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Abstract

This paper shows that the d-problem for holomorphic (0, 2)-forms on Hilbert spaces is solv-
able on pseudoconvex open subsets. By using this result, the authors investigate the existence of
the solution of the d-equation for holomorphic (0, 2)-forms on pseudoconvex domains in D.F.N.
spaces.

Keywords J-problem, Pseudoconvex domain, Nuclear operator, D.F.N. space
2000 MR Subject Classification 32W05, 46E50

Chinese Library Classification 0175.25, 0177.91 Document Code A
Article ID 0252-9599(2002)01-0067-08

§1. Introduction

L. Hérmander® solved the d-problem by using the L?-estimates for partial differential

(4 studied infinite dimensional generalizations of the poten-

operators in C™. J. Kajiwara
tial kernel. Concerning the O-problem in infinite dimensional spaces, P. Raboin!l investi-
gated the d-equation for C°°(0, 1)-forms in arbitrary pseudoconvex open subsets of separable
Hilbert spaces without growth condition. J. F. Colombeau and B. Perrot!!l showed that a
C* solution u of du = w can be obtained when w is a closed O differential (0, 1)-form
on a arbitrary pseudoconvex domain of a D.F.N. space. On the other hand, S. Dineen!?
showed that the d-problem is not solvable, for any domain in a locally convex space which
does not admit a continuous norm. M. Nishiharal®® studied on special infinite dimensional
spaces, correlating the Levi problem with the d-problem in infinite dimensional space. R. L.
Soraggil'® proved the existence of a C* solution u of du = w which is of uniform bounded
type on E for a holomorphic (0, 2)-form w on a D.F.N. space E. In this paper, we show the
existence of the solution of the d-equation for a holomorphic (0, 2)-form f on a pseudoconvex
domain € in a D.F.N. space E, using the results in [5,6,13,14] and following the argument
of J. F. Colombeau and B. Perrot!!.
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§2. The 8-Problem on Separable Hilbert Spaces

Let E and F be complex locally convex spaces. Let Lr(F; F) and Lo (E; F) be the vector
spaces of continuous R-linear and antilinear mappings from E to F', respectively.

Definition 2.1. Let p and q be positive integers. A(’W)(E) denotes the skew-symmetric
subspace of a vector space L(PTIE) of continuous p-C-linear and q-antilinear forms on E.
Let Q be an open subset of E. We denote by C(p )( ) the linear space of all C*°(p, q)-forms
on €1, equipped with the topology of uniform convergence on the compact subsets of E for the
differential form and each derivative.

Let u € CHQ; F) and let u' : Q — Lr(E; F) be its derivative. For x,y € Q, we define
an operator [0] : C*(Q; F) — C(; L(E; F)) as follows:

[OJu(@)(y) = %[U’(I)(y) + v/ (z) (iy)).

Letw : Q — APD(E) be a C®(p, q)-form. We define, for each xz € Q and yy, - - - 2 Uptq+1 €
E,

(Ow)(@)(y1s s Ypra+1)

1 p+q+1
T ohta+1 Z (_1)k+1[5]W($)(yk)(y1, o aka7 to ayp+q+1),
prqg+1l —~

where . indicates that yi. is omitted.

Then we know the fact that for w € CF () and z € €, (Ow)(z) € APt (E) and
[Olw(z) € Lo(BE,APD(E)). Thus (Ow)(x) is the skew-symmetric component of [9]w(z).
Hence for a C>(p, q) form u on E, we write [0]u = du+G (u) where G (u)(z) is the symmetric
component of [F]u(x).

R. L. Soraggi noted that for a (0,1)-form u the antilinear component [0]u of u’ consists
of Qu and a symmetric part G(u). This leads to some problems when considering integral
representations of cylindrical solutions, since they involve [9] but not d.

This is the reason why we impose the holomorphicity assumption and restrict ourselves
to this case for (0,2) forms. For further details we refer to [13] and [14]. No similar result
is known for a (0, ¢) form, ¢ > 3, with holomorphic coefficients.

Definition 2.2.[7 Let E and F be complex Banach spaces. Given w :  — L(E;F), we
say that u : Q — F is a weak solution of [0lu = w if for every fived z € Q and x € E, the
mapping g : A — u(z + \x) is continuous on a disc A = A(0,7) C C and in the sense of
distributions, i.e. for all fized z,x € E, the function g satisfies

gi}( A)dA = — / PY(Nw(z + Az)(x)dA
for all ¢ € CF(A).

Note that if z,z € E and A € C,

8%(;\) %u(z +Az) = [Ou(z + \z)(z).

