corollary 2]; see,
also §1). Therefore, as before, it is sufficient to propose n ≥ 1.

Corollary 3.1. (i) If (2, r) = 1, r + 4 ≤ p and ordp(2n+ 1) ≤ l, then we have

ordpG(n, pl, r) ≥ ordp(2n+ 1) + 2l. (3.1)

In particular, ordp(2n+ 1) = 0 ⇒ ordpG(n, pl, r) ≥ 2l.
(ii)

(p, 2n+ 1) = 1 ⇒ ordpG(n, pl, p− 2) = 2l − 1, (3.2)

p | (2n+ 1) ⇒ ordpG(n, pl, p− 2) ≥ 2l. (3.3)

(iii) If 2|r and r + 3 ≤ p, then

ordpG(n, pl, r) ≥ l. (3.4)

Remark 3.1. The corollary partially do not coincide with Hong’s ones (in the case
l = 1) because the note [6] contains a mistake. In general, Hong’s assertion ordpBp−r−2 = 0,
r ≥ 1 and r + 4 ≤ p, is not correct. As is known, for the first irregular prime p = 37 and
r = 3 we have B32 ≡ 0(mod 37) (see, e.g., [11]). By the way, the mistake is contained in
the proof of Corollary 4.2.

Proof of Corollary 3.1. From Theorem 1.2 it follows that in the case (i) it is enough to
observe that by the Staudt-Clausen’s theorem ordpBφpl)−r−1 ≥ 0. Further, the implications
(3.2) and (3.3) are the simple consequences of the congruence (1.2). And finally, in the case
(iii) we know that ordpr = 0 and ordpBφ(p2l−1)−r ≥ 0, so that the congruence (1.4) implies
(3.4).
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