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Abstract

Refinements to inequalities on inner product spaces are presented. In this respect, inequali-
ties dealt with in this paper are: Cauchy’s inequality, Bessel’s inequality, Fan-Todd’s inequality
and Fan-Todd’s determinantal inequality. In each case, a strictly increasing function is put for-
ward, which lies between the smaller and the larger quantities of each inequality. As a result,
an improved condition for equality of the Fan-Todd’s determinantal inequality is deduced.
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¢1. Introduction

In recent years, refinements or interpolations have played an important role on several
types of inequalities with new results deduced as a consequence. Please refer to the papers
[2, 8,9, 12], etc. The aim of this paper is to furnish refinements of the Cauchy’s and Bessel’s
inequalties as shown in Section 2, and also refinements of the Fan-Todd’s inequality and the
Fan-Todd’s determinantal inequality in Sections 3 and 4, with an improved condition for
equality derived.

First of all, we give some basic terms and definitions. An inner product space on a
complex vector space X is a function that associates a complex number (u, v) with each pair
of vectors v and v in X, in such a way that the following axioms are satisfied for all vectors
u,v and w in X and all scalars A:

(1) (u,v) = (v, u);

(2) <u + v, w> = <u’w> + <U,’LU>;

(3) (Au,v) = Mu,v);

(4) (v,v) >0 and (v,v) =0 if and only if v = 0.

Here, (v,u) denotes the complex conjugate of (v,u). A complex vector space with an
inner product is called a complex inner product space. Let ||u| = /(u, u) denote the norm
of u. The content of the paper will be organized as follows: In Section 2, refinements of the
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Cauchy’s and Bessel’s inequalities will be presented. In Section 3, refinements of the Fan-
Todd’s inequality will be put forward. Finally, in Section 4, refinements of the Fan-Todd’s
determinantal inequality will be presented, with the condition for equality improved.

§2. Refinements of the Cauchy’s Inequality

The well-known Cauchy’s inequality states as follows:
Theorem 2.1. For any two vectors a and b in an inner product space X, we have

[{a, b)| < [|all[[b]]- (2.1)

The equality holds if and only if a and b are linearly dependent.
We can have a refinement of the Cauchy’s inequality as follows:
Theorem 2.2. Let a and b be two non-zero vectors in an inner product space (real or
complex) X, such that |{a,b)| < ||la||||b]-
For any t € [0,1], we define
ar = [(1 = t){a, 5)b]/[|b]|* + ta (2.2)
and
F(t) = lla|. (2.3)
Then we have
(1) llall < llall fort €[0,1) and [(a,b)| < |lat|[l|b]| fort € (0,1];
(2) For 0 <s <t <1, we have F(s) < F(t);
(3) F(t) is a strictly increasing function for t € [0,1], with F(0) = [(a,b)|/||b|| and
F(1) = ||a|| i-e. we have the refinement |{a,b)|/||b]| < F(t) < |la|| fort € (0,1).
Proof. (1) For t € [0,1), by (2.2), we have

llaell = I[(1 = t){a, b)b]/IIb]|* + tall (2.4)
< [(1=8)[(a, B)[I/1[bll + tllall < all (2.5)
Hence, ||at|| < ||a]| for ¢t € [0,1).
For t € (0,1],
(ag, by = (1 —t){a,b) + t{a,b) = (a,b). (2.6)

As |{(a,b)| < |lat||||b]|] for t # 0, we have |(a,b)| < ||a||||b]| for ¢ € (0,1]. The proof of part
(1) is complete.
(2) Suppose 0 < s <t < 1. We have to set up the following identity first,

as = [(1 — s/t)(az, b)bl/[[b]]* + (s/t)ar. (2.7)
The last equation can be verified as follows:
[(1 = s/t)(a, b)b]/IIbII* + (s/t)ax
= (1= s/t)[{a, b)b/|1b]|* + s/t[(1 — t){a, b)b/|[b]|* + ta]
= [(1 = s/t) + s/t(1 — t))(a, b)b/||b]|* + sa
[(1 = s){a,b)d]/||b||* + sa = as. (2.8)

By (2.7) and part (1), we have |las|| < ||a:||. Hence we have F(s) < F(t) for s < t. The
case for s = 0 and ¢ = 1 can be shown easily. Hence the proof of part (2) is complete.

(3) From part (2), we have immediately the result that F'(¢) is a strictly increasing function
for t € [0, 1]. Obviously, F(0) = |{a,b)|/||b]] and F(1) = ||a]|.
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Remark 2.1. As the 5 and Ly spaces are inner product spaces, the above refinements
can be applied to the Holder’s inequalities in ¢5 and Lo spaces respectively.