As the first step to solve the d-problem on a D. F. N. space, we show the existence of
the solution of the d-equation for a holomorphic (0,2)-form on a pseudoconvex domain of
a separable Hilbert space. Let H be a separable Hilbert space and T be a nuclear injective

self-adjoint operator on H (therefore T has a dense range). We denote by Hr C H the
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range of T, equipped with the scalar product (Tz, Ty) g, = (z,y) g for ,y € H. Let G be
a separable Hilbert space such that H is contained in G' with injective nuclear map. Then
from [10], there is an orthonormal basis {e;,j > 1} of H made of eigenvectors for T, i.e.

T(e;) = Ajej with \; # 0 and A> = A% < oo for A; € C. For n > 1, let

j=1

n
T,:C" —PC-e;=H,CHCG
j=1

be defined by

n
Tn(Zl,"' ,Zn) = E zj)\jej,
j=1

n
and we define the orthogonal projection from H onto H, by P,(y) = > y;e; for y =
j=1

(yl,... ’ym...) c H.

For a holomorphic (0, 2)-form f on a pseudoconvex domain in a separable Hilbert space,
we can obtain a O solution of the J-equation defined on C", projecting f onto C™ and
using the Hérmander’s L?-estimates, where a symmetric part of [] is non-identically zero.
Then we can construct a good cylindrical solution g, of which the symmetric component,
corresponding to the first solution, is identically zero as follows.

Theorem 2.1.1% Let Q be a pseudoconvex open subset of G and let f : @ —» A(072)(G) be
a holomorphic (0,2)-form. Then there exists a C*(0,1)-form g : Q, — AOD(C") such
that the symmetric part G(g,) is identically zero and [0)g, = Ogn = fn for a holomorphic
(0,2)-form f, projected onto Q,, = (T,,)"1(Q N H,,).

By using the solution obtained in Theorem 2.1, we can solve the O-problem on a pseudo-
convex domain in a Hilbert space.

Theorem 2.2. Let Q be a pseudoconvex open subset of G and let w : Q@ — A®2)(Q) be
a holomorphic (0,2)-form which is bounded on the bounded subsets of Q. Then there exists
w: QN Hy — AOYD(G) such that u is a C(0,1)-form, bounded on the bounded subsets of
QN Hy and Ou=w on QN Hr.

Proof. In terms of the orthogonal projection P, from H onto H,,, put S, = P, 1 (QNH,).
Let n > 2. We define, for 1 <i,j <n and t € Q, w;; : @ — C by w;;(t) = w(t)(e;, e;) and

Wn(x)(ylaQQ) = szg(an)?zlﬂf = W(an)[PnylvanQ] (2'1)
i<j
for z = (21, ,o,) € Sy and y' = (v, -+ ,yi, ) € H,i = 1,2, that is,

wn (@) =Y @3 (Paa)di; A dz; = w(Po) (P, P).
i<j
Then, from the solution g, in Theorem 2.1, let us define a cylindrical solution u,, : S, —
AV (H) for the holomorphic (0,2)-form w, on S,. Since for z = (z1,---,2,) € C",
y= W1, ,Yn, ) € Hand 0 # \; € C, from the definitions of T,, and P,, we get the
following composition

n
-1 — -1 o) = (%L .. Y
Tn OP?L(y) _Tn (;y]e]) - ()\1’ 7)\n>7
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we can define u,, from g, in Theorem 2.1 by

- -1 -1 —g, (2 e (8L U
un(@)(0) = ga(Ty 0 Pa@) (T 0 Pafy) = 0 (50 ) (0 )
forx =) xzje; € S, andy = ) yje; € H. Since g, is C°, u,, is a C*°(0,1)-form on S,
j=1 j=1
and

"1 T Tp\ . . o - _
up () = ;)\—jaj ()\717 7E>d5€j if gn(z) = ;aj(z)dzj.

In Theorem 2.1, we could define a holomorphic (0, 2)-form f,, on the pseudoconvex open

set 0, in C™, as defining w,,,
n

fu(2) =D w[Tn(2))(Tnes, Tuei)dz; A dz;.
i<y
Then we can write for z € C™ and 171,12 € C,
fn(2) (1, m2) = W[Tn(2) (T (m), Tn(n2))-

Thus we obtain by the definition of u,, and f, and Theorem 2.1,
] —Jg. (FL ... En\ (YL | Yn
aun(w)(y)_ag’ﬂ(Al7 ’An)()q? 7An)

(e ()

1 Ln Y1 Yn
RIS it w) [CA G )
= w(Po(2))(Pr(y)) = wn(z)(y).

Now, we look for estimates for w,,. The measures p and p, denote the Gauss measure on
H and the image by T, respectively. Then the following fact was proved in [12]: if zg € H,.
then the translated measure p.,. (B — zg) for each Borel set B of H is equivalent to u,. with
a density

dfir .,
—2(2) = p,(20,2) forxze H,, (2.2)
dpiy
where
1 _ _
pr(z0,3) = exp| =3 lz0f2 +Re(T ™ 20;T1a)] (2.3)

Then we have for a continuous plurisubharmonic function ¢, defining a plurisubharmonic
weight ¢n(2) = @0 Ta(z) + %”ZHQCW in C",

N5 ) = . Nt Bossaye™ ey

n

5 do
2 — (2 2n
-/ on @M one ™ 52
= dO’Q
< 4 n 2 n _San(z) n
<4 [ Il B ome O G
< 8M, (2.4)

where M = \* for \ = (M, \2) and dog, is the Lebesgue measure on C™. Hence, the
cylindrical solution u, : S, — L(H) also has L2-estimate. Therefore, we get a C’&j’l)—
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solution u,, on S, such that du,, = w, for a holomorphic (0,2)-form w,, defined on S,, and
uy, has L?-estimate in (2.4).

From now on we construct a continuous weak solution u on €2 N Hp. Let us observe the
following : if x € QN H and if §(x, (2N H)®) denotes the distance in H between = and the
complement of Q N H in H, then

1
P, [B (x 500, (2N H)C))} cQ
for n large enough, if B(z,r) denotes the closed ball in H of center x and radius r. We take
a dense sequence {x,}°2, in  and we denote B, = B(mn, 26(zn, (AN H)® )) By (2.4),

{un exp(—3¢ o P,),n > 2} is bounded in the space L?(H, Hr, 11,) of square j,-Bochner
integrable mappings from H into H; endowed with the Hilbert structures given by

(t9) = [ (o) @), dur.
H Hr
where f and g € L?(H, Hr, j1,.). Hence there exists a subsequence of the sequence

{une%(—woPn)m > 2},

which we still denote by {une%(’wop"), n > 2}, which is defined on B, for n large enough
and which, for every n € N, is weakly convergent in

L2(BZE717FT7MT) to 9s,, € LQ(BImﬁTy NT)-
We set
U, () =g, (2)ez?),

Now, if zg € QN Hr, let € > 0 be small enough so that B(zg, €) is contained in some ball B, .
We denote by B the above ball B, and by B. the ball B(0,¢). Let zo € QN Hr,e € Hy
and x € B.. We define the following C*° function on the open unit disc A(0, 1) of C:

A=A(0,1) —C
A — (un (20 + A2);€) by
By the Cauchy integral formula for C> functions on the disc A(0,1), we obtain for A € A,

1 da
(un (20 + Ax);€) = 37 /al 1(un(zo + am),e) —

// +ax); )doz/\doz
2m Oa (un(z0 + oz A

da
T omi ‘a| 1(Un(ZQ +az); e)oz - A
da: A da
2m Aun (20 + az)(z, e)
da
=5 o 1(un(zo—|—ozx) ;e) Y

daAda

T o / / Po(z0 + ax))(Pow, Pre) = —
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Letting A =0, by (2.1) we have

(un(20);€) = %/0 7r(Un(zo + ewx);e)de

1 27
+ 2/ [*/ W[P, (20 4 re'2)]|(Pyx, Pye)dd | dr. (2.5)
0 21 0

Now, we integrate (2.5) in « € B, with respect to the measure .. and apply Fubini’s theorem
to the second integral. By applying the rotation invariance of some integrals with respect
to p,., we have

pir (Be)(un(20); €) = / . (un (2); €)py (20, 2)dpry

+ 2/ / (20 + m:)} (Phz, Ppe)dp,dr.

Since for x € QN Hr, e € Hr and p,. in (2.2) and (2.3)

/ZOJFBE (hB(I) — un(2)]; E)H o (20, 2)dt,

T

-/ (@i, (o) [ om0 ],
zZ0 5

- / (un(@)e P —up(@)e 49@se p, (20, 2)ed#) ) dp,
zo+B

and the first and second parts in the integration tend to zero as n — oo, we have

lim 1, (B2)(un(20);€) = / |, (sle)e)on Go,)d,

n—oo
1
+2/ / w(zo + rz)(z, e)du,dr.
o JB.

Hence {u,(z0);n > 2} C L(Hy) for each fixed zy € QN Hy, and {u,(z0)(e), n > 2} is a
convergent sequence in C for every e € Hy. By applying an extended version of Banach
theorem we have, for all zg € QN Hr,

un(20) — u(z0) € L(Hr).