In analysis (please refer to [5]), Bessel’s inequality states as follows:

Theorem 2.3. Let X be an inner product space (real or complex) and a € X. Let
e1,€e2, -+ ,e, be any finite collection of distinct elements of an orthonormal set S in X.
Then

Z [{a, e)* < lla]*. (2.9)

A refinement of the Bessel’s inequality can be presented as follows:
Theorem 2.4. Let X be an inner product space (real or complex) and a be a nonzero

vector in X. Let {e1,eq, - ,en} be an orthonormal set in X, such that
> la,en® < laf? (2.10)
i=1

and {a,e;) are not all zero. Let

p={a,er)e;r + -+ (a,en)en. (2.11)
For any real number t € [0,1], we define
ar = [(1 = t){a, p)p]/|lp]|* + ta (2.12)
and
F(t) = [lac]|- (2.13)

Then we have the following:

(1) llall < llall fort € [0,1), and [|p||* = le<a,€i>\2 < lag||? for t € (0,1];
1=

(2) F(s) < F(t) for0<s<t<1;

M=

3) F(t) is a strictly increasing function for t € [0,1] with F(0) = a,e;)|? and
(3) F(t) y g ;

i=1

F(1) = ||a|l, i.e. we have the refinement ||p|| < F(t) < ||a|| fort € (0,1).
Proof. (1)

[(a, p)| = [a, (a,e1)er + - + (a, en)en)|
= [{a,e1){a,e1) + -+ (a,en)(a, en)]
=) _la,e)?
i=1
= (p,p) = [Ipl*. (2.14)
Hence we have |(a,p)| < ||a]l/||p||. By Theorem 2.2(1), we have
a,p) = Ipl* < llaclllpIl (2.15)

The last inequality implies that ||p||? < ||a||.
The remaining parts of the proof are similar to the proof of Theorem 2.2 with b replaced
by p, and the proof is omitted here.

§3. Refinements of the Fan-Todd’s Inequality
A. M. Ostrowski presented the following result (please refer to [4] or [5]):
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Theorem 3.1. Let a = (al,--- ap) and b = (bl, - ,by) be two sequences of mon-
proportional real numbers such that Z a;x; =0, and Z b;r; = 1.
Let A = Z a?, B = Z b2, C = Z a;b;. Then we have Z x? > ABécQ with equality if
i=1 i=1 =1 =1

and only if T; = AB_%“;, 1<i<n.

Fan and Todd in [4] presented the following theorem:

Theorem 3.2. Leta = (a1, - ,ay,) and b= (by,- -+ ,by,) with n > 2 be two sequences of
real numbers such that a;b; # a;b; for i # j. Then

5

N 2 2 . 7 < <Z>22ﬂ: (zn:a].bia_jaibj)z' (3.1)
(Ze)(z ) - (5 an) =i

Here, (Z) denotes the number of combinations of n distinct objects chosen 2 at a time.

M. Bjelica in [6, pp.445—448] put forward the following refinement of Fan-Todd’s inequal-
ity:

Theorem 3.3. Leta = (a1, - ,ay,) and b= (b1, -+ ,by,) withn > 2 be two sequences of
real numbers such that a;b; # a;b; fori# j. If | <1, then

A n 2 Abi—C’aiQ
AB—C2S<2) Z[Z a]b—az M by pursz

-2 n n
n 0 2
< e I 3.2
B (2) Z(z; ajb-—aib- ( )
i
Z. M. Mitrovic in [7] established the following theorem:

Theorem 3.4 Let a and b be two linearly independent vectors in a complex inner product
space V' and let x be a vector in V' such that {(x,a) = « and {x,b) = 5. Then

G(a,b)||z|* > [[ab — Bal® (3.3)
with equality if and only if x = <a’ﬂa_abc>;b(;<;)’5a_ab>a, where G(a,b) denotes the Gram de-
terminant of vectors a and b, i.e.

a,a a,b
ctos =29 o8] ”

The proofs of the above-mentioned four theorems can be found in [4-7]. It is natural to
find some similar refinements for Theorem 3.4 in the complex inner product space. In fact,
the following theorem is the answer to this problem.