Then it follows from [13] that u is bounded on the balls of QN Hy and u is a weak solution
to the d-problem. By [7] the solution u is C* on QN Hp and so satisfies all conditions of
Theorem 2.2. This completes the proof.

¢3. The 8-Problem on D.F.N. Spaces

We apply the results about the d-problem on Hilbert spaces to show the existence of the
solution for the d-equation on D.F.N. spaces.

Lemma 3.1. Let Hy C Hy C Hy be separable, complex Hilbert spaces with nuclear
injections. Let Q be a pseudoconvex open subset of Ho and let w : Q — A2 (Hy) be a
holomorphic (0,2)-form on Q. Then there exists a C*(0,1)-form u : QN Hy — A (Hy)
such that Ou = w on QN Hy.

Proof. By using Theorem 2.2 and following an argument of J. F. Colombeau and B.
Perrot!!!, we can prove this lemma.
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Proposition 3.1.[1 Let E and F be two separable Hilbert spaces with a compact inclusion
mapping from F to E. Let Q be a pseudoconvex open subset of E with QN F # 0. Then the
restriction mapping H(Q) — H(Q N F) has dense range.

Lemma 3.2. Let E and F be two separable Hilbert spaces with a compact inclusion
mapping from F to E. Let Q be a pseudoconvex open subset of E with QNEF # (0 and K be
a compact subset of QN F. If e > 0 is given, for any holomorphic (0,1)-form h in QN F,
then there is a holomorphic (0,1)-form h in Q such that ||h — h||x < e.

Proof. For holomorphic functions h; : QNF — C, we can define h : QNF — AV (F)

by h(z) = > hj(2)dz; for z € QN F. Then, by Proposition 3.1, for any ¢ > 0 there
j=1

exist h; € H(Q) such that |h; — hj|x < e. Hence we obtain a holomorphic (0,1)-form
h:Q — AOD(E) such that h(z) = Z hj(z)dz; for z € Q. Then we have ||h — h||x < e.
j=1

Theorem 3.1. Let E be a D.F.N. space and ) be a pseudoconver domain in E. Let
f:Q — AC2D(E) be a holomorphic (0,2)-form. Then there exists a C°°(0,1)-form g on
Q such that 0g = f.

Proof. Since F is a nuclear Silva space, it is the inductive limit of an increasing sequence
of Hilbert spaces F,, with a nuclear injection F,, — E,, 1 for every n. Then there exists an
increasing exhaustive sequence of compact subsets K, of {2, where we may assume that K,
is compact in F,. We set Q(n) = QN E,.

Now we consider the restriction of f to QN E, ;. From Theorem 2.2, there exists a
C>(0,1)-form u,, on (n) C E, such that du,, = f on Q(n). In order to start an induction
we set ga = ug; then ug — g2 is defined and is a C'°°(0, 1)-form on €2(2). Since

5(U3 - gg) = 5’&3 - 592 = 5U3 —5’&2 =0
on Q(2), uz — g2 is a holomorphic (0, 1)-form on §2(2). From Lemma 3.2, this holomorphic
(0, 1)-form may be approximated uniformly on Ks by holomorphic (0, 1)-forms on Q N Ej3.
Therefore, there is a holomorphic (0, 1)-form hs in Q N E3 such that
1
sup [uz(z) — g2(z) — ha(2)] < 5.
rzeKo
If we set g3 = uz — ha, we have
g3 is a C*°(0, 1)-form on Q(3) = QN Ej3,
g3 = f on Q(3) (since Ohy = 0),
sup [g3(z) — g2(2)| < 55
rzeKo

By an induction we obtain a sequence (g,) of C°*°(0, 1)-forms on £2(n) such that
{ 5gn = f on Q(n),

sup  |gn(2) — gn-1(2)] < (3)" 7"
x€EK, 1

For every = € , there is some n large enough such that z € K,, C Q(n). Thus g,(z) is
defined for n large enough and

90@) — g @)l < (5)
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for n large enough. We set

g(x) = lim g, (z).

n— oo

We notice that 9(gnix — gn) = 0 on Q(n), thus g,4x — g» is a holomorphic (0, 1)-form
in Q(n). When k& — 00, (gntr — gn) converges to holomorphic (0,1)-form g — g, in Q(n)
since every compact subset of {2(n) is contained in Kj, for some [ large enough. Therefore
g =(9—gn)+gnisa C>®(0,1)-form on Q(n). Since this holds for any n, g is a C*°(0, 1)-form
on €. Furthermore, g — g, is a holomorphic (0, 1)-form in 2(n) and dg,, = f on Q(n), hence
dg = f on Q(n) for any n, i.e., dg = f on Q.
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