Theorem 3.5. Let a and b be two linearly independent vectors in a complex inner product
space V and let x be a vector in V' such that (x,a) = a and (z,b) = B. Let

_ {a,Ba —ab)b — (b, Ba — ab)a
B G(a,b) '

Let D = {t € C: |t| < 1} be the closed unit disk in the complex plane C. For any t € D,

we define

(3.5)

F(t) = |lte + (1 = t)y|l*.
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Suppose x© # y. Then F(t) depends only on the modulus of t and is a strictly increasing
function of |t|, with F(0) = ||y||* and F(t) = ||z||? for any t € OD, the boundary of D, i.e.
we have the refinement for t € D:

lyll? < P#) < o)) (3.6)
Proof. Tt is straight forward to verify that (y,a) = @ and (y,b) = . In fact,
G(a,b){y,a) = (a, Ba — ab)(b,a) — (b, Ba — ab)(a, a)
— [Bllall? - a{a, B(b, 0) — [B(b, @) — bl ]
= oflal*[b]I* — I{a, 0)[*]. (3.7)
Hence, we have (y,a) = «. Also,
G(a,b){y,b) = (a, Ba — ab)(b,b) — (b, Ba — @b){a,b)
= [Bllal* — ala, b)]IIb]I* — [3(b, a) — allb]|*}(a,b)
= Blllalllo]* - [{a, b)[]- (3.8)

Hence, we have (y,b) = 5. As a result, we have

(1) = gy (e Fa = 8 0. 9) — (b Fa — ) o)

— [|Ba — @b|12/Gla,b). (3.9)
Similarly, we have
(y,x) = [|Ba —ab||*/G(a,b) = [|y]I*. (3.10)
Hence
(x,y) = (y. ) = |lyl>. (3.11)

F(t) = [tz + (1 = tyl* = (tw + (1 = )y, tw + (1 — t)y)
= tt]l|® + (1 - D) {z,y) + 1 = )iy, 2) + (1 = 1)1 = DIyl
= ttx]* + (@ = D)llylI* = 1Pl = 1) + ly]1*- (3.12)

By Theorem 3.4 and z # y, ||z||> — ||y||?> > 0. Hence, F(t) is a strictly increasing function
of |t| on D, depending only on |¢|, with F(0) = ||y||* and F(¢) = ||z|? for any t € ID.

§4. Refinement of the Fan-Todd’s Determinantal Inequality

In [4], Fan and Todd presented the following celebrated theorem:

Theorem 4.1. Let n and m be two integers such that 2 < m < n. Let a; = {a;1, a2, -,
ain} (1 <1< m) bem vectors in the unitary n-space U™ such that every m x m submatriz
of the m x n matrix

a1 a2 Qin
a1 Q22 - G2
" (4.1)
Am1 am?2 o Gmn
is nonsingular. Let G(a1,az,- - ,am—1) denote the Gram determinant of the m — 1 vectors
ay,as, - ,am—1; and let G(ay, a2, - ,a,,) denote the Gram determinant of the m wvectors
ay,ag, -+ Q. Let M(j1,742, - ,jm—1) denote the determinant of order m — 1 formed by

the first m — 1 rows of (4.1) and the columns of (4.1) with indices ji,jo, + ,jm—1 taken



80 CHIN. ANN. OF MATH. Vol.23 Ser.B

in this order. Let N(j1,Jja2, - s jm—1,Jm) denote the determinant of order m formed by the
columns of (4.1) with indices j1,72,** » jm—1,Jm taken in this order. Then

_92 n . . .

Glay, -, am—1) _(n Z Z M1, 42, 5 Jme1) |2 (42)

Glai, - ,am) — \m N1, J2, 5 dm) 1 '
) ) m Jm=1 J1<j2<-<Jm—1 ’ ’ e

J1see 7j'mfl7é]'m

Here, the Gram determinant is given by

G(ay,ag, - ,am) = 02’:‘11 a2:a2 aQ’:am . (4.3)
(am,a1)  {@m,a2) ... A{Gm,am)

The proof of Theorem 4.1 can be found in [4].
In [1], Beesack presented the following theorem:

Theorem 4.2. Let aj,as, -+ ,a,m(m > 1) be linearly independent vectors in a Hilbert
space H and let oy, a9, -+, ap, be given scalars. If x € H satisfies
(x,a;) =, ©1=1,2,-+-,m, (4.4)
then
m 2
G2 al? = || > ai| (4.5)
i=1
where G = G(ay,aa, -+ ,an) is the Gram determinant of a1, as, -+ , am, and 7y; is the deter-
minant obtained from G by replacing the elements of the ith row of G by (1,2, , Q).
m
Moreover, equality holds in (4.5) if and only if Gx = > via;.
i=1

The proof of Theorem 4.2 can be found in [1].
Remark 4.1. The ;’s in Theorem 4.2 are the unique solution of the following system
of equations:

(ar,a1)m1 + - 4 (@m, a1)ym = Gax,

<a1, am>71 R <ama am>'7m = Gayy,.

Therefore, we have
m
Z<G;],G@>’Y] :Gai7 1= 172a"' , M, (46)

=1

<

or

NIE

Tj<ai,aj> = GCT“ 1= 1a27' s, Mm. (47)
1

BN
I

Here @ denotes the complex conjugate of a.

The following theorem is a generalization of Theorem 4.1 and Theorem 4.2, in the form
of refinements of inequalities.

Theorem 4.3. Let aj,as, - ,a,(m > 2) be linearly independent vectors in a complex
inner product space X and let ay,ao, -+, ay, be given scalars. Let x € X satisfy

(x,a;) =, ©1=1,2,-+-,m. (4.8)
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Let y € X be defined by
Gy = Z ViQi, (4.9)
i=1

where G and 7y; have the same meanings as in Theorem 4.2. Suppose x # y. Fort € D, the
closed unit disk in C, we define Q(t) as follows:

Q(t) = |ltw + (1 - t)yl*. (4.10)

Then Q(t) depends only on the modulus of t and is a strictly increasing function of |t| for
t € D, with Q(0) = ||y||* and Q(t) = ||z||*> for t € OD the boundary of D. That is, for t € D,
with t # 0 and |t| # 1, we have

Iyl* < Q(t) < [l (4.11)

Proof. By (4.8) and (4.9), we have
T) = i%(%@ = i%ai, (4.12)
- <§:7 (1/6) iwﬁ

m

= Z%aﬁ- (4.13)
Hence
(y, ) = (y,9). (4.14)
Also, we have
(@,y) = (v, ) = (y,y)- (4.15)

For any t € D, we have
Q(t) = [tz + (1 - t)y|*
=({tr+ (1 —-t)y,tex+ (1 —1t)y)
= tt]lal® +t(1 = Dz, y) + 1 = )iy, 2) + (1 =) (1 = )ly|
= [tPll=]* + (1 = D)yl
= [Pl = lyll?) + llyl1*. (4.16)
By Theorem 4.2 and x # y, we have ||z||? — ||ly||> > 0. Hence, Q(#) is a strictly increasing

function of [t|, depending only on the modulus of ¢ with Q(0) = ||y||* and Q(¢) = ||=||* for
t € OD. This completes the proof of the theorem.

Corollary 4.1. Let n and m be two integers such that 2 < m <n. Let a; = (a;1, a2, -,
@in), © = 1,2,--- ,m, be m vectors in U™, the unitary n-space, such that every m x m
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submatrixz of the matriz

aip a2 ... Qin
a21 Q22 ... A2
(4.17)
Am1 Am?2 N Amn
is nonsingular. Let x = (x1,xa, -+ ,,) be the vector in U™ such that for k=1,2,--- n,

—_ (" M(jr, - jm=1)
k= - - . 4.18
(m> . . Z . N(]17"' 7.7m—17k) ( )
71<92<<Jm-1
Jiy s dm—1#k

m
Let y be the vector in U™ defined as y = (1/G) > via;, where v; are the unique solution
i=1
of the system of equations in (4.6). Then we have

—2 . .
||yH2: G(alv"' 7am71) < (n) i ‘ Z M(Jl7]27"' 7]m71) 2
G(a'lv"' ,Clm) \m 1 . . N(j17j27"' 7.7’rn)
Im=4 j1<j2<-<Jm-1
Jis s Jm—1FIm
Furthermore, equality holds if and only if x = y.

Proof. Similar to the proof in [4, Theorem 1] or as in the proof of Theorem 4.4 below,

we can show that (a;,2) =0,4=1,2,--- ,m — 1, and (a,,z) = 1. Hence, Theorem 4.3 is
applicable with X = U™, oy =as = = @m_1 =0, @, = 1, and as v, = G(a1, -, Gm—1)
N _ G(ai, +* ,am—1)
2 ) y Um
=(1/G 10 = YmQm /G = Y /G = ) 4.19
I = (1/6) 33 = i/ G = 16 = e (419)

Hence, the Fan-Todd’s determinantal inequality is deduced as a consequence of |y[|? <
|z||? in (4.11). By Theorem 4.2, we have, equality holds if and only if z = y.

Remark 4.2. It is clear that Theorem 4.3 is a generalization of Theorem 4.1 and Theorem
4.2, providing us with a necessary and sufficient condition for equality of the Fan-Todd’s
determinantal inequality.

In an attempt to give a criterion on x, for which (x, z) will be the minimum, the following
lemma was put forward by Fan and Todd in [4].

Lemma 4.1. Let ay,a9,- -+ ,am, be m linearly independent vectors in U™ (2 < m < n).
If a vector x in U™ wvaries under the conditions:

(aj,z) =0 fl1<i<m-—1,
<ai7‘r>:1 ZfZ:ma

o . G(a1, am— . . . .
then the minimum of (x,x) is % Furthermore, this minimum value is attained
bl »Ym

if and only if x is a linear combination of ai,as, - , Gm.
From Corollary 4.1, we have the improved result to Lemma 4.1, with a more explicit
expression in the linear combination of ay,as,- - ,a,, as follows.

Lemma 4.2. With the same assumptions and notations as in Theorem 4.1 and Lemma
4.1, we have

(i) The minimum of (x,z) is Glay,am-1)

G(a17...7am’) M
(ii) The minimum value of (x,x) is attained if and only if

r=(1/G) Z%‘ai,
i=1
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where ; are the unique solution of the system of equations in (4.6) :
m
Z<ajaai>’}/j:GOéi 1=1,2,---,m.
j=1

In the next theorem, a deduction of the weighted Fan-Todd’s inequality will also be
deduced as an application of our refinement Theorem 4.3. The original statement of Theorem
4.4 can be found in [4].

Theorem 4.4. In addition to the hypotheses of Theorem 4.1, let pj, j,.... 4, be complex
numbers defined for every set of m distinct positive integers ji,jo, -+ , jm < n such that the
following two conditions are fulfilled:

(1) Pjy jo,r jm 1S independent of the arrangement of ji, j2, -, Jm ;
(ii) P = Z pj17j27...7jm 75 0.
1<j1<ja < <jm<n
Then
Glai, - am-1) PR ‘ - M(j1, 42, s gm—1) |2
< Py UL g2 U170 (4.0
G(a’la"' 7am) |P|2 421 . . Z . sz Y N(lej%"' 7]m) ( )
Jm=L j1<jo<-<jm-1
jlv"'vjm,—l;éjm
Proof. Define a vector x = (x1,22, - ,2,) € U™ by
__ 1 M(jlvaa"' 7jm—1)
== i e . 4.21
k P Z Pji,j2, a]mflkN(jhjz’ T 7]'m717k) ( )

J1<je<-<Jm-1
Ji, s dm—17k

Let y € U™ be defined by

y=(1/G) Z%‘ai- (4.22)
i=1

Following the proof of [4, Theorem 1], we show first that

(ai,x) =0, i=1,2,---,m—1and (am,z) =1, (4.23)
1 . M(jtha"' ajm71>
(a;,x) = - Zaik Z Dijrjo-jim_1k NOjp - G k) (4.24)
k=1 J1<<Jm-1
Jis s Jm—17k
For any ordered m-tuple [hy, ha, - , h,,] of integers such that
1<h; <hy < <hpy<n, (4.25)

the sum on the right side of (4.24) contains exactly m terms

M(jhj?a T 7jm71)

i * - - 4.26

N(]la"' 7.7m—17k) ( )
(J1 < Jo2 < +++ < Jm—1) such that [j1, 2, ,Jm—1, k] is merely a rearrangement of [hy, ha,
-+, hym]. The sum of these m terms is denoted by S;(hy, ha, -+ , hy), which can be written

as:
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i M(hy,- s hy_1,hyg1, - ha)
Sz(h ah P 7hm) = E Qih,, (427)
b =1 N(hla 7hV—1ahu+17"' ?hTTL7hV)
Z (_1)m+uaihu : M<h17 e 7h'l/—1a hl/-‘rla o 7h‘7n)
v=1

N(hla"' ahm—hhm)

0 ifl1<i<m-—1,
11 iti=m (4.28)
Then (4.24) becomes
1
(a;,z) = Iz > Phihse by Si(h1, hay o )

1<hi<ho<--<hm<n
0 ifl<i<m-—1,

Tl ifi=m (4:29)

This completes the proof of (4.23). By Theorem 4.3, we have ||y||> < ||«]|?. Asin Corollary
4.1, we have

P = (/) Sy = S0z )
i=1 o G(a17 crt, Am—1, a'm)
1 S M(jl7j27"' 7jm71) 2
< ‘ e L. : . 4.30
— |P|2 Z Z p]l]Z jm*lk‘N(]l,]Q’ . 7Jm—1k) ( )

k=1 J1<j2<-<Jm-1
1y dm—17k

This completes the proof of Theorem 4.4.
Finally, we would remark that we have a similar statement for equality to hold in (4.30)
as in Corollary 4.1.
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